2有理数的减法(1)

合集下载

有理数的加减法(共44张PPT)

有理数的加减法(共44张PPT)

总结词
整数和小数相加或相减时,先将整数和 小数都转换为小数,再进行加减运算。
VS
详细描述
在进行整数和小数的混合加减法时,先将 整数转换为小数,再进行小数的加减法运 算。例如,将整数1和0.5相加得到1.5,将 整数2和-0.8相加得到1.2。同样地,在进 行混合减法时,先将整数转换为小数,再 进行小数的减法运算。例如,将整数2和 0.6相减得到1.4,将整数1和-0.4相减得到 0.6。
异号数的加减法规则
总结词
异号数相加或相减,取绝对值较大数的符号,并用较大的绝对值减去较小的绝 对值。
详细描述
当两个有理数符号不同时,结果的符号取绝对值较大的数的符号。同时,结果 的绝对值是较大的绝对值减去较小的绝对值。例如,+3和-5相加得到-2,-7和 +4相加得到-3。
整数和小数的混合加减法规则
06
习题和练习
基础习题
总结词
针对有理数加减法的基本概念和规则进行练习。
详细描述
包括正数、负数和零的加法运算,减法运算转化为加法运算,以及整数、分数和 小数的混合运算。
进阶习题
总结词
在掌握基础习题的基础上,进一步提高解题技巧和思维能力 。
详细描述
涉及更复杂的运算,如多步运算、分数的约分、有理数的乘 除法等,以及解决实际问题中的数学模型。
计算 (-5) + (-3):首先确定符号为 负,然后计算绝对值5和3,最后相 加得到结果-8。
示例2
计算 (-7) - (-4):首先确定符号为 负,然后计算绝对值7和4,最后相 减得到结果-3。
运算技巧和策略
利用分配律简化运算
例如,a + (b + c) = (a + b) + c 和 a - (b - c) = (a - b) + c。

有理数的减法教案(通用3篇)

有理数的减法教案(通用3篇)

We have to laugh every day in life, and none of us know what happens in the next second of life.通用参考模板(页眉可删)有理数的减法教案(通用3篇)有理数的减法教案1知识与能力:1.使学生理解有理数的加减法法可以互相转化。

2.使学生熟练地进行有理数的加减混合运算。

过程与方法:1.体会有理数的加减法法可以互相转化的思想。

2.培养学生的运算能力。

情感态度与价值观:培养学生认真、仔细的良好学习态度。

重点准确迅速地进行有理数的加减混合运算。

教材提示:本节课是学习有理数减法的第二课时,在教学过程中,教师应该首先通过探究的方式组织学生分组讨论,借助于已有知识,体会有理数的加减法法可以互相转化的思想,如何省略加号,并且还要正确掌握省略加号后它们表示的是哪些数的和,强化混合运算的准确性。

教学过程:一、自主学习(一)、阅读教材23-24页。

(二)、导学练习 [活动1]:学生课前自主完成。

1.减法法则:,用字母表示为:2.计算(1)1-5= (2)8-11= (3)6-9=(4)9-(-9)= (5)(- )-(- )=[活动2]:学生先课前自主,然后在课堂上一起和大家交流讨论。

1、红星队在4场足球赛中的战绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。

红星队在4场比赛中总的净胜球数是多少?2、一20十3十(十5)十(一7)(读作,,,的和 )3、计算:(一20)十(十3)一(一5)一(十7). 注意:在进行有理数混合运算时,应该先将减法按规则统一成加法后再计算;第一个数前面的一常用括号括起来,但熟练后,第一个数带负号时,通常可以不用括号手起来。

4、计算在做有理数运算时,易出符号错误。

计算:(1)(一5)一(一4)一(十1)=(一5)十(一4)十(十1) =(一9)十(十1) =一8(2)(一7)一(十4) 十(一8)十(一3)一(一8) =一7十4一8一3一8 =一22. 以上两个小题均有错误,指出错在哪里,并改正。

有理数的减法教学设计(1)

有理数的减法教学设计(1)
基本信息 课题 作者及工作 单位
人教版七年级数学上有理数的减法(1)
河南省济源市轵城镇实验中学 赵玉荣 教材分析
本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一 册 的有理数减法法则及有理数减法运算的例 1、例 2 为课堂教学内容。有理数的减 法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并 对解决实际问题都有十分重要的作用。
学生口述解题过 程,教师板书做示 范,从中培养学生 严谨的学风和良 好的学习习惯.例 1(2)题是 0 减去一 个数,学生在开始 学时很容易出错, 这里作为例题是 为引起学生的重 视.(3)(4)两 题是简单的变式 题目,意在说明有 理数减法法则不 但适用于整数,也 适用于分数、小 数,即有理数.
组织学生自己编题, 学 教师与学生以平 等身份参与教学, 生回答. (小组交流合 放手让学生自己 作) 编拟有理数减法 的题目,其目的是 让学生巩固已学 知识.这样做,一 方面可以活跃学 生的思维,培养学 生的表达能力.另 一方面通过出题, 相互解答,互相纠 正,能增强学生学 习的主动性和参 与意识.同时,教 师可以获取学生 掌握知识的反馈 信息,对于存在的 问题及时回授.
3、
作为初一新生,学生的学习惯还尚未培养,虽然学习积极性较高,探索欲 望也较强,但交流合作意识不强,自主探索的效率也较低,自我管理能力 也很差。 教学目标
1、经历探索有理数减法法则的过程。
2、理解探索有理数减法法则,渗透化归思想。 3、能较为熟练地进行两个有理数减法的运算。 4、能解决简单的实际问题,体会数学与现实生活的联系。
先请同桌两位同学互 相交流,然后请 2—3 个同学发言 学生思考后回答: 减- 2 等于加+2
.允许学生从不同 角度观察得出温 差,采用温度计从 5 数到零下 2 度, 只要学生的方法 合理,都应鼓励。 此处先让学生回 顾加法与减法互 为逆运算关系,有 助于学生理解 5-(-2)=7 教师发挥主导作 用,注重学生的参 与意识,充分发展 学生的思维能力, 让学生通过尝试, 自己认识减法可 以转化为加法计 算。 由于学生刚刚接 触有理数减法运 算难度较大,为面 向全体,通过变换 题给予学生进一 步观察比较的机 会,学生自己总 结、归纳、思考, 此时学生的思维 活跃,易于充分发 挥学生的学习主 动性,同时也培养 了学生分析问题 的能力,达到能力 培养的目标

最新人教版七年级上册数学培优课件第一章第10课时 有理数的减法(一)

最新人教版七年级上册数学培优课件第一章第10课时  有理数的减法(一)

对一题加50分,答错一题扣50分,组 第五组
100 150 -400 350 -100
若按成绩从高到低排列.
(1)第一名超出第四名多少分?(2)第四名超出第五名多少分?
解:(1)因为350>150>100>-100>-400,
所以第一名超出第四名的分数为350-(-100)=350+100=450(分)
(2)
返回目录
(3)
(4)︱-1.8︱-︱-6.2︱. ︱-1.8︱-︱-6.2︱
=1.8-6.2 =-4.4.
思路点拨:(1)(2)(3)利用减法法则变形,计算即可得到结 果;(4)根据绝对值的定义和减法法则变形,再计算即可. 返回目录
举一反三
1. 计算:
(1)16-17; 解:原式=-1.
(2)-4.3-(-5.7); 解:原式=-4.3+5.7=1.4.
第一章 有 理 数 第10课时 有理数的减法(一)
目录
01 本课目标 02 课堂演练
1. 理解有理数的减法法则. 2. 会熟练运用有理数的减法法则进行有理数的减法运算.
返回目录
知识重点
知识点一 有理数的减法法则 有理数减法法则:减去一个数,等于加这个数的相反数.用字母 表示:a-b =__a_+_(_-_b_)__.
返回目录
对点范例
1. 在下列括号内填上适当的数. (1)(-7)-(-3)=(-7)+_____3____; (2)(-5)-4=(-5)+___(_-_4_)___; (3)0-(-2.5)=0+____2_._5___; (4)8-(+2 021)=8+_(_-_2__0_2_1_)_.
返回目录

2.1.2 有理数的减法(第2课时 有理数加减混合运算)(课件)七年级数学上册(人教版2024)

2.1.2 有理数的减法(第2课时 有理数加减混合运算)(课件)七年级数学上册(人教版2024)
(3)12-(-18)+(-7)-15;
1 5 2 1
(2)- + + - ;
4 6 3 2
(4)4.7-(-8.9)-7.5+(-6);
7
1
1
1
(5)(-4 )-(-5 )+(-4 )-(+3 );
8
2
4
8
2
1
5
1
(6)(- )+|0-5 |+|-4 |+(-9 ).
3
6
6
3
3
解:(1)原式 = 3.1.(2)原式 = . (3)原式 = 8.
写为:
可以读作
(-20) + (+3) -(-5) -(+7)
“负20、正3、正5、负7的和” =-20+3 +5-7
=-20-7+3 +5
或读作
=-27+8
“负20加3加5减7”.
=-19
概念归纳
有理数的加减混合运算可以统一为 加法
即a+b-c= a+b+(-c) .
运算,
1.加减混合运算的一般步骤:
哪一种书写更
简洁?运算理
方便呢?
=1.3+1.1-1.4
=2.4-1.4
=1
有理数加
减混合运算如
何进行呢?
例1. 计算:(-20)+(+3)-(+5)-(+7)
运用减法
法则,将减法
转化为加法
解: (-20)+(+3)-(-5)-(+7)
=( 20) ( 3) ( 5) ( 7)
=[(-20)+(-7)]+[(+5)+(+3)]
②策略:同号的加数一起加,同分母(易通分)的加数一起加,和

有理数减法(1)

有理数减法(1)
1 1
口算:
(1)3 – 5 ; (3)( – 3) – 5; (2)3 – ( – 5);
(4)( – 3) – ( –5);
(5)–6 –( –6); (6) – 7 – 0; (7)0 – ( –7) ;(8 )( – 6) – 6 (9)9 – ( –11)
习题、计算: (1)0-8
1 5 (4) 5 8 7 7
当a-b=0时,比较a,b的大小。 当a-b<0时,比较a,b的大小。 4、若a<b,b<0且|a|>|b|,那么a-b是 ( A、正数 B、负数 C、0
)
D、以上都有可能
5、(1)10-(______)=15 (3)(____)-(+8)=-4
(2)-7-(_____)=+5 (4)(____)-(-1.2)=-2.4
1.3.2 有理数减法(1)
-6 1、( 5 ) ( 1) ___
-4 2、( 8 ) ( 4 ) ______
0 3、( 205 ) 205 ____ 4、0 1999


-1999
___
35 5、 1 . 5 36 . 5 ________
1、-2的相反数是_________,+0.3的相反数是_________。
2、相反数是它的本身的数是_______,________的相反数 大于0。 3、绝对值是它本身的数是_______. 4、计算: 2 (1)10-8=____ 8 (3) 21-13=___ 2 (2) 10+(-8)=_____ 8 (4) 21+(-13)=_____
课堂小结
1、本课学习了有理数的减法运算,在进行 有理数减法运算时,我们先把减法运算转 化为加法,然后再根据加法运算的法则进 行。 2、在进行有理数减法运算时,要注意两变一不 变,“两变”即减号变成加号,减数的符号要改 变;“不变”是指被减数不变。

有理数的减法(1)

⑸ 0-(-1.8) ⑹(-3.5)-(-3.5) ⒉冬季某天的最高气温是2℃,最低气 温是-9℃,求这天的温度差. ⒊珠穆朗玛峰的海拔高度为8844米, 吐鲁番盆地的海拔高度为-155米,求 两地的高度差.
想一想:15℃比5℃高多少?
15℃比-5℃高多少? 解: 15 – 5 = 10 15 –(–5)= 20 答:15º C比5º C高10º C,15º C比–5º C高20º C.
你发现了什么?
(2)减数变为它 的相反数
5 (-3)-(-5)=(-3)+___
有有理数减法法则理数的减法法 则:
减去一个数练习:
⒈计算:
⑴(-11)-(-13) ⑵(-3.4)-(-2.7) ⑶(+5)-(-11) ⑷ (-13)-(+25)
想一想:15℃比5℃高多少?
15℃比-5℃高多少?
20
10


七年级 (上)
1.3.2 有理数的减法
学习目标:
会将有理数的减法转换成 有理数的加法进行运算.
自学指导:
认真看P.21-22. ⑴换几个数完成探究
⑵理解有理数减法的法则;
⑶看例题时思考每一步的依据.
试一试:
(-5) (-3)-5=(-3)+___ (1)减号变为加 5 3-(-5)=3+___ 号 (-5) 3-5=3+___
小结与回顾
请你计算以下各城市的日温差
北京
0~8℃
天津
-2~9℃
沈阳
长春
哈尔滨
-7~2℃ -10~1℃ -14~ -5℃
课堂作业
.必做题 : P.25 3 , 4 选做题: 1.一架直升飞机在海 平面上方80米处记作+80米,一

沪科版七年级数学上第一章《有理数》第4节《有理数的加减》例题与讲解(课后辅导)

1.4 有理数的加减1.有理数的加法(1)有理数的加法法则①同号两数相加,取与加数相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时和为零;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与零相加,仍得这个数.(2)两个有理数相加的步骤第一步:有理数的加法法则分三种情况,进行有理数加法时,要先区别是哪种情况;第二步:确定和的符号;第三步:求每个加数的绝对值;第四步:根据具体的法则计算两个数的绝对值的和或差;第五步:写出最后的计算结果.析规律有理数的加法运算规律(1)有理数的加法法则是进行有理数运算的依据,进行加法运算时要先确定用哪条法则.(2)小学学过的加法中,和一定大于每一个加数,在数的范围扩大到有理数以后,这个结论就不成立了,只有两个正数的和必定大于每一个加数,而两个负数的和要小于每一个加数,一个非零数与零相加,得到的和等于非零加数.(3)如果两个数的和为0,那么这两个数互为相反数.即:如果a+b=0,那么a=-b.例如:(-3)+a=0,则a=3.(4)进行有理数的加法运算要遵循“一定二求三和差”的步骤,即第一步先确定和的符号,第二步再求加数的绝对值,第三步要分析确定是绝对值相加还是相减.【例1】计算:(1)(+8)+(+5);(2)(+2.5)+(-2.5);(3)(-17)+(+9);(4)(-4)+0.分析:根据有理数的加法法则,两数相加,只要确定它适合有理数加法法则的哪一种情况,再根据法则确定和的符号,然后根据法则求出和的绝对值.解:(1)(+8)+(+5)(同号两数相加)=+(8+5)(取与加数相同的符号,并把绝对值相加)=13.(2)(+2.5)+(-2.5)(异号两数相加,绝对值相等)=0(和为0).(3)(-17)+(+9)(异号两数相加,绝对值不等)=-(17-9)(取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)=-8.(4)(-4)+0(一个数与零相加)=-4(仍得这个数).2.有理数的减法(1)有理数的减法法则减去一个数,等于加上这个数的相反数.用字母表示为a-b=a+(-b).(2)有理数减法运算的基本步骤①将减法转化为加法;②按有理数的加法法则运算.(3)法则理解①有理数的减法,不像小学里的那样直接减,而是把它转化为加法,借助于加法进行计算.其关键是正确地将减法转化为加法,再按有理数的加法法则计算.②学习有理数减法运算,关键在于处理好法则中两个“变”字,即注意两个符号的变化:一是运算符号——减号变为加号,二是性质符号——减数变成它的相反数.③其含义可以从以下两方面理解:(a)(b)④并不是所有的减法运算都要转化为加法运算.一般来说,当减数或被减数为负数,或两数“不够减”时才运用法则转化为加法运算. 解技巧 有理数的减法运算技巧(1)可用口诀记忆法则:“减正变加负,减负变加正.”(2)带分数减法运算,可把带分数拆成整数和分数和的形式后再进行计算.(3)特别注意减法没有交换律.【例2】 计算:(1)3-(-5);(2)(-3)-(-7);(3)⎝⎛⎭⎫-213-516; (4)5.2-(+3.6).分析:有理数减法运算,按照减法法则,将减法转化为加法,然后按有理数加法进行计算.在做减法转换为加法时,一定要注意符号的变换.解:(1)3-(-5)=3+(+5)=8;(2)(-3)-(-7)=(-3)+(+7)=4;(3)⎝⎛⎭⎫-213-516=⎝⎛⎭⎫-213+⎝⎛⎭⎫-516=-712; (4)5.2-(+3.6)=5.2+(-3.6)=1.6.3.有理数加法的运算律(1)加法交换律:两数相加,交换加数的位置,和不变.用字母表示为:a +b =b +a .(2)加法结合律:三数相加,先把前两个数相加或先把后两个数相加,和不变.用字母表示为:(a +b )+c =a +(b +c ).【例3】 计算:(1)(-8)+⎝⎛⎭⎫-212+2+⎝⎛⎭⎫-12+12; (2)⎝⎛⎭⎫-13+⎝⎛⎭⎫+12+⎝⎛⎭⎫-23+⎝⎛⎭⎫+45+⎝⎛⎭⎫-12. 分析:进行三个以上的有理数加法运算时,常常运用加法的交换律和结合律,把同号的数相结合,把互为相反数的两个数相结合,把同号的数中的同分母的分数相结合,以达到计算简便、迅速的目的. 解:(1)原式=(2+12)+⎣⎡⎦⎤(-8)+⎝⎛⎭⎫-212+⎝⎛⎭⎫-12=14+(-11)=3; (2)原式=⎣⎡⎦⎤⎝⎛⎭⎫-13+⎝⎛⎭⎫-23+⎣⎡⎦⎤⎝⎛⎭⎫+12+⎝⎛⎭⎫-12+45=-1+0+45=-15. 4.有理数的加、减混合运算(1)加减法统一成加法①有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5).②在和式里,通常把各个加数的括号省略不写,写成省略加号的和的形式.如:(-12)+(-8)+(-6)+(+5)=-12-8-6+5.③和式的读法:一是按这个式子表示的意义,读作“负12,负8,负6,正5的和”,即把各个数中间的符号作为后面的这个数的性质符号来读;二是按运算意义读作“负12减8减6加5”,即把各个数中间的符号作为运算符号来读.(2)有理数加、减混合运算的方法和步骤由于减法可以转化为加法,所以在进行有理数的加减混合运算时,首先要将混合运算的式子写成省略括号的和式的形式,然后按加法法则和运算律进行简便运算.第一步:用减法法则将减法转化为加法;第二步:运用加法法则、加法交换律、加法结合律进行简便运算.(3)进行有理数的加减混合运算的注意事项①交换加数的位置时,一定要连同加数前的符号一起移动;②如果需要添括号,一定要连同加数前的符号一起括进括号内,并将原来已省略的括号写出来; ③省略加号和括号的“和”与小学里的“和”是有区别的,小学里的“和”是一个具体的数,并且和一定不小于任何一个加数,而这里的“和”则是表示的是有理数的加法运算,也表示相加的结果.有理数的“和”可以大于任何一个加数,也可以小于任何一个加数,和可能是正数、负数或零.【例4-1】 把下列各式写成省略加号的和的形式:(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3.(2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-12+5.【例4-2】 计算:(1)0-327-6+1167-537; (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45; (3)(-5)-(-21)+(-12)+8-(-4)-18;(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5.分析:(1)本题是省略括号和加号后的和的形式,在五个加数中,考虑到-327,1167,-537三个加数分母都是7,便于运算,所以把这三个加数放在一起;(2)把加减混合运算统一成加法运算后结果为⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45,考虑到⎝⎛⎭⎫-12,⎝⎛⎭⎫-23,⎝⎛⎭⎫+16便于通分,把它们结合起来,可使计算较为简便;(3)统一成加法后,可采用同号结合法,即把正数与正数、负数与负数分别相加;(4)统一成加法后,可采用凑整结合法,即把相加得整数的加数先结合.解:(1)0-327-6+1167-537=(0-6)+⎝⎛⎭⎫-327+1167-537 =-6+⎝⎛⎭⎫+317=-267. (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =(-1)+⎝⎛⎭⎫-45=-145. (3)(-5)-(-21)+(-12)+8-(-4)-18=-5+21-12+8+4-18=(21+8+4)+(-5-12-18)=33-35=-2.(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5=10.4-7.5+12.7+3.6-1.7-2.5=(10.4+3.6)+(12.7-1.7)+(-7.5-2.5)=14+11-10=15.5.含有字母的有理数加法的运算我们可以用字母表示有理数加法的运算法则:①同号两数相加:若a >0,b >0,则a +b =+(|a |+|b |);若a <0,b <0,则a +b =-(|a |+|b |).②异号两数相加:若a >0,b <0,且|a |=|b |,则a +b =0;若a >0,b <0,且|a |>|b |,则a +b =+(|a |-|b |);若a >0,b <0,且|a |<|b |,则a +b =-(|b |-|a |).③一个数与0相加:a +0=a .【例5-1】 根据加法法则填空:(1)如果a >0,b >0,那么a +b __________0;(2)如果a <0,b <0,那么a +b __________0;(3)如果a >0,b <0,|a |>|b |,那么a +b ________0;(4)如果a <0,b >0,|a |>|b |,那么a +b ________0.答案:(1)> (2)< (3)> (4)<【例5-2】 已知有理数a ,b ,c 在数轴上的对应点如图所示,且|a |>|b |>|c |,则(1)|a +(-b )|=__________;(2)|a +b |=__________;(3)|a +c |=__________;(4)|b +(-c )|=__________;(5)|b +c |=__________.答案:(1)|a |+|b | (2)|a |-|b | (3)|a |+|c | (4)|b |+|c | (5)|b |-|c |6.有理数加减混合运算的注意事项(1)运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉.(2)应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便.(3)若分数、小数混在一块运算时,可以把它们统一成分数或小数再运算.(4)如果有大括号和小括号应当先进行小括号里的运算,再进行大括号里的运算.反之,进行有理数的加减混合运算,有时候需要添加括号,此时一定要连同加数的符号一起括进括号内,并将原来已省略的加号写进来.辨误区 拆分负的带分数负的带分数拆分为整数与分数的和时,易将负整数与负分数的和错拆为负整数与正分数的和.【例6】 计算:(1)(-837)+(-7.5)+(-2147)+(+312);(2)⎪⎪⎪⎪5111-3417+4417-111. 分析:把分母不同的分数的加减混合运算统一成加法之后,应用运算律使同分母分数相加可以简化运算.解:(1)(-837)+(-7.5)+(-2147)+(+312) =-837-7.5-2147+312=-837-2147-7.5+312=(-837-2147)-(7.5-312) =-30-4=-34.(2)⎪⎪⎪⎪5111-3417+4417-111=5111-3417+4417-111=5111-111-3417+4417=(5111-111)-(3417-4417) =5+1=6.7.有理数加减法的运用学习有理数的加减法后,可以和前面学过的数轴、相反数、绝对值综合出题,把有理数的知识融合得更紧密,理解得更深刻.(1)有理数的加法与绝对值在有些计算中,含有绝对值符号,这就要用绝对值的概念,先去掉绝对值符号,再按有理数混合运算法则进行计算.几个非负数的和等于0,则每个加数必等于0.(2)有理数的加法与有理数的大小比较学习加法后,在比较大小的数中,出现了和的形式或差的形式(差可以化成和).特别是以字母表示的数.这就需要用加法法则来判断数的正负,或判断数对应的点在数轴上的位置关系,从而确定两个数的大小关系.(3)有理数加法在实际问题中的应用在实际问题中,要应用有理数的加法法则求解问题,注意运算技巧的使用.【例7-1】 若|x -3|与|y +3|互为相反数,求x +y 的值.解:根据题意得|x -3|+|y +3|=0.则x -3=0,y +3=0,所以x =3,y =-3.所以x +y =3+(-3)=0.【例7-2】 一小吃店一周中每天的盈亏情况如下(盈利为正):128.3元,-25.6元,-15元,-7元,36.5元,98元,27元,这一周总的盈亏情况如何?分析:正数表示盈利,负数表示亏损,这些数的代数和就是总的盈亏情况,如果代数和为正,则总的情况是盈利,否则是亏损.解:128.3+(-25.6)+(-15)+(-7)+36.5+98+27=(128.3+36.5+98+27)+(-25.6-15-7)=289.8-47.6=242.2.答:一周总的盈亏情况是盈利242.2元.【例7-3】 一农业银行某天上午9:00~12:00办理了7笔储蓄业务;取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这天上午该银行的现金增减情况怎样?分析:可以设存入为正,取出为负,用正、负数分别表示这7笔业务,求它们的和即可判断现金的增减情况.若结果为正数,则表明现金增加了;若结果为负数,则表明现金减少了.解:(-9.5)+(+5)+(-8)+(+12)+(+25)+(-10.25)+(-2)=[(-9.5)+(-8)+(-10.25)+(-2)]+[5+(+12)+(+25)]=-29.75+42=12.25(万元).答:这天上午该银行的现金增加了12.25万元.8.有理数减法的应用(1)有理数减法的应用比较常见的题型有:计算高度,计算温差,计算销售利润,计算距离,计算时差等.有理数减法的应用题虽然比较简单,但却能让大家主动地从数学角度运用所学知识和方法寻求解决问题的策略,充分体现课程标准所要求的“数学应用意识”.因此,我们要有意识地加强数学知识与现实生活联系密切的问题的训练,提高自己的能力.(2)利用有理数减法求数轴上两点间的距离求数轴上两点间的距离是有理数减法最典型的应用之一,数轴上任意两点之间的距离,都可以用数轴上表示这两点的有理数的差的绝对值来表示.【例8-1】如图所示的数轴上,表示-2和5的两点之间的距离是______,数轴上表示2和-5的两点之间的距离是______,数轴上表示-1和-3的两点之间的距离是______.解析:数轴上表示-2和5两点之间的距离是|-2-5|或|5-(-2)|;数轴上表示2和-5两点之间的距离是|2-(-5)|或|-5-2|;数轴上表示-1和-3的两点之间的距离是|-1-(-3)|或|-3-(-1)|.答案:77 2【例8-2】以地面为基准,A处高为+2.5米,B处高为-17.8米,C处高为-32.4米,问:(1)A处比B处高多少米?(2)B处与C处哪个地方高?高多少米?解:(1)+2.5-(-17.8)=2.5+17.8=20.3(米),所以A处比B处高20.3米.(2)-17.8-(-32.4)=-17.8+32.4=14.6(米),所以B处比C处高,高了14.6米.。

七年级数学《有理数的减法》教案 (公开课获奖)1

有理数的减法教学目标:1.通过实例,经历探索有理数减法法那么的过程。

2.理解有理数减法法那么,渗透化归思想。

3.掌握有理数的减法法那么,会运用法那么求两个有理数的差。

4.能利用有理数的减法解决简单的实际问题,体会数学与现实生活的联系。

教学重点:有理数的减法法那么教学难点:有理数减法法那么的探索过程教学过程:〔第一课时〕一温故互惠〔二人小组完成〕1.加法运算和减法运算有什么关系?2.填空:〔1〕4+_____=6, 6-4=____.〔2〕3+___=5, 5-3=_____.〔3〕-3+___=4, 4-〔-3〕=____.〔4〕4+___=-2, -2-4=____.3.说出以下各数的相反数.3 -5 -6二设问导读阅读教材P21-22完成以下问题:1.在温度计上,从零上4℃到零下3℃相差____℃,所以可以列算式为:_____,因为4+3=7对照这两个算式得到等式:____=____.2.探究:9-8=______. 9+〔-8〕=______.15-7=____. 15+〔-7〕=_____.0-〔-3〕=____. 0+3=_____.-1-〔-3〕=_____. -1+3=____.-5-〔-3〕=____. -5+3=___.观察上面算式你能发现什么结论?3.有理数的减法法那么:_______________也可以表示成_____________________.4.先阅读教材例5,从例5我们知道减法运算可以利用减法法那么转化为加法运算,即减负变加________,减正变加________三自我检测1.利用减法法那么计算以下各题:〔1〕15-〔-7〕;〔2〕〔-6〕-5;〔3〕0-〔-1〕;〔4〕〔-18〕-0〔5〕11-〔+10〕;〔6〕0-〔+4〕2.计算:〔1〕温度3℃比-8℃高_____;〔2〕温度-10℃比-2℃低_____;〔3〕海拨-10m比-30m高_____;〔4〕从海拨20m到-8m,下降了_____.四稳固训练1.计算:〔1〕〔+5〕-〔-3〕;〔2〕〔〕;〔3〕〔-61〕-〔-31〕.2.某地连续五天内每天最高气温与最低气温纪录如下表所示,哪一天的温差〔最高气温与最低气温的差〕最大?哪天的温差最小?1.3.〔1〕甲数是4 的相反数,乙数比甲数的相反数大3,求乙数比甲数大多少?〔2〕月球外表的温度中午是101℃,半夜是-153℃,中午比半夜的温度高多少? 五 拓展探究1.一个数加-3.6,和为-0.36,那么这个数是〔 〕 A.-2.24 B.-3.96 C2.以下计算正确的选项是〔 〕A.(-14)-(+5)=-9B.0-(-3)=3C.(-3)-(-3)=3D.|5-3|=-(5-3) 3.较小的数减去较大的数,所得的差一定是〔 〕4.以下结论正确的选项是〔 〕A.数轴上表示6的点与表示4的点两点之间的距离是10.B.数轴上表示-8的点与表示-2的点两点之间的距离是-10.C.数轴上表示-8的点与表示+2的点两点之间的距离是10.D.数轴上表示0的点与表示-5的点两点之间的距离是-5.5.以下结论正确的选项是〔〕A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数六、教学反思15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕D CA BD CABDCA B[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识.Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习2.如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.D CA B〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一EDCA B P三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,那么它的对称轴一定是〔〕A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是〔〕A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,那么其腰长为〔x+2〕cm,根据题意,得2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(b aa b b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a五、课后练习1.计算:(1))1)(1(y x xy x y+--+(2)22242)44122(a aa a a a a a a a -÷-⋅+----+(3)zx yz xy xyz y x ++⋅++)111(2.计算24)2121(a a a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。

1.3.2有理数减法教案

1.3.2有理数的减法教学目标:1.知识与技能:体会有理数减法的意义;表述有理数减法的发生过程;掌握有理数减法法则,发展转化和运算的能力。

2.过程与方法:通过经历将减法运算转化为加法运算的过程,从中感悟到思考和解决问题的重要方法——转化的思想方法。

体验在把减法转为加法运算这一过程中的两个改变;一是改变运算符号;二是改变减数的性质符号。

3.情感、态度与价值观:养成把未知转化为已知的思想方法及不断探索的精神和生活态度。

教学重点和难点:有理数减法法则。

教学安排:2课时。

第一课时课堂教学过程设计:一、从学生原有认知结构提出问题一个实际问题:某地一天的气温是-3~4℃,这天的温差(最高气温减最低气温,单位:℃)怎么计算。

学生思考:你能从温度计看出4℃比-3℃高多少度吗?二、师生共同研究有理数减法法则可以得出这天的温差是4-(-3),这里用到的是正数和负数的减法。

师:减法是与加法相反的运算,计算4-(-3),就是要求出一个数x,使得x与-3相加得4。

因为7与-3相加得4,所以x应该是7,即4-(-3)=7①另一方面,4+(+3)=7,②由①②有 4-(-3)=4+(+3)。

③教师提问:从③式能看出减-3相当于加哪个数吗?把4换成0,-1,-5,用上面的方法考虑0-(-3),(-1)-(-3),(-5)-(-3)。

这些数减-3的结果与它们加+3的结果相同吗?计算 9-8,9+(+8); 15-7,15+(-7)。

从中又能有新发现吗?得出结论:有理数的减法可以转化为加法来进行。

有理数减法法则:减去一个数,等于加这个数的相反数。

三、运用举例变式练习例5 计算:(1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8);(4)(-312)-514。

通过计算上面一组有理数减法算式,引导学生发现:在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数。

练习:1.计算:(1)(-3)-[6-(-2)]; (2)15-(6-9).2.15℃比5℃高多少? 15℃比-5℃高多少?3.计算(口答):(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);(4)(-4)-9; (5)0-(-5); (6)0-5.四、小结1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档