数学建模实验答案_简单地优化模型

合集下载

数学建模简单13个例子全解

数学建模简单13个例子全解

数学建模简单13个例子全解数学建模是一种将数学方法和技术应用于实际问题解决的过程。

它是数学领域的一个重要分支,具有广泛的应用和重要的研究价值。

数学建模能够帮助我们理解和解决许多复杂的现实问题,对于推动科学研究和技术开发具有重要作用。

在现代科学和工程领域,数学建模被广泛运用于各种领域,包括物理、生物、经济、环境、社会等。

通过数学建模,我们可以通过数学方法对问题进行抽象和化简,然后利用数学工具和技术进行分析和求解。

数学建模的过程通常包括问题定义、模型构建、模型分析和模型验证等步骤,其中数学模型的选择和建立是关键的一步。

数学建模的重要性在于它能够帮助我们更好地理解和解决复杂的现实问题。

通过数学建模,我们可以用精确的数学语言和方法描述问题,通过数学分析和计算实现对问题的量化和定量化,为问题的解决提供科学的依据和方法。

数学建模还能够帮助我们发现问题中的规律和关联,提供新的洞察和预测,促进科学的发展和技术的创新。

本文将介绍数学建模的概念和重要性,并给出简单13个例子的全解。

通过这些例子,我们可以更加深入地了解数学建模的基本方法和技巧,培养和提高自己的数学建模能力,为解决实际问题提供有益的借鉴和参考。

描述如何利用数学建模解决鱼群聚集问题,并阐述模型的步骤和应用在鱼群聚集模型中,我们希望通过数学建模来解释鱼群在水中聚集的现象,并找到一种合适的模型来描述鱼群的行为。

步骤:收集数据:首先,我们需要收集关于鱼群聚集的现实数据。

这些数据可以包括鱼群的数量、鱼群的密度、鱼群的移动速度等。

建立模型:基于收集到的数据,我们可以建立一个数学模型来描述鱼群的聚集行为。

常用的模型包括离散模型和连续模型。

离散模型:离散模型将鱼群视为一组个体,每个个体根据一定的规则进行移动和相互作用。

常见的离散模型包括离散元胞自动机模型和离散粒子模型等。

连续模型:连续模型将鱼群视为一个连续的流体,采用偏微分方程来描述鱼群密度的演化。

常见的连续模型包括Navier-Stokes方程和Birds模型等。

最优化问题的建模与解法

最优化问题的建模与解法

最优化问题的建模与解法最优化问题(optimization problem)是指在一组可能的解中寻找最优解的问题。

最优化问题在实际生活中有广泛的应用,例如在工程、经济学、物流等领域中,我们经常需要通过数学模型来描述问题,并利用优化算法来求解最优解。

本文将介绍最优化问题的建模和解法,并通过几个实例来说明具体的应用。

一、最优化问题的数学建模最优化问题的数学建模包括目标函数的定义、约束条件的确定以及变量范围的设定。

1. 目标函数的定义目标函数是一个表达式,用来衡量问题的解的优劣。

例如,对于一个最大化问题,我们可以定义目标函数为:max f(x)其中,f(x)是一个关于变量x的函数,表示问题的解与x的关系。

类似地,对于最小化问题,我们可以定义目标函数为:min f(x)2. 约束条件的确定约束条件是对变量x的一组限制条件,用来定义问题的可行解集合。

约束条件可以是等式或不等式,通常表示为:g(x) ≤ 0h(x) = 0其中,g(x)和h(x)分别表示不等式约束和等式约束。

最优化问题的解必须满足所有的约束条件,即:g(x) ≤ 0, h(x) = 03. 变量范围的设定对于某些变量,可能需要限定其取值的范围。

例如,对于一个实数变量x,可能需要设定其上下界限。

变量范围的设定可以通过添加额外的不等式约束来实现。

二、最优化问题的解法最优化问题的解法包括数学方法和计算方法两种,常见的数学方法有最优性条件、拉格朗日乘子法等,而计算方法主要是通过计算机来求解。

1. 数学方法数学方法是通过数学分析来求解最优化问题。

其中,常见的数学方法包括:(1)最优性条件:例如,对于一些特殊的最优化问题,可以通过最优性条件来判断最优解的存在性和性质。

最优性条件包括可导条件、凸性条件等。

(2)拉格朗日乘子法:对于带有约束条件的最优化问题,可以通过拉格朗日乘子法将原问题转化为无约束最优化问题,从而求解最优解。

2. 计算方法计算方法是通过计算机来求解最优化问题。

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

数学建模:第五章 运筹与优化模型

数学建模:第五章 运筹与优化模型

1
例1、某工厂制造A.B两种产品,制造A每吨 需用煤9t,电力4kw,3个工作日;制造B每吨需 用煤5t,电力5kw,10个工作日。已知制造产品A 和B每吨分别获利7000元和12000元,现工厂只有 煤360t,电力200kw,工作日300个可以利用,问 A、B两种产品各应生产多少吨才能获利最大? 解:设 x1 x 2 ,(单位为吨)分别表示A、B产 品的计划生产数; f表示利润(单位千元) 则问题归结为如下线性规划问题:
a21 x1 a22 x2 a2 n xn (, )b2
am1 x1 am 2 x2 amn xn (, )bm

x1 , x2 ,, xn 0
7
例3:生产组织与计划问题 设有m种资源,第i(i=1,2…,m)种资源的现存量 为 bi ,现要生产n种产品,已知生产j(j=1,2…,n)种 产品时,每单位产品需要第i种资源量为 a ij ,而每 单位j种产品可得利润 c j ,问如何组织生产才能使 利润最大? 解:用 x j 表示生产第j(j=1,2,…,n)种产品 的计划数, 上述问题可归结为如下的数学问题:
z 14.3750
即 第1年项目A,D分别投资3.8268和6.1732(万元);
第2年项目A,C分别投资3.5436和3(万元);
第3年项目A,B分别投资0.4008和4(万元); 第4年项目A投资4.0752(万元); 第5年项目D投资0.4609(万元); 5年后总资金 14。375万元,即盈利43.75%.
x 模型建立 设该容器底边长和高分别为 x1米、 2米, 则问题的数学模型为
min f ( X ) 40 x1 x2 20 x1 (容器的费用)
2
x12 x 2 12, (容器体积) 2 s.t . 12 x1 x 2 2 x1 68, (容器重量) x 0, x 0. 2 1

优化模型一:线性规划模型数学建模课件

优化模型一:线性规划模型数学建模课件
题的求解过程。
混合整数线性规划问题求解
要点一
混合整数线性规划问题的复杂性
混合整数线性规划问题是指包含整数变量的线性规划问题 。由于整数变量的存在,混合整数线性规划问题的求解变 得更加困难,需要采用特殊的算法和技术来处理。
要点二
混合整数线性规划模型的求解方 法
为了解决混合整数线性规划问题,可以采用一些特殊的算 法和技术,如分支定界法、割平面法等。这些方法能够将 问题分解为多个子问题,并逐步逼近最优解,从而提高求 解效率。
目标函数的类型
常见的目标函数类型包括最小化、最大化等。
确定约束条件
约束条件
01
约束条件是限制决策变量取值的条件,通常表示为数学不等式
或等式。
确定约束条件的原则
02
根据问题的实际情况,选择能够反映问题约束条件的条件作为
约束条件。
约束条件的类型
03
常见的约束条件类型包括等式约束、不等式约束等。
线性规划模型的建立
也可以表示为
maximize (c^T x) subject to (A x geq b) and (x leq 0)。
线性规划的应用场景
生产计划
物流优化
在制造业中,线性规划可以用于优化生产 计划,确定最佳的生产组合和数量,以满 足市场需求并降低成本。
在物流和运输行业中,线性规划可以用于 优化运输路线、车辆调度和仓储管理,降 低运输成本和提高效率。
初始基本可行解
在线性规划问题中,一个解被称为基 本可行解,如果它满足所有的约束条 件。
在寻找初始基本可行解时,可以采用 一些启发式算法或随机搜索方法,以 快速找到一个可行的解作为起点。
初始基本可行解是线性规划问题的一 个起始点,通过迭代和优化,可以逐 渐逼近最优解。

数学建模与数学实验课后习题答案

数学建模与数学实验课后习题答案

P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。

学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。

解:设P 表示人数,N 表示要分配的总席位数。

i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。

首先,我们先按比例分配委员席位。

23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。

经比较可得,最后一席位应分给 A 宿舍。

所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。

点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

〔15分〕解:对于此题,如果不用任何假设很难证明,结果很可能是否认的。

因此对这个问题我们假设:〔1〕地面为连续曲面〔2〕长方形桌的四条腿长度一样〔3〕相对于地面的弯曲程度而言,方桌的腿是足够长的〔4〕方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如下图,方桌的四条腿分别在A、B、C、D处,A、、D的初始位置在及x轴平行,再假设有一条在x轴上的线,那么也及A、B,C、D平行。

当方桌绕中心0旋转时,对角线及x轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令()gθ为fθ为A、B离地距离之与,() C、D离地距离之与,它们的值由θ唯一确定。

由假设〔1〕,()gθfθ,()均为θ的连续函数。

又由假设〔3〕,三条腿总能同时着地, 故()f θ()g θ=0必成立〔∀θ〕。

不妨设(0)0f =(0)0g >〔假设(0)g 也为0,那么初始时刻已四条腿着地,不必再旋转〕,于是问题归结为: ()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,及互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

数学建模题目及答案-数学建模100题

数学建模题目及答案-数学建模100题

数学建模题目及答案-数学建模100题假设每个宿舍的委员数与该宿舍的学生数成比例,即每个宿舍的委员数为该宿舍学生数除以总学生数的比例乘以10.则A宿舍应分配的委员数为235/1000×10=2.35,但委员数必须为整数,所以可以向上取整,即A宿舍分配3个委员。

同理,B宿舍应分配的委员数为333/1000×10=3.33,向上取整为4个委员;C宿舍应分配的委员数为432/1000×10=4.32,向下取整为4个委员。

因此,A宿舍分配3个委员,B宿舍分配4个委员,C宿舍分配3个委员,剩下的委员数(10-3-4-3=0)为0.按照各宿舍人数占总人数的比例分配各宿舍的委员数。

设A宿舍、B宿舍、C宿舍的委员数分别为x、y、z人。

根据题意,我们可以列出以下方程组:x + y + z = 10x/10 = 235/1000y/10 = 333/1000z/10 = 432/1000其中,小数部分最大的整数进1,其余取整数部分。

解方程组得到x=3,y=3,z=4.因此,A宿舍、B宿舍、C宿舍的委员数分别为3、3、4人。

一家饲养场每天投入5元资金用于饲料、设备、人力,预计每天可使一头80公斤重的生猪增加2公斤。

假设生猪出售的市场价格为每公斤8元,每天会降低0.1元。

我们设在第t天出售这样的生猪(初始重80公斤的猪)可以获得的利润为z元。

根据题意,我们可以列出以下方程:每头猪投入:5t元产出:(8-0.1t)(80+2t)元利润:Z = 5t +(8-0.1t)(80+2t)=-0.2 t^2 + 13t +640我们可以求得二次函数的顶点,即t=32.5时,Z取得最大值851.25元。

因此,该饲养场应该在第33天出售这样的生猪,以获得最大利润。

一家奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2.市场需求量与生产量相等,每公斤A1获利24元,每公斤A2获利16元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用文档 标准文案 实验03 简单的优化模型(2学时) (第3章 简单的优化模型) 1. 生猪的出售时机p63~65 目标函数(生猪出售纯利润,元): Q(t) = ( 8 – gt )( 80 + rt ) – 4t – 640

其中,t ≥ 0为第几天出售,g为每天价格降低值(常数,元/公斤),r为每天生猪体重增加值(常数,公斤)。

求t使Q(t)最大。 1.1(求解)模型求解p63 (1) 图解法 绘制目标函数 Q(t) = ( 8 – gt )( 80 + rt ) – 4t – 640

的图形(0 ≤ t ≤ 20)。其中, g=0.1, r=2。 从图形上可看出曲线Q(t)的最大值。 (2) 代数法 对目标函数 Q(t) = ( 8 – gt )( 80 + rt ) – 4t – 640

用MATLAB求t使Q(t)最大。其中,r, g是待定参数。(先对Q(t)进行符号函数求导,对导函数进行符号代数方程求解) 然后将代入g=0.1, r=2,计算最大值时的t和Q(t)。

要求: ① 编写程序绘制题(1)图形。 ② 编程求解题(2). ③对照教材p63相关内容。 相关的MATLAB函数见提示。

★ 要求①的程序和运行结果: 程序: t=0:1:30; g=0.1;r=2; Q=(8-g.*t).*(80+r.*t)-4.*t-640; plot(t,Q) 图形: 实用文档

标准文案 ★ 要求②的程序和运行结果: 程序: syms g t r ; Q=(8-g.*t).*(80+r.*t)-4.*t-640; q=diff(Q,t); q=solve(q); g=0.1;r=2; tm=eval(q) Q=(8-g.*tm).*(80+r.*tm)-4.*tm-640 运行结果: 实用文档

标准文案 1.2(编程)模型解的的敏感性分析p63~64 对1.1中(2)所求得的符号表达式t(r,g),分别对g和r进行敏感性分析。 (1) 取g=0.1,对t(r)在r=1.5:0.1:3上求r与t的关系数据,绘制r与t的关系图形(见教材p65)。 (2) 取r=2,对t(g)在g=0.06:0.01:0.15上求g与t的关系数据,绘制g与t的关系图形(见教材p65)。

要求:分别编写(1)和(2)的程序,调试运行。 ★ 给出(1)的程序及运行结果: 程序: syms g t r ; Q=(8-g.*t).*(80+r.*t)-4.*t-640; q=diff(Q,t); q=solve(q); g=0.1;r=1.5:0.1:3; t=eval(q); plot(r,t) [r;t] 数值结果:

图形结果: 实用文档

标准文案 ★ 给出(2)的程序及运行结果: 程序: syms g t r; Q=(8-g.*t).*(80+r.*t)-4.*t-640; q=diff(Q,t); q=solve(q); r=2;g=0.06:0.01:0.15; t=eval(q); plot(g,t) [g;t] 数值结果: 实用文档

标准文案 图形结果:

2.(编程)冰山运输模型求解p77~81 按函数调用顺序。 (1) 每立方米水所需费用 实用文档 标准文案 ),(),(),(000VuWVuSVuY

u为船速,V0为冰山的初始体积。

(2) 冰山运抵目的地后可获得水的体积 303

0

133.4(,)(,)34TtVWuVrtu







400Tu为冰山抵达目的地所需天数。

(3) 第t天冰山球面半径融化速率: 3100015610(104)06(,)10000.2(10.4),6.u.ut,turtuutu







(4) 运送冰山费用

003

0

11400()3151(,)7.2(6)3lg(,)4TttkfVVSuVuurkuuu













400Tu为冰山抵达目的地所需天数。

(5) 船的日租金





706655001010,0.8100105,2.6105,0.4)(VVVVf

参照教材p81的表4,求不同V0,u下每立方米水的费用。 下面是不完整的MATLAB程序: function y=mainfun() clc; VV0=[10^7 5*10^6 10^6];%冰山的初始体积,3种 uu=[3 3.5 4 4.5 5];%船速,5种 y=zeros(length(VV0), length(uu));%初始化 for i=1:length(VV0) for j=1:length(uu) y(i,j)=Y(uu(j),VV0(i)); end end y=round(10000*y)/10000;%四舍五入取整。取小数点后4位数字 实用文档 标准文案 %以下函数的输入输出均为标量 function y=Y(u,V0) %(1) y=S(u,V0)/W(u,V0);

function y=W(u,V0)%(2) 编写该程序

function y=r(t,u)%(3) if t>=0&&t<=1000/6/u y=1.56*10^(-3)*u*(1+0.4*u)*t; elseif t>1000/6/u y=0.2*(1+0.4*u); else error('k不能小于0!');%显示出错信息并退出运行 end

function y=S(u,V0)%(4) T=400/u; y=0; for t=1:T rr=(3*V0/4/pi)^(1/3); for k=1:t rr=rr-r(k,u); end y=y+log10(rr); end y=400*f(V0)/u+7.2*u*(u+6)*(3*y-151/u);

function y=f(V0)%(5) 编写该程序

要求: ① 编写所要求的程序。 ② 运行。注:第一个函数为主函数,没有输入参数,可直接执行 ③ 结果与教材p81表4比较。

★ 完整的程序: function y=mainfun() VV0=[10^7 5*10^6 10^6]; uu=[3 3.5 4 4.5 5]; y=zeros(length(VV0), length(uu)); for i=1:length(VV0) for j=1:length(uu) y(i,j)=Y(uu(j),VV0(i)); end 实用文档 标准文案 end y=round(10000*y)/10000; function y=Y(u,V0) %(1) y=S(u,V0)/W(u,V0); function y=W(u,V0)%(2) 编写该程序 T=400/u; rr=0; for t=1:T rr=rr+r(t,u); end y=3.4*pi/3*(((3*V0)/(4*pi))^(1/3)-rr)^3; function y=r(t,u)%(3) if t>=0&&t<=1000/6/u y=1.56*10^(-3)*u*(1+0.4*u)*t; elseif t>1000/6/u y=0.2*(1+0.4*u); else error('k不能小于0!') end function y=S(u,V0)%(4) T=400/u; y=0; for t=1:T rr=(3*V0/4/pi)^(1/3); for k=1:t rr=rr-r(k,u); end y=y+log10(rr); end y=400*f(V0)/u+7.2*u*(u+6)*(3*y-151/u); function y=f(V0)%(5) 编写该程序 if V0<=5*10^5 y=4.0; elseif V0>5*10^5&&V0<=10^6 y=6.2; elseif V0>10^6&&V0<=10^7 y=8.0; else error(' k超出取值范围!'); end

相关文档
最新文档