舵机失灵的主要原因_舵机失灵的应对方法

舵机失灵的主要原因_舵机失灵的应对方法

舵机失灵的主要原因_舵机失灵的应对方法

随着近年来船舶在我国海上交通中发挥着越来越重要的作用,船舶为我国经济的发展和交通网络化的发展提供了有利条件,船舶能够发挥海上的作用与舵机的正常工作是脱离不了关系的。船舶能够在海上进行方向的改动,是通过依靠安装在船舶尾部的船舵实现的,由此可以看出舵机对于船舶作用的发挥起着多么重要的作用。当船舶在正常航运时如果舵机出现故障可想而知对船舶和船员的安全将会造成多么大的伤害。因此加强对舵机的安全管理,尽量避免出现安全隐患问题不仅仅是航运正常发展的要求,同时也是对我国船员和乘务人员生命负责的表现。

本文首先介绍了舵机失灵的主要原因,其次介绍了舵机失灵的应对方法,最后介绍了舵机日常维护的重点以及提高船舶应急应变能力的对策,具体的跟随小编一起来了解一下。

舵机失灵的主要原因1、船舶失电导致舵机无法正常工作。

2、液压动力系统故障导致舵机无法正常工作。

3、轴承故障导致舵机无法正常转动。

4、船舶擦底或搁浅等导致舵机、舵叶损坏故障。

舵机失灵的应对方法1、一般应急措施:

①航行中发现舵机失灵,驾驶台应先转换为辅助操舵系统,并通知船长和机舱值班人员。

②机舱值班人员立即起动辅助或应急操舵装置,同时通知轮机长。

③轮机长迅速到舵机房,组织机舱人员进行相应的操作和抢修。

④船长到驾驶台,按照舵机的损坏情况指挥船舶的应急操纵。

2、当舵机因控制系统故障而失灵时采取的应急措施

舵机的控制系统故障,是指驾驶台不能有效地通过主、辅操舵装置操纵舵机的紧急状态,此时应采取如下应急措施:

①在舵机应急操纵过程中,值班轮机员不能远离操纵台,按车令操纵主机,执行船长和轮机长的命令。

51单片机程序:按键控制舵机角度

#include "reg52.h" unsigned char count; //0.5ms次数标识 sbit pwm =P2^7 ; //PWM信号输出 sbit jia =P2^4; //角度增加按键检测IO口 sbit jan =P2^5; //角度减少按键检测IO口 unsigned char jd=5; //角度标识 void delay(unsigned char i)//延时 { unsigned char j,k; for(j=i;j>0;j--) for(k=125;k>0;k--); } void Time0_Init() //定时器初始化 { TMOD = 0x01; //定时器0工作在方式1 IE = 0x82; TH0 = 0xfe; TL0 = 0x33; //11.0592MZ晶振,0.5ms TR0=1; //定时器开始 } void Time0_Int() interrupt 1 //中断程序 { TH0 = 0xfe; //重新赋值 TL0 = 0x33; if(count< jd) //判断0.5ms次数是否小于角度标识 pwm=1; //确实小于,PWM输出高电平 else pwm=0; //大于则输出低电平 count=(count+1); //0.5ms次数加1 count=count%40; //次数始终保持为40 即保持周期为20ms } void keyscan() //按键扫描 { if(jia==0) //角度增加按键是否按下 { delay(10); //按下延时,消抖 if(jia==0) //确实按下 { jd++; //角度标识加1 count=0; //按键按下则20ms周期从新开始 if(jd==6) jd=5; //已经是180度,则保持 while(jia==0); //等待按键放开

舵机工作原理

控制思想 该模块的程序框图如图4.5 所示。车模在行驶过程中不断采样赛道信息,并通过分析车模与赛道相对位置判断车模所处赛道路况,是弯道还是直道,弯道时是左转还是右转。直道时小车舵机状态保持不变,弯道时左转或右转,计算转弯半径。我们所用舵机的标准PWM 周期为20ms,转动角度最大为左右90度,PWM调制波如图7.2所示。

当给舵机输入脉宽为0.5ms,即占空比为0.5/20=2.5%的调制波时,舵机右转90度;当给舵机输入脉宽为1.5ms,即占空比为1.5/20=7.5%的调制波时,舵机静止不动;当给舵机输入脉宽为2.5ms,即占空比为2.5/20=12.5%的调制波时,舵机左转90度。可以推导出舵机转动角度与脉冲宽度的关系计算公式为: 注:其中t为正脉冲宽度(ms);θ为转动角度;当左转时取加法计算,右转时取减法计算结果。 当我们根据赛道弯度计算出转动角度以后便可以根据舵机的参数计算出脉冲宽度,控制舵机转动,舵机转角与PWM脉宽关系如表4-1所示。

在具体操作中PWM调制波的周期可以设置在20ms左右一定范围内,比如设置为10ms 或是30ms均可以使舵机正常转动,但是设置周期较长时,系统延迟时间较多,舵机转向会出现滞后,导致赛车冲出跑道;设置周期如果过短,系统输出PWM 调制波不稳定,舵机转动也会受影响,不能实现赛车的精确转向。经过反复测试,最终把输出PWM 调制波周期设定为13ms (用计数器实现)。 运行电机的转速以及舵机的转角,在软件上都是通过对PWM 波占空比进行设置来相应控制的。前面提到,舵机转角控制需要将两个

八位寄存器合成为一个十六位寄存器。程序中的舵机位置信号,当PWM调制波周期设为13ms时,因为总线频率为24MHz,用时钟SB,可计算得到16进制参数为9870H,舵机中间位置时占空比16进制参数为1680H,要分配给PWM6和7,分配时这2个端口的赋值必须是16进制,那么PWM模块初始化赋值为 PWMPER6= 0x98,PWMPER7= 0x70,PWMDTY6= 0x16,PWMDTY7= 0x80,因此这就牵涉到如何将1个十进制数分配为2个十六进制数问题。有2种方案,一种是除法取余,另一种是移位操作,前者编译生成的代码比后者要多,所以采用移位操作来实现,即取高位时与0xFF00先作“&”计算,然后将所得到的数向右移8位(>>8),即可取得高8位;同理,取低8位时只要与0x00FF作“&”计算即可(算法)。 2、结构和控制 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。 工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。

舵机抖动原因分析

抖舵,是指比例遥控设备在控制模型过程中发生的一种失控状态。抖舵时,舵机不能跟随发射机的指令,来回颤抖不止。抖舵的危害是很大的,尤其在空模中,有可能造成摔机事故。许多航模爱好者在碰到抖舵情况时,往往是一筹莫展,不知所措。其实如果知道了产生抖舵的具体原因,许多抖舵现象对于爱好者在业余条件下都是可以消除的。本文所指的抖舵不包括在特定的无线电干扰环境中,遥控距离已接近设备极限而产生的抖舵。因为这在许多场合都是正常的。分析抖舵的原因主要有以下几点。 一、因电源电压不足或电源容量过小造成的。特别是在接收机与动力电机共用同一组电源的场合更易发生。虽然大多数情况下接收机电路中都有稳压措施,但在电源电压不足或电源容量过小,动力电机又有较大的启动电流时,稳压电路也会无能为力;由此造成电源电压严重波动,接收机输出波形失常,引起舵机抖动。就是在接收机单独供电时,如果电源容量过小,又同时配接了多只舵机(特别是功耗较大的强力舵机时)也会产生这种情况、因电源电压不足或因电源容量小而引起的抖舵,只要将电源充足电,或更换大容量的电源即可解决。当然有时也可以用减小动

力消耗的办法来解决,比如更换一只工作电流较小的动力电机。这里提醒爱好者:为模型选配合适的电源是模型安全工作的前提。在运行模型前一定要检查一下电源电压是否充足。对模型的工作电流,以及电源容量充足的情况下模型安全运行的时间都应做到心中有数,以免造成不应有的事故。那么怎样才算选配的电源合适呢?可以简单地这样衡量。在电池电压充足的情况下,启动驱动电路,测量电源电压其波动值应不超过10%,波动越小越好。当然这只是起码的要求,还要满足一定的安全工作时间。这可从模型工作电流和电源的安时容量估算出来。采用动力电机与接收机、舵机分开供电的方法能有效地消除因动力电源波动带来的抖舵。 二、因干扰造成的舵机抖动。这里所说的干扰包括动力电机或发动机产生火花干扰,以及其它空中的无线电干扰。火花干扰来自直流电机的换向电刷或发动机的打火栓,因其离接收机都比较近。随着发射机与接收机距离拉大,火花干扰会变得越加严重。因此它也是影响控制距离的重要因素。由于外界干扰的影响,接收机送给舵机的信号质量变差,产生抖舵。对于空中的无线电于扰,爱好者在业余条件下很难采取有效的措施。只能尽量选用抗干扰能力比较强的遥控

详细的舵机控制原理资料

目录 一.舵机PWM信号介绍 (1) 1.PWM信号的定义 (1) 2.PWM信号控制精度制定 (2) 二.单舵机拖动及调速算法 (3) 1.舵机为随动机构 (3) (1)HG14-M舵机的位置控制方法 (3) (2)HG14-M舵机的运动协议 (4) 2.目标规划系统的特征 (5) (1)舵机的追随特性 (5) (2)舵机ω值测定 (6) (3)舵机ω值计算 (6) (4)采用双摆试验验证 (6) 3.DA V的定义 (7) 4.DIV的定义 (7) 5.单舵机调速算法 (8) (1)舵机转动时的极限下降沿PWM脉宽 (8) 三.8舵机联动单周期PWM指令算法 (10) 1.控制要求 (10) 2.注意事项 (10) 3.8路PWM信号发生算法解析 (11) 4.N排序子程序RAM的制定 (12) 5.N差子程序解析 (13) 6.关于扫尾问题 (14) (1)提出扫尾的概念 (14) (2)扫尾值的计算 (14)

一.舵机PWM 信号介绍 1.PWM 信号的定义 PWM 信号为脉宽调制信号,其特点在于他的上升沿与下降沿之间的时间宽度。具体的时间宽窄协议参考下列讲述。我们目前使用的舵机主要依赖于模型行业的标准协议,随着机器人行业的渐渐独立,有些厂商已经推出全新的舵机协议,这些舵机只能应用于机器人行业,已经不能够应用于传统的模型上面了。 目前,北京汉库的HG14-M 舵机可能是这个过渡时期的产物,它采用传统的PWM 协议,优缺点一目了然。优点是已经产业化,成本低,旋转角度大(目前所生产的都可达到185度);缺点是控制比较复杂,毕竟采用PWM 格式。 但是它是一款数字型的舵机,其对PWM 信号的要求较低: (1) 不用随时接收指令,减少CPU 的疲劳程度; (2) 可以位置自锁、位置跟踪,这方面超越了普通的步进电机; 其PWM 格式注意的几个要点: (1 ) 上升沿最少为0.5mS ,为0.5mS---2.5mS 之间; (2) HG14-M 数字舵机下降沿时间没要求,目前采用0.5Ms 就行;也就是说PWM 波形 可以是一个周期1mS 的标准方波; (3) HG0680为塑料齿轮模拟舵机,其要求连续供给PWM 信号;它也可以输入一个周 期为1mS 的标准方波,这时表现出来的跟随性能很好、很紧密。

舵机知识

DIYer修炼:舵机知识扫盲 双向电梯 ? 1 简介 ? 2 舵机的结构和原理 ? 3 选择舵机 ? 4 舵机的支架和连接装置 ? 5 如何控制舵机 ? 6 舵机应用:云台网络摄像头 ?7 如何DIY连续旋转的舵机 ?8 连续旋转舵机的应用:5分钟的绘图机器人 1 简介 舵机控制的机器人 ● 我猜你肯定在机器人和电动玩具中见到过这个小东西,至少也听到过它转起来时那与众不同的“吱吱吱”的叫声。对,它就是遥控舵机,常用在机器人技术、电影效果制作和木偶控制当中,不过让人大跌眼镜的是,它竟是为控制玩具汽车

和飞机才设计的。 ● 舵机的旋转不像普通电机那样只是古板的转圈圈,它可以根据你的指令旋转到0至180度之间的任意角度然后精准的停下来。如果你想让某个东西按你的想法运动,舵机可是个不错的选择,它控制方便、最易实现,而且种类繁多,总能有一款适合你呦。 ● 用不着太复杂的改动,舵机就可摇身一变成为一个高性能的、数字控制的、并且可调速的齿轮电机。在这篇文章中,我会介绍舵机使用的的一些基础知识以及怎样制作一个连续运转舵机。 2 舵机的结构和原理

A.标准舵机图解 ● 遥控舵机(或简称舵机)是个糅合了多项技术的科技结晶体,它由直流电机、减速齿轮组、传感器和控制电路组成,是一套自动控制装置,神马叫自动控制呢?所谓自动控制就是用一个闭环反馈控制回路不断校正输出的偏差,使系统的输出保持恒定。我们在生活中常见的恒温加热系统就是自动控制装置的一个范例,其利用温度传感器检测温度,将温度作为反馈量,利用加热元件提输出,当温度低

于设定值时,加热器启动,温度达到设定值时,加热器关闭,这样不就使温度始终保持恒定了吗。 B.闭环反馈控制 ● 对于舵机而言呢,位置检测器是它的输入传感器,舵机转动的位置一变,位置检测器的电阻值就会跟着变。通过控制电路读取该电阻值的大小,就能根据阻

单片机程序按键控制舵机角度

#i n c l u d e"r e g52.h" unsigned char count; //0.5ms次数标识 sbit pwm =P2^7 ; //PWM信号输出 sbit jia =P2^4; //角度增加按键检测IO口 sbit jan =P2^5; //角度减少按键检测IO口 unsigned char jd=5; //角度标识 void delay(unsigned char i)//延时 { unsigned char j,k; for(j=i;j>0;j--) for(k=125;k>0;k--); } void Time0_Init() //定时器初始化 { TMOD = 0x01; //定时器0工作在方式1 IE = 0x82; TH0 = 0xfe; TL0 = 0x33; //11.0592MZ晶振,0.5ms TR0=1; //定时器开始 } void Time0_Int() interrupt 1 //中断程序 {

TH0 = 0xfe; //重新赋值 TL0 = 0x33; if(count< jd) //判断0.5ms次数是否小于角度标识 pwm=1; //确实小于,PWM输出高电平 else pwm=0; //大于则输出低电平 count=(count+1); //0.5ms次数加1 count=count%40; //次数始终保持为40 即保持周期为20ms } void keyscan() //按键扫描 { if(jia==0) //角度增加按键是否按下 { delay(10); //按下延时,消抖 if(jia==0) //确实按下 { jd++; //角度标识加1 count=0; //按键按下则20ms周期从新开始 if(jd==6) jd=5; //已经是180度,则保持 while(jia==0); //等待按键放开 }

舵机控制程序

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,

获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占

空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 图1 舵机的控制要求 单片机实现舵机转角控制可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放 器件的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV 以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都远大于5mV,所以滤波

电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM信号的输出,并且调整占空比。当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为两次中断执行,一次短定时中断和一次长定时中断。这样既节省了硬件电路,也减少了软件开销,控制系统工作效率和控制精度都很高。 具体的设计过程: 例如想让舵机转向左极限的角度,它的正脉冲为2ms,则负脉冲为 20ms-2ms=18ms,所以开始时在控制口发送高电平,然后设置定时器在

舵机常见问题解决

常见问题解决 一、舵机电机调速原理及如何加快电机速度 常见舵机电机一般都为永磁直流电动机,如直流有刷空心杯电机。直流电动机有线形的转速-转矩特性和转矩-电流特性,可控性好,驱动和控制电路简单,驱动控制有电流控制模式和电压控制两种模式。舵机电机控制实行的是电压控制模式,即转速与所施加电压成正比,驱动是由四个功率开关组成H桥电路的双极性驱动方式,运用脉冲宽度调制(PWM)技术调节供给直流电动机的电压大小和极性,实现对电动机的速度和旋转方向(正/反转)的控制。电机的速度取决于施加到在电机平均电压大小,即取决于PWM驱动波形占空比(占空比为脉宽/周期的百分比)的大小,加大占空比,电机加速,减少占空比电机减速。 所以要加快电机速度:1、加大电机工作电压;2、降低电机主回路阻值,加大电流;二者在舵机设计中要实现,均涉及在满足负载转矩要求情况下重新选择舵机电机。 二、数码舵机的反应速度为何比模拟舵机快 很多模友错误以为:“数码舵机的PWM驱动频率300Hz比模拟舵机的50Hz高6倍,则舵机电机转速快6倍,所以数码舵机的反应速度就比模拟舵机快6倍” 。这里请大家注意占空比的概念,脉宽为每周期有效电平时间,占空比为脉宽/周期的百分比,所以大小与频率无关。占空比决定施加在电机上的电压,在负载转矩不变时,就决定电机转速,与PWM的频率无关。 模拟舵机是直流伺服电机控制器芯片一般只能接收50Hz频率(周期20ms)~300Hz左右的PWM外部控制信号,太高的频率就无法正常工作了。若PWM外部控制信号为50Hz,则直流伺服电机控制器芯片获得位置信息的分辨时间就是20ms,比较PWM控制信号正比的电压与反馈电位器电压得出差值,该差值经脉宽扩展(占空比改变,改变大小正比于差值)后驱动电机动作,也就是说由于受PWM外部控制信号频率限制,最快20ms才能对舵机摇臂位置做新的调整。 数码舵机通过MCU可以接收比50Hz频率(周期20ms)快得多的PWM外部控制信号,就可在更短的时间分辨出PWM外部控制信号的位置信息,计算出PWM信号占空比正比的电压与反馈电位器电压的差值,去驱动电机动作,做舵机摇臂位置最新调整。 结论:不管是模拟还是数码舵机,在负载转矩不变时,电机转速取决于驱动信号占空比大小而与频率无关。数码舵机可接收更高频率的PWM外部控制信号,可在更短的周期时间后获得位置信息,对舵机摇臂位置做最新调整。所以说数码舵机的反应速度比模拟舵机快,而不是驱动电机转速比模拟舵机快。 三、数码舵机的无反应区范围为何比模拟舵机小

(完整版)船舶失控应急反应须知

船舶失控应急反应须知 1. 目的 旨在规范船舶失去自航动力处于漂航状态时所应采取的应急措施,防止事故恶化并争取尽早恢复正常状态。 2. 适用范围 适用于公司船舶失控漂流航行时的应急操作。 3. 职责 3.1值班驾驶员负责了望、通信联络和传令。 3.2 轮机长为现场指挥,并负责组织有关人员排除故障。 3.3船长为应急行动总指挥。 4. 定义 4.1 船舶失控系指船舶在航行中,因主推进系统故障、操舵系统故障、全船失电 等引起的船舶漂航情况。 4.1.1 主推进系统故障指船舶在航行时发生主机设备故障、螺旋桨脱落、传动系 统故障等引起的船舶漂航情况。 4.1.2 操舵系统故障是指船舶在航行操舵中发生失控的现象,如舵机失电、液压 泵故障、油缸泄漏、严重的滞舵、跑舵、冲舵现象、舵柄舵叶的故障等。 4.1.3 全船失电是指船舶在航行时,发生的因发电原动机故障、发电机故障、负载 过大跳闸、逆功率、配电板故障等原因引起的主供电源失电。 5. 应急行动 5.1主推进系统故障轮机部应急措施 5.1.1值班轮机员在发生主推进系统故障时,应立即向轮机长和驾驶台报告,并请 示要求停车修理;但在下列情况时,轮机员可先停车后报告: 1) 柴油机运转已危及人身安全时; 2) 滑油燃油管系破裂、大量油类外泄,造成严重污染并危及柴油机安全时; 3) 曲轴箱爆炸时; 4) 确认柴油机继续运转将引起重大事故时。 5.1.2 轮机长接到报告后,应迅速下机舱查明主机设备故障产生的原因,并判断 继续运行可能会产生的后果; 5.1.3 轮机长应把可能产生的后果告知船长,但必须无条件的执行船长的命令;

5.1.4 在得到船长允许停车修理后,轮机长作为现场指挥,应迅速组织轮机部成员 开展抢修工作,并安排专人与驾驶台的联系,必要时可要求甲板部成员配合到机舱抢险; 5.1.5 抢险结束后,应仔细检查系统情况,确信可运行后,重新启动主机继续航行, 并把详细经过写入《轮机日志》。 5.2主推进系统故障驾驶台应急措施 5.2.1船长应向轮机长询问故障的原因、可能引起的后果、抢修时间并结合当时的 海况/通航环境等迅速作出停车漂航的命令和组织船员的应急抢修工作; 5.2.2同时要利用一切有效手段控制船位、航速,避免发生其他险情和事故,如有 搁浅危险,利用余速及舵效,尽可能远离危险区,并做好抛锚或拖锚准备; 5.2.3 如主机失灵发生在狭水道或其他通航密集区有可能产生船舶碰撞危险时,船 长有权作出“舍机保船”的命令(按下驾控台“越控”按钮),但必须将这一动作在航海日志上作出记录; 5.2.4 应迅速把自动操舵改为手动操舵,并按船长的命令实施操作; 5.2.5 驾驶员应按船长的指示,通过望远镜、雷达等设备加强对船舶周围环境的观 察,并按《1972年国际海上避碰规则》和《中华人民共和国交通部沿海港口信号规定》的要求显示号灯或号型(白昼垂挂两黑球,夜晚垂直显示两红灯),用VHF频道告知来往船舶本船失控情况,以防与其他船舶发生紧迫局面。 5.3 操舵系统故障轮机部应急措施 5.3.1 值班轮机员在接到驾驶台的操舵故障后,应立即向轮机长报告并按驾驶台的 命令正确操纵主机(降速或停车); 5.3.2 轮机长获报后,应迅速到达舵机房,同轮机员一起查找系统故障的原因,并 按故障的原因制定相应的抢险措施; 5.3.3 轮机长应把故障的原因、目前的情况(有无能力修理)、修理可能需要的时 间向船长汇报; 5.3.4 在得到船长实施应急操舵的命令后,轮机长应带领相关人员立即启动应急舵 机或手操舵并与驾驶台保持联系,按驾驶台的命令操纵舵机。 5.4 操舵系统故障驾驶台应急措施 5.4.1 水手在操作舵机时,若发现舵机无法正常操作或有异常现象应立即向值班驾 驶员报告; 5.4.2 值班驾驶员应迅速查看操舵台的电源供应情况并作出最初的反应;

51控制舵机程序大全

#include void InitTimer0(void) { TMOD = 0x01; TH0 = 0x0B1; TL0 = 0x0E0; EA = 1; ET0 = 1; TR0 = 1; }void delay(1)(void) { unsigned char a,b,c; for(c=1;c>0;c--) for(b=142;b>0;b--) for(a=2;a>0;a--); } void main(void) { InitTimer0(); P1_2=0; while(1); } void Timer0Interrupt(void) interrupt 1 { //20ms中断 TH0 = 0x0B1; TL0 = 0x0E0; P1_2=1; delay(1); P1_2=0; }

#include #include #include #define uchar unsigned char #define uint unsigned int sbit IN1=P0^0; sbit IN2=P0^1; sbit EA1=P0^5; sbitdj=P0^7; //舵机口 uint t=0;//中断次数 ucharzk;//高电平中断次数uchar p=0;//定义pwm占空比void delay(uint z) { uinti,j; for(i=0;i>8;//100us一次中断TL0=-100%256; if(t==0)zk=p; if(t=zk) dj=0; t++; if(t>=200) t=0;//20mspwm周期 } void turn_left() { IN1=1;IN2=0;EA1=1;//电机工作p=5;//0.5ms delay(600); } void turn_right() { IN1=1;IN2=0;EA1=1;//电机工作p=25;//2.5ms delay(600);

液压舵机的故障分析及处理措施

论文题目:液压舵机的故障分析及处理措施二级学院:轮机工程学院 专业:轮机工程技术 目录 1 引言 2 液压舵机概述 2.1 液压舵机的基本工作原理 2.2 船舶建造规范对舵机的基本要求 3 液压舵机的故障分析 3.1 液压舵机无舵 3.2 液压舵机跑舵——稳舵时偏离所停舵角 3.3 液压舵机舵速太慢 3.4 液压舵机滞舵 3.5 实际舵角与操舵角不符 4 液压舵机故障的解决措施 4.1 检查应急舵的有效性 ------------------------------------------------7 4.2 检查舵角指示的准确性 ----------------------------------------------8 4.3 检查舵角限位器的有效性 --------------------------------------------8 4.4 检查舵的液压系统的密封性能 ----------------------------------------8 4.5 检查液压油的品质 --------------------------------------------------8

4.5.1 液压油性能指标一般应符合以下要求 ------------------------------8 4.5.2 液压油污染的主要原因 ------------------------------------------9 4.6 舵机检查的其他注意事项 -------------------------------------------11 结论 ---------------------------------------------------------------------11 致谢 -------------------------------------------------------------------12 参考文献 -----------------------------------------------------------------13 1 引言 据资料介绍:船舶能够在水中按照驾驶员的意图航行,使船舶改变航向或维持指定航向,使依靠改变安装在船舶尾部的船舵的位置来实现的。舵对于船舶的重要性是不言而喻的,当船舶航行时船舵发生故障对船舶安全的影响是巨大的。对于舵机日常比较容易出现故障的情况,主要分为两大部分。一是属于硬件类故障,二是属于软件类故障。舵机的硬件类的故障是指与舵机相关的机器,设备发生了功能性的障碍,使得舵机不能正常工作发挥作用,常见故障有:1 通信类故障,2 电力系统故障,3 液压系统故障。软件类的故障是指与舵机运行有关的管理制度,船员对舵机的操作存在问题。通常主要是船员对应急舵的操作不熟悉,在需要的时候无法启动应急舵。因此加强对舵机的日常维护与保养对工作的可靠性和延长舵机的

船舶各种应急预案及应急计划(样本)

For personal use only in study and research; not for commercial use 船舶丧失操纵能力应急预案 1船舶在航行中发生丧失操纵能力的紧急情况时,立即发出警报,召集应急,应立即采取滞航及就地抛锚(沿岸航行,水深适宜)等措施。 2在采取应急行动的同时迅速报告就近港口国主管机关或搜救中心 3 在进出港、狭水道航行时,立即使用伴航拖轮协助操纵。条件允许可向就近港口机关申请加派拖轮予以协助,使船舶抵安全水域抛锚。 4 船长和当值驾驶员应加强了望,以防本船失控后与他船发生紧迫局面,并按《国际信号规则》和《72海上避碰规则》《91内河避碰规则》的要求显示号灯、号型。 5船长应沉着指挥,当值驾驶员应使用VHF发布本船目前位置、动态,提醒来船注意,并做好各项记录。 6 轮机长指挥轮机员迅速进行故障设备抢修工作。 7 求得岸基支持,按公司相关处室或主管人员指示,采取进一步抢救和抢修措施。 8 船舶丧失操纵能力导致的碰撞、触礁、搁浅、燃油泄漏等事故,按相应应急预案进行部署 9 船舶发生丧失操纵能力时,按下列应急计划进行部署。 主机失灵、电力中断应急计划 职务负责部位应急/应变职责 船长驾驶台总指挥,发布船舶操纵命令,指挥船舶操纵,负责对外及与船公司联系。 项目负责人机舱副总指挥,协助船长组织、动员人员抢修故障设备及其他应急情况处理。 值驾/二副驾驶台协助船长操纵船舶,守听VHF,核测船位,做好记录。。 值班水手驾驶台按舵令正确操舵。 驾助驾驶台协助了望,显示航行灯、信号灯,悬挂号型,传令,内部联络。 大副船首指挥甲板人员工作,备锚、备缆,系带拖轮,待命。 三副驾驶台甲板按船长指令准备消防器材,准备释放救生艇、筏。 水手长船首备锚、备缆,或按船长、大副指令进行准备。 轮机长机舱抢修现场的指挥。向船长报告故障,组织人力抢修,尽快排除故障。 大管轮机舱现场抢修。 二管轮机舱现场抢修,并负责发电机/应急发电机。 三管轮机舱现场抢修,并注意泵、阀情况。 电机员机舱负责电气设备的修理及发电机及应急照明。 机工长机舱协助大管轮工作或听从轮机长、大管轮指挥,完成指定工作。 值班机工机舱向轮机长、轮机员报告发现的故障情况,听从指挥。 其他机工机舱听从轮机长轮机员指挥,完成指定工作。 其他人员待命,做好援助准备。 操舵系统故障应急计划 职务负责部位应急任务

舵机控制C程序

舵机控制C程序 #include #defineucharunsignedchar #defineuintunsignedint /* 变量定义 */ ucharkey_stime_counter,hight_votage=15,timeT_counter; bitkey_stime_ok; /* 引脚定义 */ sbitcontrol_signal=P0^0; sbitturn_left=P3^4; sbitturn_right=P3^5; /***************************************************************** 名称:定时器0初始化 功能:20ms定时,11.0592M晶振 初值20ms 初值0.1ms *****************************************************************/ voidTimerInit() { control_signal=0; TMOD=0x01;//设置定时器0为工作方式1 EA=1;//开总中断 ET0=1;//定时器0中断允许 TH0=0xFF;//定时器装初值 TL0=0xA3; TR0=1;//启动定时器0 } /********************************************** 定时器0中断服务函数 ***********************************************/ voidtimer0(void)interrupt1using0 { TH0=0xFF; TL0=0xA3;//定时器0重新装入数值

液压舵机的故障分析与处理措施方案

论文题目:液压舵机的故障分析及处理措施 二级学院:轮机工程学院 专业:轮机工程技术 目录 1 引言 2 液压舵机概述 2.1 液压舵机的基本工作原理 2.2 船舶建造规对舵机的基本要求 3 液压舵机的故障分析 3.1 液压舵机无舵 3.2 液压舵机跑舵——稳舵时偏离所停舵角 3.3 液压舵机舵速太慢 3.4 液压舵机滞舵 3.5 实际舵角与操舵角不符 4 液压舵机故障的解决措施

4.1 检查应急舵的有效性------------------------------------------------7 4.2 检查舵角指示的准确性----------------------------------------------8 4.3 检查舵角限位器的有效性--------------------------------------------8 4.4 检查舵的液压系统的密封性能----------------------------------------8 4.5 检查液压油的品质--------------------------------------------------8 4.5.1 液压油性能指标一般应符合以下要求------------------------------8 4.5.2 液压油污染的主要原因------------------------------------------9 4.6 舵机检查的其他注意事项-------------------------------------------11 结论---------------------------------------------------------------------11 致-------------------------------------------------------------------12 参考文献-----------------------------------------------------------------13 1 引言 据资料介绍:船舶能够在水中按照驾驶员的意图航行,使船舶改变航向或维持指定航向,使依靠改变安装在船舶尾部的船舵的位置来实现的。舵对于船舶的重要性是不言而喻的,当船舶航行时船舵发生故障对船舶安全的影响是巨大的。对于舵机日常比较容易出现故障的情况,主要分为两大部分。一是属于硬件类故障,二是属于软件类故障。舵机的硬件类的故障是指与舵机相关的机器,设备发生了功能性的障碍,使得舵机不能正常工作发挥作用,常见故障有:1 通信类故障,2 电力系统故障,3 液压系统故障。软件类的故障是指与舵机运行有关的管理制度,船员对舵机的操作存在问题。通常主要是船员对应急舵的操作不熟悉,在需要的时候无法启动应急舵。因此加强对舵机的日常维护与保养对工作的可靠性和延长舵机的无故障寿命至关重要,轮机员必须依照使用说

船舶各种应急预案及应急计划(样本)

船舶丧失操纵能力应急预案 1船舶在航行中发生丧失操纵能力的紧急情况时,立即发出警报,召集应急,应立即采取滞航及就地抛锚(沿岸航行,水深适宜)等措施。 2在采取应急行动的同时迅速报告就近港口国主管机关或搜救中心 3 在进出港、狭水道航行时,立即使用伴航拖轮协助操纵。条件允许可向就近港口机关申请加派拖轮予以协助,使船舶抵安全水域抛锚。 4 船长和当值驾驶员应加强了望,以防本船失控后和他船发生紧迫局面,并按《国际信号规则》和《72海上避碰规则》《91内河避碰规则》的要求显示号灯、号型。 5船长应沉着指挥,当值驾驶员应使用VHF发布本船目前位置、动态,提醒来船注意,并做好各项记录。 6 轮机长指挥轮机员迅速进行故障设备抢修工作。 7 求得岸基支持,按公司相关处室或主管人员指示,采取进一步抢救和抢修措施。 8 船舶丧失操纵能力导致的碰撞、触礁、搁浅、燃油泄漏等事故,按相应应急预案进行部署 9 船舶发生丧失操纵能力时,按下列应急计划进行部署。 主机失灵、电力中断应急计划 职务负责部位应急/应变职责 船长驾驶台总指挥,发布船舶操纵命令,指挥船舶操纵,负责对外及和船公司联系。 项目负责人机舱副总指挥,协助船长组织、动员人员抢修故障设备及其他应急情况处理。值驾/二副驾驶台协助船长操纵船舶,守听VHF,核测船位,做好记录。。 值班水手驾驶台按舵令正确操舵。 驾助驾驶台协助了望,显示航行灯、信号灯,悬挂号型,传令,内部联络。 大副船首指挥甲板人员工作,备锚、备缆,系带拖轮,待命。 三副驾驶台甲板按船长指令准备消防器材,准备释放救生艇、筏。 水手长船首备锚、备缆,或按船长、大副指令进行准备。 轮机长机舱抢修现场的指挥。向船长报告故障,组织人力抢修,尽快排除故障。 大管轮机舱现场抢修。 二管轮机舱现场抢修,并负责发电机/应急发电机。 三管轮机舱现场抢修,并注意泵、阀情况。 电机员机舱负责电气设备的修理及发电机及应急照明。 机工长机舱协助大管轮工作或听从轮机长、大管轮指挥,完成指定工作。 值班机工机舱向轮机长、轮机员报告发现的故障情况,听从指挥。 其他机工机舱听从轮机长轮机员指挥,完成指定工作。 其他人员待命,做好援助准备。 操舵系统故障应急计划 职务负责部位应急任务 船长驾驶台总指挥,指挥船舶操纵,发布船舶相关命令,对外联系。 值驾驾驶台发出失控通报或警报,通知机舱变速航行,传达舵令至舵机间,核测船位。驾助驾驶台协助驾驶员工作,显示号灯、号型,传令,内部联络。 值班水手驾驶台悬挂信号,传令,内部联络。 下一班值驾舵机间携带VHF对讲机(或使用驾驶台/机舱直通电话)按驾驶台舵令指挥操

单片机按键控制舵机转动

忆飞工作室 https://www.360docs.net/doc/b36985138.html, 忆飞电子淘宝店欢迎进入 设计者:曾传辉 时间2012年8月13号 手机:134******** QQ:36439133 旺旺:epiapl_cn 程序名称:按键控制舵机控制 程序效果:单片机两个按键控制左右转,转角90度单片 #include #define Sevro_moto_pwm P1_0 //接舵机信号端输入PWM信号调节速度 #define k1 P2_5 //按键控制舵机左转 #define k2 P2_6 //按键控制舵机右转 unsigned char pwm_val_left = 0;//变量定义 unsigned char push_val_left;// =14;//舵机归中,产生约,1.5MS 信号 unsigned int timer=0; //延时基准变量 unsigned char timer1=0; //扫描时间变量 void pwm_Servomoto(void); //函数申明 unsigned int val,val2,fl1,fl2; //变量申明 /************************************************************************/ void delay(unsigned int k) //延时函数 { unsigned int x,y; for(x=0;x

舵机控制型机器人设计要点

课程设计项目说明书 舵机控制型机器人设计 学院机械工程学院 专业班级2013级机械创新班 姓名吴泽群王志波谢嘉恒袁土良指导教师王苗苗 提交日期 2016年4 月1日

华南理工大学广州学院 任务书 兹发给2013级机械创新班学生吴泽群王志波谢嘉恒袁土良 《产品设计项目》课程任务书,内容如下: 1. 题目:舵机控制型机器人设计 2.应完成的项目: 1.设计舵机机器人并实现运动 2.撰写机器人说明书 3.参考资料以及说明: [1] 孙桓.机械原理[M].北京.第六版;高等教育出版社,2001 [2] 张铁,李琳,李杞仪.创新思维与设计[M].国防工业出版社,2005 [3] 周蔼如.林伟健.C++程序设计基础[M].电子工业出版社.北京.2012.7 [4] 唐增宏.常建娥.机械设计课程设计[M].华中科技大学出版社.武汉.2006.4 [5] 李琳.李杞仪.机械原理[M].中国轻工业出版社.北京.2009.8 [6] 何庭蕙.黄小清.陆丽芳.工程力学[M].华南理工大学.广州.2007.1 4.本任务书于2016 年2 月27 日发出,应于2016 年4月2 日前完 成,然后提交给指导教师进行评定。 指导教师(导师组)签发2016年月日

评语: 总评成绩: 指导教师签字: 年月日

目录 摘要 (1) 第一章绪论 (2) 1.1机器人的定义及应用范围 (2) 1.2舵机对机器人的驱动控制 (2) 第二章舵机模块 (3) 2.1舵机 (3) 2.2舵机组成 (3) 2.3舵机工作原理 (4) 第三章总体方案设计与分析 (6) 3.1 机器人达到的目标动作 (6) 3.2 设计原则 (6) 3.3 智能机器人的体系结构 (6) 3.4 控制系统硬件设计 (6) 3.4.1中央控制模块 (7) 3.4.2舵机驱动模块 (7) 3.5机器人腿部整体结构 (8) 第四章程序设计 (9) 4.1程序流程图 (9) 4.2主要中断程序 (9) 4.3主程序 (11) 参考文献 (13) 附录 (14) 一.程序 (14) 二.硬件图 (17)

主机失灵应急处理须知

目录 1 目的 4 参照文件 2 适用范围 5 应急措施 3 定义 6 记录 7 相关文件 修改记录

1.目的 本文件制定了船舶航行中主机失灵时应采取的措施,旨在加强船员的应急能力,避免因主机故障而造成事故。 2.适用范围 进入安全管理体系的船舶/部门和人员。 3.定义 主机失灵:是指船舶航行中主机发生的会影响安全航行的严重故障(诸如柴油机飞车、主机拉缸、柴油机调速器故障、主机曲轴烧损、主机推力轴承烧损等)。 4.参照文件 《国内安全管理规则》、《安全管理手册》、《紧急情况的标明、阐述和反应程序》 5.应急措施 5.1 驾驶部 5.1.1 值班驾驶员获悉主机失灵后应立即报告船长,发出警报(打警铃一长声)。若船舶因此失去控制,应按章鸣放声号(一长声),显示信号(夜间除显示舷灯和尾灯外,还应当显示红光环照灯两盏,白天悬挂圆球两个),及时用无线电话通知过往船舶注意。 5.1.2全体船员听到警报后,应迅速到达各自岗位,听候命令。 5.1.3 充分利用舵效借助余速控制航向,迅速采取一切有效措施锚泊,必要时出缆系靠。 5.1.4 停泊后通知机舱尽力抢修恢复。 5.1.5 船舶航经大桥、船闸、浅险狭窄航道,主机失灵而有碰撞、触礁、搁浅等危险时,应及时、果断采取有效措施,避免事故的发生。 5.2 轮机部(几种常见主机故障应急措施) 5.2.1 柴油机油压下降后的检查处理 5.2.1.1 机油压力刚降到报警压力就及时发现,应立即启动备用油泵维持正常油压到锚地或港口,检查失压原因,予以排除。 5.2.1.2 机油压力失压或陡降,首先应立即停车、转车,并报告驾驶室,20分钟后用手探摸曲轴箱体和道门温度,温度降到65度以下后方可撤开道门,检查损坏情况。 5.2.1.3 就近选择安全锚地或用无故障主机维持航行到锚泊点或港口,全面检查设备损坏情况,找出事故原因,经修理故障排除后,才能动车。损坏情况不明或原因未查明,严禁盲目航行。 5.2.1.4经修复决定开航后,值班人员应密切注意主机机油压力有无变化,柴油机经低速,低负荷运转一段时间,确定一切正常后,再逐步提高转速,增加柴油机负荷。 5.2.1.5经一段时间运转后,应利用停泊时间,对损坏修复件进行检查。 5.2.2 柴油机拉缸的处理

相关文档
最新文档