七年级数学下册第11章《整式的乘除》导学案

合集下载

北师大版七年级下册数学《整式的除法》整式的乘除说课教学课件

北师大版七年级下册数学《整式的除法》整式的乘除说课教学课件

小试 身手 ☞
(1) (10ab3)÷(5b2) (2) 3a3÷(6a6)·(-2a4) (3)(4c3d2-6c2d3)÷(-3c2d)
练练 填空 ☞
①(
)·3ab2=-9ab5
② [3a2-( )]÷(-a)=-3a+2b
③( )·(-2y)=4x2y-6xy2
辨别 正误 ☞ (1)(2x-4y+3)÷2=x-2y+3
(2)(8x2y-4xy2) ÷(-4xy)=-2x-2y
(3)(3x2y-3xy2+x) ÷x=3xy-3y2
感受 体验 ☞ (1)(5x3-2x2+6x) ÷3x
(2)(2x2y3)(-7x2y2) ÷(14x4y3)
阅读 体验 ☞
任意给一个非零数, 按下列程序计算下去,
根据程序列出式子:
作业布置
家庭作业: 完成本节的同步练习 复习作业:复习本单元整式的乘除法则
再见
北师大七年级下册数学
5.7 整式的除法
温故而知新 复习同底数幂相除法则:
同底数幂相除,底数不变,指数相减。 即am÷an=am-n(a≠0,m,n都是正整数,
合作学习
月球是距离地球最近的天体,它与地球
的平均距离约为 3.8108 米. 如果宇宙
(a b c) m a m b m c m
你能归纳多项式除以 单项式的法则吗?
议一议
你找到了 多项式除以单项式的规律 吗?
多项式除以单项式, 先把这个多项式的每一项分别除以单项式,
例2:计算
(1) (14a3 7a2 ) (7a)
(2) (15x3 y5 10x4 y4 20x3 y2 ) (5x3 y2)
情境导入
探究二:多项式除以单项式的推导过程:

七年级数学整式的乘除教案(2021年整理)

七年级数学整式的乘除教案(2021年整理)

七年级数学整式的乘除教案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学整式的乘除教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学整式的乘除教案(word版可编辑修改)的全部内容。

课题:第一单元整式的乘除(第三周)学科:数学教师:杨雁波一、教学目标1.梳理本章内容,重点加强对整式乘除运算,乘法公式的复习,并能灵活运用知识解决问题。

2.整式的概念及其加减混合运算.3.引导学生构建知识网络图。

二、教学重难点:教学重点:掌握整式的运算法则,灵活使用所学知识.教学难点:灵活运用所学知识解决问题。

三、教学方法:启发引导法.四、课时:2课时五、教学内容:一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式.考点一、1、幂的运算性质:(1)同底数幂的乘法:),(都是正整数n m a a a n m n m +=•(2)幂的乘方:),(都是正整数)(n m a a mn n m = (3)积的乘方:)()(都是正整数n b a ab n n n =(4)同底数幂的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数2、零指数幂和负整数指数幂:1、零指数幂:);0(10≠=a a2、负整数指数幂:),0(1是正整数p a a a p p ≠=- 考点二、整式的乘除法: 1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

七年级数学下册 第11章 整式的乘除 11.1 同底数幂的乘法教学课件 级下册数学课件

七年级数学下册 第11章 整式的乘除 11.1 同底数幂的乘法教学课件 级下册数学课件
教学 课件 (jiāo xué)
数学(shùxué) 七年级下册 青岛版
12/11/2021
第一页,共二十二页。
第11章 整式的乘除
11.1 同底数(dǐshù)幂的乘法
12/11/2021
第二页,共二十二页。
学习 目标 (xuéxí)
1、探索(tàn suǒ)同底数幂相乘时幂的底数和指数 的变化规律,培养数学思维的习惯。 2、能用文字语言和符号语言表述同底数幂乘法
分组讨论,并尝试证明(zhèngmíng)你的猜想是否正确.
12/11/2021
第八页,共二十二页。
小结(xiǎojié)
m个 a
n个 a
a m a n =( aaa) ( aaa)
(mn)个a (乘方的意义)
= ( aaa ) (乘法结合律)
= a m +n
点拨(diǎn bo):底数相同的幂叫做同底数幂。 它们的乘法叫做同底数幂的乘法。
点拨:在同底数幂 乘法中底数可
以是一个数、也可是(kěshì)一个字母
或是一个多项式。
要把(a b)看成一个
整体!
12/11/2021
第十四页,共二十二页。
巩固 练习 练一练:
(gǒnggù)
1、(1)2 (1)3; 2、a8 a7; 22
( 1 )5 2
3、b3 b6 b5;
a 15
4、(x y)3( x y)( x y)2.
2、若xa=3,xb 5,试求xab 的值?
解:xaxb xab=35=15
即xab=15. 12/11/2021
第十七页,共二十二页。
4.填空 : (tiánkòng)
(1) 8 = 2x,则 x = ;3

青岛版七年级下册数学: 第11章 整式的乘除 113 单项式的乘法 单项式乘以单项式

青岛版七年级下册数学: 第11章 整式的乘除 113 单项式的乘法 单项式乘以单项式
单项式×单项式 =(系数×系数)(同底数幂相乘)(单独的幂)
快速抢答!
判断正误(如果不对应如何改正?) (1)4a3·2a2=8a6 ( ) (2)2x4·3x4=5x8 ( ) (3)-6x2·3xy=18x3y ( ) (4)(-2ab2)(-3abc)=-6a2b3 ( )
学以致用
1.计算 (1)3x2y·(-2xy3) =[3×(-2)] ·(x2·x) ·(y·y3)=-6x3y4
(2)(-5a2b3)·(-4b2c) =[(-5)×(-4)]·a2·(b3·b2)·c=20a2b5c 2.比一比看谁做的又快又准! (1)3a2·(-2a3) =[3×(-2)]·(a2·a3) =-6a5
(2)(-3x2y)·(-4y2z) =[(-3)·(-4)]·x2·(y·y2)·z=12x2y3z
知识回顾
• 1.同底数幂的运算法则是(

• 2.幂的乘法的运算法则是(

• 3.积的乘法的运算法则是(

【学习目标】
• 1、经历探究单项式与单项式相乘的法则的 过程;
• 2、能正确运用单项式的乘法法则进行单项 式的乘法运算.
• 3、体会数学源于生活,又服务于生活的事 理,培养数学应用意识,体验数学的应用 价值。
(3)
2 x 2 y 3· 5
xyz
2 (
5
) (x2
x)( y3
y) z
1
x3 y4 z
5
16
5 16
8
温馨提示
单项式乘法中要注意的几点:
求系数的积,应注意符号; 相同字母因式相乘,是同底数幂的 乘法,底数不变,指数相加;
只在一个单项式里含有的字母,要 连同它的指数写在积里,防止遗漏;

新北师大版七年级数学下导学案_第一章_整式的乘除(2021年整理)

新北师大版七年级数学下导学案_第一章_整式的乘除(2021年整理)

新北师大版七年级数学下导学案_第一章_整式的乘除(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新北师大版七年级数学下导学案_第一章_整式的乘除(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新北师大版七年级数学下导学案_第一章_整式的乘除(word版可编辑修改)的全部内容。

第一章 整式的乘除1。

1 同底数幂的乘法一、学习目标1.经历探索同底数幂乘法运算性质过程,进一步体会幂的意义.2.了解同底数幂乘法的运算性质,并能解决一些实际问题二、学习重点:同底数幂的乘法运算法则的推导过程以及相关计算三、学习难点:对同底数幂的乘法公式的理解和正确应用四、学习设计(一)预习准备预习书p2-4(二)学习过程1. 试试看:(1)下面请同学们根据乘方的意义做下面一组题:①34722(222)(2222)2⨯=⨯⨯⨯⨯⨯⨯= ②3555⨯=_____________=()5 ③a 3.a 4=_____________=a ( )(2)根据上面的规律,请以幂的形式直接写出下列各题的结果:421010⨯= 541010⨯= n m 1010⨯= m )101(×n )101(= 2。

猜一猜:当m,n为正整数时候,m a .n a = a a a a a 个__________)(⨯⨯⨯⨯. a a a a a 个_____________)(⨯⨯⨯⨯= aa a a a 个___________⨯⨯⨯⨯=(____)a即a m ·a n = (m 、n 都是正整数)3. 同底数幂的乘法法则:同底数幂相乘运算形式:(同底、乘法) 运算方法:(底不变、指加法)当三个或三个以上同底数幂相乘时,也具有这一性质, 用公式表示为a m ·a n ·a p = a m+n+p (m 、n 、p 都是正整数)练习1. 下面的计算是否正确? 如果错,请在旁边订正(1).a 3·a 4=a 12 (2).m·m 4=m4 ( 3).a 2·b 3=ab5 (4).x 5+x 5=2x 10 (5).3c 4·2c 2=5c6 (6).x 2·x n =x2n (7).2m ·2n =2m·n (8).b 4·b 4·b 4=3b 4 2.填空:(1)x 5 ·( )= x 8 (2)a ·( )= a 6(3)x · x 3( )= x 7 (4)x m ·( )=x 3m(5)x 5·x( )=x 3·x 7=x ( ) ·x 6=x·x ( ) (6)a n+1·a ( )=a 2n+1=a·a ( )例1.计算(1)(x+y)3 · (x+y)4 (2)26()x x -⋅-(3)35()()a b b a -⋅- (4)123-⋅m m a a (m 是正整数)变式训练.计算(1)()3877⨯- (2)()3766⨯- (3)()()435555-⨯⨯-。

七年级数学下册《整式的乘除中典型例题的解析》教案、教学设计

七年级数学下册《整式的乘除中典型例题的解析》教案、教学设计
2.讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入理解整式乘除的运算规则。
(四)课堂练习
1.设计具有代表性的练习题,包括以下类型:
-基础题:巩固整式乘除的基本法则。
-提高题:运用整式乘除解决实际问题。
-拓展题:设计一些综合性的题目,让学生运用所学知识进行解答。
2.学生独立完成练习题,教师及时给予反馈和指导,帮助学生发现并纠正错误。
-多项式除以多项式:(ax + by) / (cz + dw) =当cz + dw不为0时,可以转化为乘法运算求解
(三)学生小组讨论
1.将学生分成小组,每个小组针对以下问题进行讨论:
-整式乘除法则在解决实际问题时如何应用?
-在整式乘除运算中,如何避免常见的错误?
-你能举出一个整式乘除的例子,并解释其运算过程吗?
2.培养学生严谨、细致的学习态度,养成良好的学习习惯。
-教师将强调整式乘除运算的规范性和准确性,引导学生严谨、细致地进行计算,培养学生良好的学习习惯。
3.培养学生尊重他人、善于合作的团队精神,形成积极向上的人际交往态度。
-在小组合作、讨论交流的过程中,教师将引导学生尊重他人意见,学会倾听和表达,培养学生善于合作、积极向上的人际交往态度。
-教师在批改作业时,要注重评价学生的解题思路和运算过程,及时给予反馈和鼓励。
1.针对学生对整式乘除运算的不熟练,通过典型例题的解析,帮助学生梳理运算规则,总结运算技巧,提高解题能力。
2.结合学生的生活实际,设计具有启发性的问题,引导学生将实际问题抽象为数学模型,培养学生运用数学知识解决实际问题的能力。在教学过程中,关注学生的个体差异,给予每个学生个性化的指导,提升他们在数学学习中的自信和兴趣。

整式的乘除与因式分解周末导学案

初2015级 数学整式的乘除与因式分解周末导学案(一)班级 姓名【知识梳理】22222()(,,)()()()():()()()2m n m n m n mn n n n a a a a a m n a b ab a b m a b ma mb m n a b ma mb na nb a b a b a b a b a ab b +⎧⎫⋅⎪⎪=⎨⎬⎪⎪=⋅⎩⎭⨯⎧⎪⨯+=+⨯++=+++⎨⎧+-=-⎪−−−→⎨±=±+⎪⎩特殊的=幂的运算法则为正整数,可为一个单项式或一个式项式单项式单项式单项式多项式:多项式多项式:整式的乘法平方差公式 乘法公式完全平方公式:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩互逆22222()():2()a b a b a b a ab b a b ⎧⎪⎧⎪⎪⎪⎧-=+-⎨⎨⎪⎨⎪⎪±+=±⎪⎩⎩⎪⎪⎩因式分解的意义提公因式法因式分解因式分解的方法平方差公式:运用公式法完全平方公式因式分解的步骤 【巩固练习】一、选择题1.下列各式中,正确的是( )A 、m 2·m 3=m 6B 、(-a +b)(b -a)=a 2-b 2C 、25a 2-2b 2=(5a +2b)(5a -2b)D 、(x -y)(x 2+xy +y 2)=x 3-y 3 2.与(x 2+x +1)(x -1)的积等于x 6-1的多项式是( )A 、x 2-1B 、x 3-1C 、x 2+1D 、x 3+13.当代数式a +b 的值为3时,代数式2a +2b +1的值是( )A 、5B 、6C 、7D 、84.已知5x =3,5y =4,则25x+y 的结果为( )A 、144B 、24C 、25D 、495.x 为正整数,且满足3x+1·2x -3x 2x+1=66,则x =( )A、2B、3C、6D、126.把多项式2x2+bx+c分解因式后得2(x-3)(x+1),则b、c的值为()A、b=3,c=-1B、b=-6,c=2C、b=-6,c=-4D、b=-4,c=-67.如果xy≠0,且(x+y)3=x3+y3,那么x、y的关系为()A、x=yB、x+y=0C、x、y异号D、x、y同号8.不等式(x-1)2-(x+1)(x-1)+3(x+1)>0的正整数解为()A、1, 2B、1, 2, 3C、1, 2, 3, 4D、任意正整数9.若二次三项式ax2+bx+c=(a1x+c1)(a2x+c2),则当a>0,b<0,c>0时,c1,c2的符号为()A、c1>0, c2>0B、c1<0, c2<0C、c1>0, c2<0D、c1, c2异号10.若m2+m-1=0,则m3+2m2+3=()A、2B、4C、-2D、-411.已知x2+ax-12能分解成两个整系数的一次因式的积,则符合条件的整数a的个数是()A、3个B、4个C、6个D、8个12.(2002陕西)如图1,在长为a 的正方形中挖掉一个边长为b的小正方形(a>b)把余下的部分剪拼成一个矩形(如图2),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A.a2-b2=(a十b)(a—b)B.(a+b)2=a2+2ab 十b2C.(a-b)2=a2-2ab+b2D.(a十2b)(a-b)==a2+ab -2b2二、填空题13.(-a)2·(-a)3=,(-x)·x2·(-x4)=,(xy2)2=.14. (m-n)3·(m-n)2·(n-m)=,(3+a)(1-a)=,(a +2)(a -2)(4+a 2)= ,(m +n -1)(m -n -1)= .15.把下列各式分解因式:(1) a 2n -2a 2n -1= ; (2) 14x 2-x +1= ; (3) m -m 5= ;(4) (1-x)+(x -1)3= . 16.若代数式1322++a a 的值为6,则代数式5962++a a 的值为 .17.在多项式16a 2+4上加上一个单项式,使其成为一个整式的平方,该单项式是 .18.如图(1)的面积可以用来解释(2a)2=4a 2,那么根据图(2),可以用来解释 (写出一个符合要求的代数恒等式)。

七年级数学下册 1 整式的乘除小结与复习导学案 (新版)北师大版

第一章小结与复习【学习目标】1.对幂的运算性质,整式的乘除及乘法公式进行复习,形成整体性认识.2.巩固并熟练应用相关法则及公式进行复习.【学习重点】对相关的法则及公式进行复习.【学习难点】熟练应用整式乘除的法则及乘法公式进行计算.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:找出自己不明白的问题,先对学,再群学,对照答案,提出疑惑,小组内解决不了的问题,写在小黑板上,在小组展示的时候解决.情景导入 生成问题知识结构框图:自学互研 生成能力范例1.(潜江中考)计算(-2a 2b)3的结果是( B ) A .-6a 6b 3 B .-8a 6b 3C .8a 6b 3D .-8a 5b 3仿例1.(威海中考)计算 20+(21)-1的值为__3__.仿例2.已知10m =2,10n =3,则103m +102n =__17__.仿例3.(苏州期末)已知a m =2,a n =4,a k =32,则a3m +2n -k 的值为__4__.范例2.(贺州中考)下列运算正确的是( A ) A .(x 2)3+(x 3)2=2x 6B .(x 2)3·(x 2)3=2x 12C .x 4·(2x)2=2x 6D .(2x)3·(-x)2=-8x 5学习笔记:在应用平方差公式(a +b)(a -b)=a 2-b 2时要注意:①a 、b 可以表示数或字母,也可以表示单项式;②要准确找出a 和b.行为提示:在群学后期,教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.有展示、有补充、有质疑、有评价穿插其中.学习笔记:检测可当堂完成. 仿例1.若a +b =1,ab =-1,则(2-a)(2-b)的结果为( B ) A .2 B .1 C .-1 D .-2仿例2.(4x 6y 2+12x 4y -4x 2)÷(-4x 2)的结果是( C ) A .-x 3y 2-3x 2y B .-x 3y 2-3x 2y +1C .-x 4y 2-3x 2y +1D .x 3y 2+3x 2y -1仿例3.M =(a +b)(a -2b),N =-b(a +3b),其中a ≠0,则M ,N 的大小关系为( A )A .M >NB .M =NC .M <ND .无法确定仿例4.长方形的面积是4a 2-6ab +2a ,若它的一边长为2a ,则它的周长是__8a -6b +2__.范例3.在括号中填上恰当的整式:(1)(2x +3y)(2x -3y)=__4x 2-9y 2__;(2)(-2m +3)(__-2m -3__)=4m 2-9;(3)(a +2b)(__-a +2b__)=4b 2-a 2.仿例1.若x +y =2,xy =1,则x 2+y 2=__2__.仿例2.(a -1)(a +1)(a 2+1)-(a 4+1)=__-2__.仿例3.如果36x 2-Mxy +49y 2是一个完全平方式,那么M 的值为__±84__.仿例4.计算:(1)(x -y +1)(x +y -1); (2)(2a +1)2(2a -1)2.解:原式=[x -(y -1)][x +(y -1)] 解:原式=[(2a +1)(2a -1)]2=x 2-(y -1)2 =(4a 2-1)2=x 2-y 2+2y -1; =16a 4-8a 2+1.变例 已知x 2-5x +1=0(x ≠0),求x 2+x21的值.解:由x 2-5x +1=0,得x 2+1=5x ,∵x≠0,∴两边同除以x 得x +x 1=5,再平方得x 2+x21+2=25, ∴x 2+x21=23.交流展示 生成新知1.将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 幂的有关运算知识模块二 单项式与多项式的乘除法知识模块三 乘法公式检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。

第1章整式的乘除(教案)2023-2024学年七年级下册数学(教案)(北师大版)

第1章整式的乘除(教案)2023-2024学年七年级下册数学(教案)(北师大版)
一、教学内容
第1章整式的乘除(教案)
2023-2024学年七年级下册数学(教案)
(北师大版)
1.1单项式乘单项式
1.2单项式乘多项式
1.3多项式乘多项式
1.4乘法公式
1.5整式的除法
1.6实例分析与应用
本章节内容主要包括单项式与单项式、单项式与多项式、多项式与多项式的乘法运算,乘法公式的运用,以及整式的除法运算。通过学习,使学生掌握整式乘除的基本法则,并能熟练运用乘法公式解决实际问题,提高学生的运算能力和解决问题的能力。教学内容与北师大版七年级下册数学教材紧密相关,确保实用性和针对性。
举例:3x * 4x = 12x^2
(2)单项式乘多项式的运算法则:使学生掌握将单项式分别与多项式的每一项相乘的方法。
举例:3x * (2x + 4y) = 6x^2 + 12xy
(3)多项式乘多项式的运算法则:使学生掌握将一个多项式的每一项分别与另一个多项式的每一项相乘的方法。
举例:(2x + 3y) * (4x + 5y) = 8x^2 + 22xy + 15y^2
(4)乘法公式的运用:使学生掌握平方差公式、完全平方公式等乘法公式的运用。
举例:a^2 - b^2 = (a + b)(a - b)
(5)整式的除法法则:使学生掌握整式的除法运算,包括商的确定、余数的求解等。
举例:(6x^2 + 9x + 3) ÷ (3x + 1) = 2x + 3
2.教学难点
(1)多项式乘多项式的运算:学生在运算过程中容易漏项或重复项,需要注意多项式乘法中的每一项都要与其他多项式的每一项相乘。

整式的乘除导学案

第12章 整式的乘除§12.1.1 《幂的运算》导学案(第一课时)同底数幂的乘法学生班级: 姓名: 组别: 时间:2015年 月 日学习目标:1、在推理判断中得出同底数冪乘法的运算法则,并掌握法则的应用。

2、经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力。

3、在小组合作交流中,培养协作精神,探究精神,增强学习信心。

学习重点:同底数冪乘法运算性质的推导和应用。

学习难点:同底数冪的乘法的法则的应用。

一、自主学习,个体质疑1、(1)阅读课本P 18-19(2)32 表示几个2相乘?23表示什么? 5a 表示什么?m a 呢?(3)把22222⨯⨯⨯⨯表示成 na 的形式?2、请同学们通过计算探索规律: (1)()()()342222222222⨯=⨯⨯⨯⨯⨯=(2)=⨯4355(3)=⨯-673)3((4)()3111101010⎛⎫⎛⎫⎛⎫⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(5)=⨯43a a3、比较:(1)4322⨯和 72(2)43a a ⨯和 7a (代数式表示)观察计算结果,你能猜想出 n ma a⨯的结果吗?二、小组合作,碰撞激疑问题:(1)这几道题目有什么共同特点?(2)请同学们看一看自己的计算结果,想一想这个结果有什么规律?(3)请同学们推算一下nma a ⨯的结果?同底数幂的乘法法则: 用字母表示:合作评析课后练习:(1)课本P 19页练习题1、2 (2)课本P 24页习题12.1第1题三、合作探究,师生析疑1、计算 (1) 4444⋅- (2)43)6()6(-⨯- (3)2015201622- (4)5342412523⨯+⨯-⨯2、若y x 、是正整数,且12216x y +⋅=,则 y x 、的值是什么?3、已知 28,7,4===cbam m m ,则c b a 、、之间的关系是什么?四、当堂检测,过关解疑1、计算:(1)10432b b b b ⋅⋅⋅ (2)()()876x x x -⋅-(3)()()()562x y y ---- (4)()()()3645p p p p ⋅-+-⋅-2、把下列各式化成 ()ny x + 或 ()n y x -的形式.(1)()()12+++m m y x y x (2)()()()x y y x y x ---23 3、已知 3110m m x x x +-⋅= 求m 的值.课堂反思(自主补充延伸):§12.1.2 《幂的运算》导学案(第二课时)幂的乘方学生班级: 姓名: 组别: 时间:2015年 月 日学习目标:1、理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 整式的乘除11.1 同底数幂的乘法【学习目标】1.运用幂的意义探索同底数幂乘法的运算法则2.掌握同底数幂乘法法则并能进行简单的计算3.体会探究过程中的分类讨论.猜想证明和特殊到一般的数学思想方法,培养学生的数学思维.【重难点】同底数幂乘法法则的应用预习导航一.预习自学1.回顾有理数的乘方:23 )2(3- 23-分别代表什么意义?幂的意义:an2.由乘方的意义你会计算531010⨯吗,试一试.3.仿照上面的过程,计算23)2()2(-⨯-4.计算nmaa ⋅5.你发现左边两个底数什么关系,指数呢?结果有什么特点?2.总结同底数幂乘法法则.【小试牛刀】1.下列计算对不对,如果不对,应怎样改正? (1)1052aa a =⋅ (2)6332aa a=⋅(3)633aa a =+(4)aa a =⋅2.计算下列各题(1)5244⨯(2)73)5()5(-⨯-二.我的疑惑课内探究探究点一:同底数幂的乘法法则的运用例1. 计算.(1)85)3()3(-⨯-(2)32)21()21)(21(x x x(3)78aa ⋅(4)1253)(aa a ⋅-⋅(5)23)()()(y x y x y x +⋅+⋅+(6) 33425xx x x x x ⋅-⋅+⋅法则运用的过程中,你发现需要注意哪些问题?探究点二:同底数幂乘法法则的灵活运用 (1)4234⨯=?能否用同底数幂乘法的运算法则运算?结构可否写成幂的形式?(2)计算32-)()(a b b a -∙【我的收获】【达标检测】1.计算题:(1))(y x +2∙n y x )(+(n 为正整数)(2)m 2∙m3∙ )(m -22.光年是天文学上的长度单位,1光年是光在真空中一年中所走过的路程(光的速度大约为每秒8103⨯米,一年大约有7103⨯秒),我们用肉眼观察到的星星都是银河系的成员.银河系的直径大约10万光年.银河系的直径大约为多少?拓 展 提 升已知2b =5,2a =3,求2a+b+3的值.11.2 积的乘方和幂的乘方(1)【学习目标】1.运用积的乘方意义探索积的乘方的运算法则2.掌握积的乘方法则并能进行简单的计算3.体会探究过程中的分类讨论.猜想证明和特殊到一般的数学思想方法,培养学生的数学思维. 【重难点】积的乘方法则的应用预习导航一.预习自学1.积的乘方:(1)(2a)2=2a⨯2a=( 2 ⨯2 )⨯( a ⨯ a )=___ _=(2)(2a)3=2a⨯2a⨯2a=( ⨯⨯ )⨯( ⨯⨯ )=_ __(3)(2a)4=2a⨯2a⨯2a ⨯2a=( ⨯⨯⨯ )⨯ ( ⨯⨯⨯ )= ____结论:(ab)n= (n为正整数),就是说:积的乘方等于推广:(abc)n = (n为正整数) 小试牛刀1.判断(正确的打“√”,错误的打“×”)(1)(xy)4=xy4 ( )(2)8352bbb=+(4)(2xy)3=8x3y3 ()(5)(-2a)2=-4a2 ()2.计算.(1)(xy)2(2)(-3x)3 (3)(14ab)2 二.我的疑惑课内探究探究点一积的乘方逆运用例1.计算(1)82⨯(0.125)2(2)0.1254⨯(-8)4例2.已知xxx ba6,3,2求==.归纳总结:应用需要注意什么?【针对性练习】 1.计算(1)22125.0-8)(⨯(2)201320124)25.0(⨯2.已知5x n =,3y n=,求()n xy 的值.探究点二 积的乘方实际运用例3 为完善学校绿化,潍坊蓝海学校决定将边长为a 米的正方形花坛扩大为边长为2a 米的正方形花坛,扩大后新花坛的面积是多少平方米?扩大了多少?【我的收获】【达标检测】1.计算4)21)(1(mn - 4)2)(2(y3)2)(3(y - 2)4)(4(mn -2.()02a 1-2b 2=-+,则 20172017b a的值是多少?3. 已知5x n=,3y n =,求()n xy 的值. 拓 展 提 升计算42)21(n m -11.2 积的乘方和幂的乘方(2) 【学习目标】1.运用积的乘方意义探索积的乘方的运算法则2.掌握积的乘方法则并能进行简单的计算3.体会探究过程中的分类讨论.猜想证明和特殊到一般的数学思想方法,培养学生的数学思维.【重点】积的乘方法则的应用【难点】预习导航一.预习自学幂的乘方:(1)(62)4=62×62×62×62 =6 + + +=6 ⨯ =6 =_____ (2)[(-3)2]3=(-3)2×(-3)2×(-3)2=(-3)+ +=(-3) ⨯=(-3)=_____(3)(a 2)3= a 2. a 2. a 2=a + + =a ⨯ =a =结论:(a m )n= ______________(其中m.n 都是正整数)就是说:幂的乘方,底数__________,指数__________. 小试牛刀1.判断(正确的打“√”,错误的打“×”),并改正(1)(ab)3=ab 3( ) (2)a 5+a 5=2a 10 ( ) (3)(x 3)3=x 6 ( ) (4)(3xy)3=9x 3y 3( ) (5)229)3(x x -=- ( ) 2.计算(1)(103)3(2)[(32)3]4\(3)[(-6)3]4 (4)(x 2)5二.我的疑惑课内探究探究点一:幂的乘方逆运用 (1) 已知5=na ,求na 3的值.(2)已知42=n x ,求23)(n x 的值.(3)已知0353=-+y x ,求yx328⋅的值解题心得:【针对性练习】已知a 10=5,b 10=6,求b a 321010+探究点二:幂运算的综合应用1.()223b a 72.()()2222x -3x ⋅3.若32=a ,52=b ,求2232++b a 的值【针对性练习】 计算1.()33233a 2-)a (a ⋅2.201720164)41(⋅3.已知m 10=2,n 10=3,求2n 3m 10+的值【我的收获】【达标检测】1.下面计算对不对,如果不对,应怎样改正? (2)()923a a = (2)933a a a =⋅(4)333a 2a a =+ (4)()1046a a =2.计算下列各题 (1)()4310 (2)34x )((3)()22x 3- (4)()42xy3. 已知5x n=,3y n =,求()2nxy 的值.拓展提升比较3555,4444,5333的大小11.3 单项式的乘法(1)【学习目标】通过对具体实例的探究,掌握单项式乘单项式的乘法法则,并能灵活运用法则进行准确计算【重难点】单项式乘单项式的乘法法则的运用预习导航一.预习自学王大伯有一块长方形菜地,他把这快菜地分成6个大小相等的菜畦,每个菜畦的宽都是a 米,长都是ka 米,这块菜地的面积用S 1表示.问题1:如图,若将菜地的面积看成是六个小长方形,面积为 ,若将其看成是一个长为a 2,宽为ka 3的长方形,面积为 .你能得到一个怎样的等式?问题2:观察上面等式左右两边的特点,请你用自己的话说出单项式相乘的法则并说明其理论依据.一般的单项式与单项式相乘有以下法则:单项式相乘,把它们的 相乘,字母部分的 分别相乘.对于 含有的字母,连同 作为积的一个因式.小试牛刀1. 下列计算对不对,如果不对,请改正.(1)623632x x x =⋅ ( ) (2) 523532x x x =+ ( )(3)abc bc ab 63)2(-=⋅- ( ) (4) 33212)3()34(y x xy xy -=-⋅-( ) 2.计算(1)3b 3·b 2 (2)227(2)ax a bx ⋅-(3))95(332yz x y x -⋅ (4)(-6ay 3)(-a 2)二.我的疑惑56课内探究探究点:单项式相乘法则的灵活应用例1.计算(1)322)()2(a a ⋅ 2.(-3x )3·(5x 2y )例2.若单项式y x 8与)3(242x y x b a ∙)(是同类项,求出a ,b 的值【针对性练习】 1.计算(1))(22mn mn -)( (2))()2(32x xy -- 2.已知3=+nm x,2=+nm y,求代数式)21()31(m n n m y x y x -∙-的值.【我的收获】【达标检测】1.对于两个单项式,下列说法不正确的是 ( )A. 它们的积仍为单项式B. 它们的和仍为单项式C. 它们的积的次数不一定等于它们的次数之和D. 它们的和的次数等于较高者的次数 2.计算(1)2a 2b · 3ab 2 (2)4ab 2· 5b(3)2321-6)(xy x (4)32-2-)(xy x拓展提升2.已知3x m-2y 5+n 与-8x 的积是2x 4y 9的同类项,则m+n= .11.3 单项式的乘法(2) 【学习目标】通过对具体实例的探究,掌握单项式乘多项式的乘法法则,并能灵活运用法则进行准确计算【重难点】单项式乘多项式的乘法法则的运用预习导航一.预习自学问题3:如图,王大伯菜地的两侧已知各有一条宽0.5米的小路.这时包括小路在内的菜地的面积为S 2.若分别看成一个大长方形或者六个小长方形菜地和两条小路时,面积分别是多少?你能得到一个怎样的等式?它的左右两边有什么特点?解:菜地(包括小路在内)的长为________ 宽为________)13(2+∙=ka a s_______________= (乘法分配律) ____________=根据上面探究我们得到:m (a+b+c )= (通过运用____________律,将单项式与多项式的乘法,转化为__________与__________的乘法)归纳总结:单项式与多项式相乘,先将单项式_______________,再把所得的_____ ___. 计算①23()xy x y xy ⋅-②)8521(432xy x x x +-⋅-思考:单项式与多项式的乘积是多项式,积的次数和项数有什么特点?二.我的疑惑课内探究探究点:单项式乘多项式法则的灵活应用例1 化简(1)()2325 1.5a a a -⋅+(2))()(222b a b b a a -⋅++⋅-【针对性练习】 1.化简 (1)()32223t t t t ⎡⎤---⎣⎦(2).2.先化简,再求值22321(1)(1),x 2x x x x x x x ⋅-+-⋅-+-其中=例2.已知y x =2-2,求x(x-3y)+y(3x-1)-2的值.【我的收获】【达标检测】1.计算(1)2a 2b (ab -3ab 2)(2)(x -xy )·(-12y ).(3))13()2(22-+⋅-t t t(4)22124(3)393b ab a ⎛⎫--⋅- ⎪⎝⎭2.如图,梯形ABCD 的下底长为a ,上底长为b ,四边形ABEF 是正方形.用多项式表示图中阴影部分的面积.3.解下列方程109)23(262-=++⋅-x x x x拓展提升如图是L 形钢条截面,求它的面积 .12133411.4【学习目标】【重难点】一.预习自学活动路线是经过学校领导和老师们多次仔细的勘测后才确定下来的,拉练队伍6途经A学校.B公园.C大桥.D湖畔.E某纪念馆.F樱桃园.G桃林.H鱼塘.I风景区等地.七年级的小明根据路线将路线均看作一条直线,于是得到到如下图的长方形,你能求出同学们所走过的地方围成的面积吗?问题1为,请求出长方形的面积问题2区域的面积和为多少?问题3:问题1和问题2方形的面积.在下面.预习自测(1))()(52+∙-xx(2))()(yxyx32+∙-(3))()(axax+∙-22(4))()(2187-∙-xx二.我的疑惑课内探究探究点:多项式乘多项式法则的灵活应用游泳馆的结构如图所示(长度单位:米).如果游泳池与休息区铺瓷砖,男女更衣室铺木地板,那么瓷砖与木地板的面积各是多少平方米?游泳池休息区男更衣女更衣室例2.若(x 2+b )(x 2+ax +8)的乘积中不含x 2和x3项,则求a ,b 的值【针对性练习】1.若(x +a)(x +2)=x 2-5x +b ,则a =__________,b =__________. 2.若(x +a )(x +b )=x 2-kx +ab ,则k 的值为( ) A .a +bB .-a -bC .a -bD .b -a3.试说明代数式a a a a a a a ----++--)42(2)1()3)(1(322的值与a 的取值无关.【我的收获】【达标检测】1.两式相乘并化简为1832--a a 的是( )A.()()92+-a aB.()()92-+a aC.()()36-+a aD.()()36+-a a 2.计算(1))()(1432+∙-m m(2))()(n m n m -∙++212 (3))()()(15223+∙-∙-x x x(4))()(5312622-+-∙--t t t t拓展提升一个三角形底边的长为a ,高为h ,如果将底边增加1,高减少1,为了使面积不变,那么a 和h 应满足什么关系?游泳池休息区男更衣女更衣室11.5同底数幂的除法【学习目标】1.运用幂的意义探索同底数幂除法的运算法则2.掌握同底数幂除法法则并能进行简单的计算3.体会探究过程中的分类讨论.猜想证明和特殊到一般的数学思想方法,培养学生的数学思维.【重难点】同底数幂除法法则的应用预习导航一.预习自学1.填空:(1)=⋅24x x(2)()=33a .2.计算: (1)()323322y y y -⋅(2)()()23322416xy y x -+【自主构建】 (一)()23553222222⨯=∴÷= (二)()m n m n m n m a a a a a a ++=∴÷=归纳:()mna a a÷=证明:(同底数幂的除法法则的推导) 当a ≠0 , m .n 是正整数 , 且m >n 时()()_______(________)_______aa n am mnm nn n aaa a a a a a a a aaa a a a a a a a a a-⨯⨯⨯⋅⋅⋅⋅÷=⨯⨯⨯⋅⋅个个个个个===★归纳法则:同底数的幂相除, .二.我的疑惑课内探究探究点一:同底数幂除法法则的应用例1.【针对性练习】 (按照例1格式)(1)6877÷ (2)a a ÷5(3)25)()(m m -÷- (4) 26)41()41(÷-(5)346)(])()[(n m m n n m -⋅-÷-5.1)5.1()5.1()5.1()5.1(17878-=-=-=-÷--探究点二:同底数幂除法法则的逆运用例2若a x=3,则求13-x 的值.【针对性练习】已知2=xa ,3=ya ,则求yx a -的值.【我的收获】【达标检测】1.下列计算对不对,如果不对,应怎样改正? (1)326aa a =÷(2)()()23-aa a -=-÷(3)33a a am m=÷(4)211a a am m =÷-+2.计算(1)615m m ÷ (2)242-+÷m m a a(3)4731-31-⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛ (4)m m m ⋅÷263.(1)若0337=-+n m ,求nm 3755⨯的值(2)若0337=--n m ,则求n m3755÷的值4.已知162847413=÷∙+++m m m ,求m 的值5.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的多少倍?(精确到百分位)拓展提升已知4a a a n m=⋅,2a a a n m =÷,求m.n 的值.11.6零指数幂和负整数指数幂(1) 【学习目标】掌握零指数幂和负整数指数幂的概念【重难点】掌握零指数幂和负整数指数幂预习导航一.预习自学知识点一:零指数幂的概念 1.用除法直接计算:2233÷= ,4455÷= . 如果仿照同底数幂除法的运算性质进行计算,就得:2233÷= ,4455÷= . 对比以上两式,可以得出:03= ,05= .当0≠a 时,n n a a ÷=nn a -=0a = .总结:任何不等于零....的数的零次幂等于 ,零的零次幂 .用字母表示为:0a = (0≠a )2. 练习(1)()08-=(2)0)(y x -= (y x ≠) (3)()114.30--π=(4)202a a a ⨯÷=(5)()()00101010100⨯÷⨯= 知识点二:负整数指数幂的概念 1.(1)由分数的意义和约分法则计算:① )(53212222222222=⨯⨯⨯⨯⨯⨯=÷②)(6210110101010101010101010=⨯⨯⨯⨯⨯⨯=÷(2)仿照同底数幂除法的运算性质进行计算,就得: ①)()(532222==÷②)()(6210101010==÷由上可得:______22=- , _______104=-. 一般的,规定1(0,)p p a a p a -=≠是正整数,归纳:任何不等于零....的数的n -(n 为正整数)次幂,等于_______________________________.零的负整数指数幂没有意义. 2. 计算(1)34-= (2)3(1)--=(3)3(0.2)-= (4)31()2-=(5)()2--b a = (6)22--=二.我的疑惑课内探究探究点一:整数指数幂的运算例1.计算(1)221-⎪⎭⎫⎝⎛- (2)23--(3)30)2( (4)22103--⨯(5)55-÷a a(6)32)23()31(--⨯你觉得计算过程中哪些地方容易出错?【针对性练习】(1)2155-÷ (2)3211()()22-⨯(3)23()a -- (4)235()m n -(5)328333-⨯÷ (6)238x x x ⋅÷=【我的收获】【达标检测】1.看谁算的快 (1)=05 (2) =-0)8((3)=--0)35.0((4)0)(y x -=)(y x ≠(5)=-⨯0)21(21 (6)=-25 (7)()=-22.0(8)()=--51 (9)=-3)21((10)=--30)2(2.下列计算正确的是( ) A.104553---=÷m m m a a aB.2234x x x x =÷÷C.()152100=⨯- D.001.0104=-3.在①()150=-,②()111=--,③2233a a=-, ④()()235x x x -=-÷-中,其中正确的式子有()A.1个B.2个C.3个D.4个 4.若23.0-=a ,23--=b ,21()3c -=-,0)31(-=d ,则( )A.d c b a <<<B.c d a b <<<C.b c d a <<<D.b d a c <<<拓展提升当=x ________时,式子230-+)(x 无意义11.6零指数幂和负整数指数幂(2) 【学习目标】能进行整数指数幂的运算,掌握科学记数法【重难点】能进行整数指数幂的运算,掌握科学记数法预习导航一.预习自学一个绝对值小于1的非零小数可记作na -⨯±10, 其中101<≤a ,n 是正整数.n 等于原数中第一个非零数字前面所有零的个数(包括小数点前面的那个零).二.我的疑惑课内探究探究点一:幂的混合运算例1. 填空 (1)若131=-n ,则2n = ,若6414=m,则m = . 【针对性练习】1.若式子20)2()1(---+x x 有意义,则x 满足 . 2. 计算:(1)213)1()1(1--+÷+⋅+a a a )((2)02)3(91)31(-+÷--π(3)221122-⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭(4)()()23--÷-x y y x探究点二:绝对值小于1的非零小数的科学计数法例2 用科学计数法表示下列各数(1)000000314.0=(2)0004008.0-=将下列各数写成小数的形式:(1)53.6710-⨯=(2)62.810--⨯= 【针对性练习】纳米是一种长度单位,1纳米=910-米.已知某花粉的直径为3500纳米,那么用科学记数法表示这种花粉的直径为 米.【我的收获】【达标检测】1.下列选项中(1)331=- (2)81)2(3=--(3)916)43(2=-- (4)1)14.3-(0=π(5)25a a a =⋅- (6)4222)2(aa =-(7)m m m m =÷⋅834(8)2221)(ba b a =-- 正确的是 (填序号).2. 当=x ________时,式子230-+)(x 无意义. 3. 用科学计数法表示下列各数0.0000000000012 -0.00000000000560800000000014.计算:(1)12015)21()3()1(--+---(2)101)32()32()23(---+(3)213)1()1(1--+÷+⋅+a a a )((4)02)3(91)31(-+÷--π(5)221122-⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭(6)()()23--÷-x y y x拓展提升若65)3(0=+-x ,求x 的取值范围.。

相关文档
最新文档