椭圆性质及其应用

椭圆性质及其应用
椭圆性质及其应用

椭圆的定义与性质讲解学习

椭圆的定义与性质

椭圆的定义与性质 1.椭圆的定义 (1)第一定义:平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点的距离叫做焦距. (2)第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数e (0b >0) y 2a 2+x 2 b 2 =1(a >b >0) 图形 性质 范围 -a ≤x ≤a -b ≤y ≤b -b ≤x ≤b -a ≤y ≤a 顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) B 1(0,-b ),B 2(0,b ) B 1(-b,0), B 2(b,0) 焦点 F 1(-c,0) F 2(c,0) F 1(0,-c ) F 2(0,c ) 准线 l 1:x =-a 2c l 2:x =a 2 c l 1:y =-a 2c l 2:y =a 2 c 轴 长轴A 1A 2的长为2a 短轴B 1B 2的长为2b 焦距 F 1F 2=2c 离心率 e =c a ,且e ∈(0,1) a ,b ,c 的关系 c 2=a 2-b 2 对称性 对称轴:坐标轴 对称中心:原点 1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)动点P 到两定点A (-2,0),B (2,0)的距离之和为4,则点P 的轨迹是椭圆.( )

椭圆定义及应用

一、椭圆第一个定义的应用 1.1 椭圆的第一个定义平面内有两个定点F1、F2,和一个定长2a。若动点P到两个定点距离之和等于定长2a,且两个定点距离|F1F2|<2a.则动点轨迹是椭圆。两个定点F1、F2称为椭圆的焦点。 由此定义得出非常重要的等式,其中P为椭圆上一个点。此等式既表明作为椭圆这个点的轨迹的来源,也说明椭圆上每一个具有的共同性质。即椭圆上每一个点到两个焦点距离之和等于定长2a .在有关椭圆的问题中,若题设中含有有关椭圆上一点到两个焦点距离的信息,首先考虑的就是能否用上这个关系式。 1.2 应用举例 例1.已知点 1(3,0) F-,2(3,0) F,有 126 PF PF +=,则P点的轨迹是 . 例2.求证以椭圆 (a>b>0) 上任意一点P的 焦半径为直径画圆,这个圆必与圆相切. 解评:此题若用一般方法解或用椭圆参数方程解答,计算量都很大,解题过程冗长,属于中档题。我们若抓住PF2为一个圆直径,PF1为另一个圆半径的2倍,用公式,很容易得出正确解答。

例3. F 1、F 2是椭圆的两个焦点,P 是椭圆上一点, 求的面积.24 解评:题设中有椭圆上一点到两个焦点间距离的信息,即可试探是否能用 解决 例4.P 是椭圆2 2 145 20 x y + =上位于第一象限内的点, F 1、F 2是椭圆的左、右焦点, 若 则12PF PF -的值为( ) A. D. 3 例5. 在圆C:22(1)25x y ++=内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线线段CQ 的交点为M,求M 点的轨迹方程. 练:一动圆与圆⊙o 1:x 2+y 2+6x+5=0外切,同时与⊙o 2 : x 2+y 2_ 6x _ 91=0 内切, 求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

习题课:椭圆第二定义的应用(精)

人教版高二数学上册§8.2 椭圆第二定义的应用(习题课 班级姓名自我学习评价 :优良还需努力 【学习目标】1. 进一步加深对椭圆第二定义及其性质的认识,会熟练运用椭圆的几何性质和第二定义解决有关问题; 2. 通过对椭圆的第二定义的应用,体会和感悟“方程思想”和“数形结合”,“分类讨论”的数学思想方法。 【学习重点】灵活运用椭圆的第二定义及性质解决有关问题。 【学习过程】 一、学习准备(知识准备) 请独立完成下列填空: 1.椭圆的第一定义为:;其中的两点为椭圆的 ;常数等于椭圆的; 2.椭圆第二定义:若平面内的动点M(x,y)到定点F(c,0)的距离和它到定直线 的距离的比是常数,则点M 的轨迹为;定直线叫做,准线与长轴所在直线____,椭圆的准线有条. 常数,()是的离心率。e1时,椭圆趋于;e0时,椭圆趋向于。 3.由椭圆第二定义我们得到了焦半径公式。设为椭圆上任意一点,对于标准方程 的焦半径;;对于标准方程的焦半径; .

椭圆第二定义及其性质在解题中有何价值和作用?你知道吗?通过本节课的学习你就会知道了! ●基础练习:试一试,你能根据已知很快独立完成下列问题吗?有困难的题可与小组同学讨论。 1、椭圆的准线方程是()A.; B.; C.; D. 2 椭圆的一个焦点到相应准线的距离为,离心率为,则短轴长为()A B C. D. 3 设点P为椭圆上一点,P到左准线的距离为10,则P到右准线的距离为() A . 6 ; B .8 ; C.10 ; D.15 4 已知点A(2,y)是椭圆上的点,F是其右焦点,则∣AF∣=; 5.椭圆与椭圆〉0)的形状怎样?它们的离心率有何关系?你 能否快速求出与椭圆有相同的离心率且经过点(,)的椭圆的方程?其方程为 你是用什么方法求解的?。 二、典型例析 【探究一】利用椭圆第二定义解题

椭圆性质的运用(公开课)

高二数学公开课教案:椭圆性质的运用 曾木顺 三维目标 1、知识与能力 (1)通过学生的积极参与和积极探究,培养学生的分析问题和解决问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.(3)实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径. 2、过程与方法 理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的简单几何性质解决实际问题; 3、情感、态度与价值观目标 通过知识的运用及问题的解决,培养学生学习数学的兴趣。 4.教学重、难点: (1)教学重点:椭圆的方程及其几何性质的运用 (2)教学难点:灵活运用椭圆的几何性质 5.本节所用的数学思想方法:数形结合的思想方法,化归思想方法。 教学过程:(一)复习引入:椭圆的简单几何性质如下 标准方程 )0(122 22>>=+b a b y a x )0(12 2 22>>=+b a b x a y 图形 范围 -a ≤x ≤a,-b ≤y ≤b -b ≤x ≤b, -a ≤y ≤a 对称性 关于x 轴、y 轴、原点对称 顶点坐标 (±a ,0)(0,±b ) (±b ,0),(0,±a )

(二)进行新课 例1:已知中心在原点O ,焦点在x 轴上的椭圆C 的离心率为 2 3 ,点A ,B 分别是椭圆C 的长轴、短轴的端点,点O 到直线AB 的距离为5 5 6。 (1)求椭圆C 的标准方程; (2)已知点E (3,0),设点P 、Q 是椭圆C 上的两个动点,满足EP ⊥EQ ,求?的取值范围。 【分析】本题主要考查直线、椭圆、平面向量等基础知识,以及综合运用数学知识解决问题及计算能力。 解:(1)由离心率2 3 == a c e ,得 2 1 12=-=e a b ∴ b a 2= ① ∵原点O 到直线AB 的距离为 556∴55 622=+b a a b ② , 将①代入②,得92 =b ,∴362 =a 则椭圆C 的标准方程为 19 362 2=+y x (2)∵ EQ EP ⊥ ∴ 0=? ∴ 2 )(=-?=? 设),(y x P ,则193622=+y x ,即4 922 x y -= ∴6)4(4 3 4996)3(222 2 2 2 +-=- ++-=+-==?x x x x y x EP QP EP ∵ 66≤≤-x , ∴ 816)4(4 3 62≤+-≤ x

椭圆方程的一个性质和应用

椭圆方程的一个性质和应用 于志洪金建荣 学习椭圆方程时,大家会发现这样一类椭圆,它们有一个共同特征,即离心率相同。 F 面将共离心率的椭圆方程的一个性质及其应用介绍给同学们,供大家学习时参考。 -.性质 X 2 和椭圆— a 2 y 2 1(a b b 2 0) 有相同离心率的椭 圆方程都具有 2 X -2 a (0)的特征。 2 X -2 a 程。 2 y 产 b 2 . 2 X a 2 .a y 2 2 1和椭圆 b 2 \ a 2 b 2 a. y 2 2 1和椭圆 b 2 X 2 设椭圆 1的离心率分别为e 和e',则 a 2 b 2 a e' .a 2 b 2 e',故椭圆 0)有相同的离心 率。 也就是说,和椭圆飞 a b 0)有相同的离心率的椭圆方程都具有 0)的特 征。 应用 X 2 2 y 2 1有相同离心率,且与直线 3X 例.求和椭圆 4 (2003年全国重点名校高考模拟题) 2、7y 16 0相切的椭圆方 解法1 :由以上性质,可设所求椭圆方程为 2小 16 0相切,故由方程组x 2 4y 2 得16y 2 16-. 7y 64 9 0。其判别式 2 2 4,故所求椭圆方程为 X y 1 16 4 3x 迂 4 ,3X 16、、7)2 y 2 ( 2, 7y 16 4 16 解法2 :设所求椭圆方程为 X 2 4y 2 0)。因其与直线 0联立消去X ,整理 (64 9 )0,解得 因它与直线 3X 27y 16 0相切,则设切点为( 27 4 X 1, 表示为同一直线,所以 X 1 4y 1 X 1 y 1),故切线方程为 3 4 y 1 X 1X 4y 』 4 。两直线 ¥。将 X 1和y 1同时代入椭圆方 程,得(? )2 4(乂 4 8 2 故所求椭圆方程为 — 16 )2 化简整理得 0,解得 4或 0 (舍去)。 2 y_ 4 X 2 2 a 2 ?. , bi 。设切点为 (2 cos 解法3 :设所求椭圆方程为 2 即— 4 r~ . 、sin 则 a 2 4 , b 2 , ),则椭圆的切线方程为

椭圆方程及性质的应用

椭圆方程及性质的应用 教学目标 1.掌握直线与椭圆的位置关系.(重点) 2.通过一元二次方程根与系数关系的应用,解决有关椭圆的简单综合问题.(重点) 3.能利用椭圆的有关性质解决实际问题.(难点) 教材整理1 点与椭圆的位置关系 设点P(x0,y0),椭圆x2 a2+ y2 b2=1(a>b>0). (1)点P在椭圆上?x20 a2+ y20 b2=1;(2)点P在椭圆内? x20 a2+ y20 b2<1; (3)点P在椭圆外?x20 a2+ y20 b2>1. 课堂练习 已知点(2,3)在椭圆x2 m2+ y2 n2=1上,则下列说法正确的是________ ①点(-2,3)在椭圆外②点(3,2)在椭圆上 ③点(-2,-3)在椭圆内④点(2,-3)在椭圆上【解析】由椭圆的对称性知点(2,-3)也在椭圆上.【答案】④ 教材整理2 直线与椭圆的位置关系 1.直线与椭圆的位置关系及判定 直线y=kx+m与椭圆x2 a2+ y2 b2=1(a>b>0)联立 ?? ? ?? y=kx+m, x2 a2+ y2 b2=1, 消去y得一个 一元二次方程.

2.弦长公式 设直线y =kx +b 与椭圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|= 1+1 k 2·|y 1-y 2|. 判断(正确的打“√”,错误的打“×”) (1)点P (2,1)在椭圆x 24+y 2 9=1的内部.( ) (2)过椭圆外一点一定能作两条直线与已知椭圆相切.( ) (3)过点A (0,1)的直线一定与椭圆x 2 +y 2 2=1相交.( ) (4)长轴是椭圆中最长的弦.( ) 【答案】 (1)× (2)√ (3)√ (4)√ 例题分析 (1)若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 2 4=1的交点个数为( ) A.2个 B.至多一个 C.1个 D.0个 (2)已知椭圆4x 2+y 2=1及直线y =x +m ,问m 为何值时,直线与椭圆相切、相交? 【精彩点拨】 利用几何法判断直线与椭圆的位置关系. 【自主解答】 (1)若直线与圆没有交点,则d = 4m 2 +n 2 >2, ∴m 2+n 2<4,即m 2+n 24<1.∴m 29+n 24<1,∴点(m ,n )在椭圆的内部,故直 线与椭圆有2个交点. 【答案】 A (2)将y =x +m 代入4x 2+y 2=1, 消去y 整理得5x 2+2mx +m 2-1=0. Δ=4m 2-20(m 2-1)=20-16m 2.

椭圆的简单几何性质试题

椭圆的简单几何性质试题

————————————————————————————————作者:————————————————————————————————日期:

课时作业(八) [学业水平层次] 一、选择题 1.(2015·人大附中月考)焦点在x 轴上,短轴长为8,离心率为3 5的椭圆的标准方程是( ) A.x 2100+y 2 36=1 B.x 2100+y 2 64=1 C.x 225+y 2 16=1 D.x 225+y 2 9=1 【解析】 本题考查椭圆的标准方程.由题意知2b =8,得 b =4,所以b 2=a 2-c 2=16,又e =c a =3 5,解得c =3,a =5,又焦点在x 轴上,故椭圆的标准方程为x 225+y 2 16=1,故选C. 【答案】 C 2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( ) A.12 B.13 C.14 D.22 【解析】 由题意知a =2c ,∴e =c a =c 2c =1 2. 【答案】 A 3曲线x 225+y 29=1与x 29-k +y 2 25-k =1(0

A .有相等的焦距,相同的焦点 B .有相等的焦距,不同的焦点 C .有不等的焦距,不同的焦点 D .以上都不对 【解析】 曲线x 225+y 29=1的焦距为2c =8,而曲线x 29-k +y 2 25-k = 1(0<k <9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B. 【答案】 B 4.已知O 是坐标原点,F 是椭圆x 24+y 2 3=1的一个焦点,过F 且与x 轴垂直的直线与椭圆交于M ,N 两点,则cos ∠MON 的值为( ) A.5 13 B .-513 C.21313 D .-21313 【解析】 由题意,a 2=4,b 2=3, 故c = a 2- b 2= 4-3=1. 不妨设M (1,y 0),N (1,-y 0),所以124+y 2 3=1, 解得y 0=±3 2, 所以|MN |=3,|OM |=|ON |=12 +? ?? ??322=13 2. 由余弦定理知 cos ∠MON =|OM |2+|ON |2-|MN |2 2|OM ||ON | =

椭圆的一个几何性质和在物理学中的应用

椭圆的几何性质和在物理学中的应用 1 几何性质 为了思路清晰简明,我们采用罗列命题的方式叙述椭圆的几何性质,但这又不是简单的罗列,各命题间是有紧密地联系的。 定义1:椭圆是到两个定点(焦点)的距离和等于定长(2a )的点的轨迹。 命题1:椭圆外一点到椭圆两焦点的距离和大于椭圆上一点到两焦点的距离和。 【证明】:如图1所示,M 是椭圆外任一点,1MF 和2MF 分别是该点到两焦点1F 和2F 的距离。由于M 在椭圆之外,所以我们总能够在椭圆上找到一点N ,使此点在21F MF ?内。所以总有a NF NF MF MF 22121=+>+。 下面我们证明命题1中用到的关于三角形的一个命题。 命题2:三角形内一点到两个顶点的距离和小于第三个顶点到这两个顶点的距离和。 【证明】:如图,M 是ABC ?中任一点,我们要证明的是CB CA BM AM +<+。 延长AM 与BC 交于D 点。 在ADC ?中,由于两边之和大于第三边,有MD AM CD CA +>+; 在BDM ?中,由于两边之和大于第三边,有MB MD DB >+。 上面两式相加有CB CA BM AM +<+,命题得证。 命题3:椭圆内一点到两焦点的距离和小于椭圆上一点到两焦点的距离和。 图3 图1 A B C M D 图2

【证明】:如图3所示,我们总能够在椭圆上找一点N ,使M 位于21F NF ?内。由命题2可知命题正确。 我们可以说,椭圆的外部是这样的点的集合,它到椭圆的两个焦点的距离之和大于2a ;椭圆的内部是这样的点的集合,它到椭圆的两个核糖点的距离之和小于2a ;椭圆上的点到两个焦点的距离之和恰为2a 。 定义2:与椭圆只有一个公共点的直线称为椭圆的切线。 命题4:椭圆的切线不可能通过椭圆内的任何一点。 【证明】:假设切线可过椭圆内一点,则必与椭圆交于两点,这与该线为椭圆的切线相矛盾。 命题5:构成椭圆的切线的点的集合中,切点是到两个焦点的距离和最小的点。 【证明】:切点在圆上,因此到两焦点距离和为2a ,切线上其它点都在椭圆外,因此到两焦点的距离和大于2a ,命题得证。 命题6:直线与直线上到两定点的距离和最小的点跟该两点的连线成等角。 【证明】:如图4所示,设PQ 是任一直线,1F 和2F 是任意的两个点(在直线的同一侧)。我们总可以在直线上找一点M ,使此点到两点1F 和2F 的距离的和最小。方法如下 如图3所示,做1F 关于PQ 的对称点3F ,连结32F F 与PQ 交于M 点,则M 点为所求点。原因是简单的,如图5所示,任意在PQ 上取另一点1M ,则此点到两定点1F 、2F 的距离和大于M 到这两定点的距离和。由对称可知,角1PMF =角3PMF ,而角3PMF 与角2 QMF 互为对顶角。所以角1PMF =角2QMF ,命题得证。 命题7:椭圆的切线跟切点和焦点的两条连线成等角。 【证明】:因为切点是切线上所有点到两点的距离之和最小的点,由命题6知切线跟切点和焦点的两条连线成等角。 命题8:切线的垂线平分两焦点与切点连线所成的角。 【证明】:如图6所示,1F 与2F 是椭圆的两个焦点,M 是椭圆上任一点,PQ 是过M 点的切线,MN 是的21MF F ∠的平分线。则有,PQ MN ⊥。 F 1 F 2 P 图4 F 1 F 2 P 图5 F

椭圆的基本性质

课题:12.4椭圆的基本性质(二课时) 教学目标: 1、掌握椭圆的对称性,顶点,范围等几何性质. 2、能根据椭圆的几何性质对椭圆方程进行讨论,在此基础上会画椭圆的图形. 3、学会判断直线与椭圆的位置,能够解决直线与椭圆相交时的弦长问题,中点问题等. 4、在对椭圆几何性质的讨论中,注意数与形的结合与转化,学会分类讨论、数形结合等数学思想和探究能力的培养;培养探究新事物的欲望,获得成功的体验,树立学好数学的信心. 教学重点:椭圆的几何性质及初步运用 教学难点:直线与椭圆相交时的弦长问题和中点问题 教学过程: 一.课前准备: 1、 知识回忆 (1) 椭圆和圆的概念 (2) 椭圆的标准方程 2、课前练习 1) 圆的定义: 到一定点的距离等于______的图形的轨迹。 椭圆的定义: _______________________________的图形的轨迹。 2) 椭圆的标准方程: 1。焦点在x 轴上____________( ) 2。焦点在y 轴上____________( ) 若125 162 2=+y x ,则椭圆的长轴长________短半轴长__________,焦点为____________,顶点坐标为__________,焦距为______________ 二.教学过程设计 一、引入课题 “曲线与方程”是解析几何中最重要最基本的内容其中有两类基本问题:一是由曲线求方程,二是由方程画曲线.前面由椭圆定义推导出椭圆的标准方程属于第一类问题,本节课将研究第二类问题,由椭圆方程画椭圆图形,为使列表描点更准确,避免盲目性,有必要先对椭圆的范围、对称性、顶点进行讨论. 二、讲授新课 (一) 对称性 问题1:观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性? x -代x 后方程不变,说明椭圆关于y 轴对称; y -代y 后方程不变,说明椭圆曲线关于x 轴对称; x -、y -代x ,y 后方程不变,说明椭圆曲线关于原点对称; 问题2:从对称性的本质上入手,如何探究曲线的对称性? 以把x 换成-x 为例,如图在曲线的方程中,把x 换

椭圆几何性质及应用(基础题)

椭圆的简单几何性质 1.若焦点在x轴上的椭圆x2 2+ y2 m=1的离心率为 1 2,则m等于() A.3 B.3 2C. 8 3D. 2 3 2.若椭圆经过原点,且焦点为F1(1,0),F2(3,0),则其离心率e是() A.3 4B. 2 3C. 1 2D. 1 4 3.椭圆(m+1)x2+my2=1的长轴长是() A.2m-1 m-1 B. -2-m m C.2m m D.- 21-m m-1 4.椭圆的两个焦点和它在短轴上的两个顶点连成一个正方形,则此椭圆的离心率为() A.1 2B. 2 2 C. 3 2D. 3 3 5.(2009·江西高考)过椭圆x2 a2+ y2 b2=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于 点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为() A. 2 2B. 3 3 C.1 2D. 1 3 6.若AB为过椭圆x2 25+ y2 16=1中心的线段,F1为椭圆的焦点,则△F1AB面积的 最大值为() A.6 B.12 C.24 D.48 1

7.椭圆的一个焦点将长轴分为3∶2的两段,则椭圆的离心率是________. 8.过椭圆x2 5+ y2 4=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O 为坐标原点,则△OAB的面积为________. 9.若椭圆x2 k+2+ y2 4=1的离心率e= 1 3,则k的值等于________. 10.求适合下列条件的椭圆的标准方程: (1)长轴长是短轴长的3倍,且过点(3,-1); (2)椭圆过点(3,0),离心率e= 6 3. 11.已知椭圆4x2+y2=1及直线y=x+m, (1)当直线和椭圆有公共点,求实数m的取值范围. (2)求被椭圆截得的最长线段所在的直线方程. 2

【课时作业 必修1】椭圆方程及性质的应用+参考答案

椭圆方程及性质的应用 (45分钟100分)一、选择题(每小题6分,共30分) 1.(2013·重庆高二检测)已知直线l过点(3,-1),且椭圆C:x2 25+y2 36 =1,则直线l与椭圆 C的公共点的个数为( ) A.1 B.1或2 C.2 D.0 2.若AB为过椭圆x2 25+y2 16 =1的中心的弦,F1为椭圆的左焦点,则△F1AB面积的最大 值为( ) A.6 B.12 C.24 D.36 3.椭圆x2 16+y2 4 =1上的点到直线x+2y-√2=0的最大距离为( ) A.3 B.√11 C.√10 D.2√2 4.直线y=1-x交椭圆mx2+ny2=1于M,N两点,MN的中点为P,若k OP=√2 2 (O为原点),则m等于( ) A.√2 2B.√2 C.-√2 2 D.-√2 5.(2013·南昌高二检测)已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为( ) A.√5 3B.2 3 C.√2 2 D.5 9 - 1 -

二、填空题(每小题8分,共24分) 6.(2013·绵阳高二检测)短轴长为√5,离心率e=2 3 的椭圆的两焦点为F1,F2,过F1作直线交椭圆于A,B两点,则△ABF2的周长为. 7.(2013·宜春高二检测)椭圆x2 a2+y2 b2 =1(a>b>0)的离心率为√2 2 ,若直线y=kx与其一 个交点的横坐标为b,则k的值为. 8.过椭圆x2 6+y2 5 =1内的一点P(2,-1)的弦AB,满足OP→=1 2 (OA→+OB→),则这条弦所在 的直线方程是. 三、解答题(9题,10题14分,11题18分) 9.(2013·合肥高二检测)已知椭圆C的焦点F1(-2√2,0)和F2(2√2,0),长轴长为6, 设直线l交椭圆C于A,B两点,且线段AB的中点坐标是P(-9 10,1 10 ),求直线l的方 程. 10.(2013·安阳高二检测)已知椭圆的两焦点为F1(-√3,0),F2(√3,0),离心率e=√3. (1)求此椭圆的方程. (2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值. 11.(能力挑战题)已知大西北某荒漠上A,B两点相距2km,现准备在荒漠上开垦出一片以AB为一条对角线的平行四边形区域建成农艺园,按照规划,围墙总长为8km. - 1 -

2.1.2 椭圆的简单几何性质同步练习

2.1.2 椭圆的简单几何性质同步练习 1.椭圆的简单几何性质 直线y =kx +b 与椭圆x 2a 2+y 2 b 2=1 (a >b >0)的位置关系: 直线与椭圆相切?????? y =kx +b x 2a 2+y 2 b 2=1有______组实数解,即Δ______0.直线与椭圆相交? ????? y =kx +b x 2a 2+y 2b 2=1有______组实数解,即Δ______0,直线与椭圆相离?????? y =kx +b x 2a 2+y 2 b 2=1________实数解,即Δ______0. 一、选择题 1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5,3,45 B .10,6,4 5 C .5,3,35 D .10,6,3 5 2.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A .x 236+y 216=1 B .x 216+y 2 36=1 C .x 26+y 24=1 D .y 26+x 2 4 =1 3.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为1 2 ,则m 等于( )

A . 3 B .32 C .83 D .2 3 4.如图所示,A 、B 、C 分别为椭圆x 2a 2+y 2b 2=1 (a >b >0)的顶点与焦点,若∠ABC =90°, 则该椭圆的离心率为( ) A.-1+52 B .1-22 C.2-1 D.2 2 5.若直线mx +ny =4与圆O :x 2 +y 2 =4没有交点,则过点P (m ,n )的直线与椭圆x 29+ y 2 4 =1的交点个数为( ) A .至多一个 B .2 C .1 D .0 6.已知F 1、F 2是椭圆的两个焦点。满足1MF ·MF 2→ =0的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) A .(0,1) B .??? ?0,12 C .???0,2 D .???2 ,1 7.已知椭圆的中心在原点,焦点在x 轴上,离心率为5 5 ,且过点P (-5,4),则椭圆的 方程为______________. 8.直线x +2y -2=0经过椭圆x 2a 2+y 2 b 2=1 (a >b >0)的一个焦点和一个顶点,则该椭圆的 离心率等于______. 9.椭圆E :x 216+y 2 4 =1内有一点P (2,1),则经过P 并且以P 为中点的弦所在直线方程为 ____________. 三、解答题 10.如图,已知P 是椭圆x 2a 2+y 2 b 2=1 (a >b >0)上且位于第一象限的一点,F 是椭圆的右焦 点,O 是椭圆中心,B 是椭圆的上顶点,H 是直线x =-a 2 c (c 是椭圆的半焦距)与x 轴的交 点,若PF ⊥OF ,HB ∥OP ,试求椭圆的离心率e .

椭圆性质总结

椭圆性质总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

椭 圆 一.考试必“背” 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长()212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F , 212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P| e d PF =,0<e <1的常数 }。(1=e 为抛物线;1 >e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -=(一个 ?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总 在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ? ??==θθ sin cos b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0)有以下性 质:

唐春香椭圆及其性质的应用

2.2.2 椭圆形至及其应用 1.一个顶点的坐标为(0,2),焦距的一半为3的椭圆的标准方程为( ) A.x 24+y 29=1 B.x 29+y 24=1 C.x 24+y 2 13=1 D.x 213+y 24 =1 2.椭圆x 225+y 2 9 =1上的点P 到椭圆左焦点的最大距离和最小距离分别是( ) A .8,2 B .5,4 C .9,1 D .5,1 3.已知F 1、F 2为椭圆x 2a 2+y 2 b 2=1(a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆离心率e =32 ,则椭圆的方程是( ) A.x 24+y 23=1 B.x 216+y 2 4 =1 C.x 216+y 212 =1 D.x 216+y 2 3=1 4.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( ) A.12 B.32 C.34 D.64 5.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 32 ,且G 上一点到两个焦点的距离之和为12,则椭圆G 的方程为______________. 6.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________. 7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63.过点A (0,-b )和B (a,0)的直线与原点的距离为32 ,求椭圆的标准方程. 8.如图所示,F 1,F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标 等于短半轴长的23 ,求椭圆的离心率. 9.设P (x ,y )是椭圆x 225+y 2 16 =1上的点且P 的纵坐标y ≠0,点A (-5,0)、B (5,0),试判断k P A ·k PB 是否为定值?若是定值,求出该定值;若不是定值,请说明理由.

椭圆的简单几何性质教案(绝对经典)

第2课时 椭圆的简单几何性质 错误!题型分类 深度解析 考点一 椭圆的性质 【例1】 (1)已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( ) A.63 B.33 C.23 D.13 (2)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于4 5,则椭圆E 的离心率的取值范围是( ) A.? ?? ??0,32 B.??? ?0,34 C.?? ?? ??32,1 D.??? ?3 4,1 解析 (1)以线段A 1A 2为直径的圆是x 2+y 2=a 2,又与直线bx -ay +2ab =0相切, 所以圆心(0,0)到直线的距离d =2ab a 2+b 2 =a ,整理为a 2=3b 2 ,即b a =13. ∴e =c a =a 2- b 2a = 1-??? ?b a 2 = 1-? ?? ??132=63. (2)设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形. ∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4,∴a =2. 设M (0,b ),则4b 5≥4 5,∴1≤b <2. 离心率e =c a = c 2a 2= a 2- b 2a 2= 4-b 24∈? ???? 0,32. 答案 (1)A (2)A 规律方法 求椭圆离心率的方法 (1)直接求出a ,c 的值,利用离心率公式直接求解. (2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的

椭圆的性质及应用

第5讲 椭圆的性质及应用 一、知识梳理 1 x 2 y 2 y 2 x 2 2、椭圆的几何性质分为两类 (1)一类是与坐标系无关的椭圆本身故有的性质:长轴长、短轴长、焦距、离心率等. (2)一类是与坐标系有关的性质:顶点坐标、焦点坐标等. 在解题时要特别注意第二类性质,应根据椭圆方程的形式,首先判断椭圆的焦点在哪条坐标轴上,然后再进行求解. 问题 为什么椭圆的离心率决定椭圆的扁平程度? 提示:椭圆的离心率反映了焦点远离中心的程度,e 的大小决定了椭圆的形状,反映了椭圆的圆扁程度. 因为a 2=b 2+c 2,所以b a =1-e 2,因此,当e 越趋近于1时,b a 越接近于0,椭圆越扁;当e 越趋近于0时, b a 越接近于1,椭圆越接近于圆. 题型(一) 求椭圆的离心率 例1 (1)下列椭圆中最扁的一个是( ) A . B . C . D . 【解答】解:椭圆的离心率越小,椭圆越圆,越大,离心率越大,椭圆越扁,越小, A 中=,B 中=,C 中= ,D 中= , 故选:B . (2)若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为________. 解析: 依题意,△BF 1F 2是正三角形,

∵在Rt △OBF 2中,|OF 2|=c ,|BF 2|=a ,∠OF 2B =60°,∴a cos 60°=c ,∴c a =1 2 , 即椭圆的离心率e =12.,答案: 1 2 (3)如图,设椭圆的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆于C 点,若直线BF 平分线段AC 于M ,则椭圆的离心率是( ) A . B . C . D . 【解答】解:如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, ∴OM ∥AB ,于是△OF A ∽△AFB ,且==,即=,可得e ==. 故选:C . (4)《九章算术)是我国古代内容极为丰富的数学名著第九章“勾股”,讲述了“勾股定理及一些应用.直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾2 +股2 =弦2 ”.设F 是椭圆= 1(a >b >0)的左焦点,直线y =x 交椭圆于A 、B 两点,若|AF |,|BF |恰好是Rt △ABF 的”勾”“股”, 则此椭圆的离心率为( ) A . B . C . D . 【解答】解:∵|AF |,|BF |恰好是Rt △ABF 的”勾”“股”,∴AF 1⊥BF 1,∴OA =OB =OF 1=c . ∴A (, ),∴ ? , ,? ,e 2 =1﹣ =4﹣2,∴﹣1. 故选:A .

最新椭圆的简单几何性质练习题

课时作业(八) [学业水平层次] 一、选择题 1.(2015·人大附中月考)焦点在x 轴上,短轴长为8,离心率为3 5的椭圆的标准方程是( ) A.x 2100+y 2 36=1 B.x 2100+y 2 64=1 C.x 225+y 2 16=1 D.x 225+y 2 9=1 【解析】 本题考查椭圆的标准方程.由题意知2b =8,得 b =4,所以b 2=a 2-c 2=16,又e =c a =3 5,解得c =3,a =5,又焦点在x 轴上,故椭圆的标准方程为x 225+y 2 16=1,故选C. 【答案】 C 2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( ) A.12 B.13 C.14 D.22 【解析】 由题意知a =2c ,∴e =c a =c 2c =1 2. 【答案】 A 3曲线x 225+y 29=1与x 29-k +y 2 25-k =1(0

A .有相等的焦距,相同的焦点 B .有相等的焦距,不同的焦点 C .有不等的焦距,不同的焦点 D .以上都不对 【解析】 曲线x 225+y 29=1的焦距为2c =8,而曲线x 29-k +y 2 25-k = 1(0<k <9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B. 【答案】 B 4.已知O 是坐标原点,F 是椭圆x 24+y 2 3=1的一个焦点,过F 且与x 轴垂直的直线与椭圆交于M ,N 两点,则cos ∠MON 的值为( ) A.5 13 B .-513 C.21313 D .-21313 【解析】 由题意,a 2=4,b 2=3, 故c = a 2- b 2= 4-3=1. 不妨设M (1,y 0),N (1,-y 0),所以124+y 2 3=1, 解得y 0=±3 2, 所以|MN |=3,|OM |=|ON |=12 +? ?? ??322=13 2. 由余弦定理知 cos ∠MON =|OM |2+|ON |2-|MN |2 2|OM ||ON | =

第5讲 椭圆的性质及应用

第5讲椭圆的性质及应用 一、教学目标 1.掌握椭圆的简单几何性质. 2.理解离心率对椭圆扁平程度的影响. 二、教学重、难点 1.重点:椭圆的几何性质及初步运用. 2.难点:椭圆离心率的概念的理解. 3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.三、教学方法 一学、二记、三应用 四、知识梳理 1 22 2 (1)一类是与坐标系无关的椭圆本身故有的性质:长轴长、短轴长、焦距、离心率等. (2)一类是与坐标系有关的性质:顶点坐标、焦点坐标等. 在解题时要特别注意第二类性质,应根据椭圆方程的形式,首先判断椭圆的焦点在哪条坐标轴上,然后再进行求解. 3、椭圆的几何性质与椭圆的位置、大小和形状的关系 (1)椭圆的焦点决定椭圆的位置. (2)椭圆的范围决定椭圆的大小. (3)椭圆的离心率决定椭圆的形状.离心率越大,椭圆越“扁”;离心率越小,椭圆越“圆”。 (4)对称性是椭圆的重要性质,椭圆的顶点是椭圆与对称轴的交点,是椭圆的上重要的特殊点,在作图时应先确定这些点. 特别注意 (1)椭圆的长轴长为2a,长半轴长为a;椭圆的短轴长为2b,短半短长为b. (2)椭圆中a,b,c的关系是:a2=b2+c2. 问题为什么椭圆的离心率决定椭圆的扁平程度?

五、课前测试 1.已知椭圆116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A .2 B .3 C .5 D .7 2.如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()1,0 B .()2,0 C .()+∞,0 D . ()+∞,1 3.已知椭圆2222 12:1,:1,124168 x y x y C C +=+=则 ( ) A .1C 与2C 顶点相同. B .1 C 与2C 长轴长相同. C .1C 与2C 短轴长相同. D .1C 与2C 焦距相等. 六、典例剖析 题型(一) 椭圆简单的几何性质 例1 求下列椭圆的长轴长和短轴长,焦点坐标和顶点坐标和离心率: (1)224936x y +=; (2)2222 41(0)m x m y m +=>. [题后感悟] 已知椭圆的方程讨论性质时,若不是标准形式的先化成标准形式,再确定焦点的位置,焦点位置不确

椭圆几条重要性质的应用

椭圆几条重要性质的应用 椭圆的性质表述了椭圆的曲线特征,在解题中有重要的作用.如果在解题中能抓住问题的实质,利用椭圆的性质,常常能简化解题过程.下面就椭圆的几条重要性质的应用举例分析. 一﹑变量范围的应用 椭圆方程x 2a 2+y 2 b 2=1(a >b >0)中,|x|≤a,|y|≤b. 例1椭圆x 24 +y 2=1与圆(x -1)2+y 2=r 2(r >0)有公共点,则r 的最大值与最小值分别为( ) A.3,63 B.3,62 C.2,63 D.2,62 解:由????? x 24+y 2=1 ①(x -1)2+y 2=r 2 ② 消去y 得r 2=14(3x 2-8x +8)=34(x -43)2+23, 由于-2≤x ≤2,则当x =-2时,r 2的最大值为9,当x =43时,r 2的最大值为23 , 所以r 2的最大值为3,当x =43时,r 2的最大值为63 ,故选A. 点评:本题涉及最值问题,此类问题一般需要建立目标函数,再求函数的最值.但要注意函数的自变量的范围.上述解法中所涉及的函数的自变量是x ,因此x 的范围是-2≤x ≤2. 二、通径的应用 过焦点垂直于坐标轴的直线交椭圆x 2a 2+y 2 b 2=1(a >b >0)于P 1P 2,则|P 1P 2|=2b 2a , 例2设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆的垂线交椭圆于点P ,若△F 1PF 2为等腰三角形,则椭圆的离心率为_____________. 解析:∵PF 1⊥PF 2,且△F 1PF 2为等腰三角形,∴|F 1F 2|=|PF 2|,则2c =b 2 a , ∴2ac =b 2=a 2-c 2,∴e 2+2e -1=0,解得e =2-1. 点评:本题运用了方程的思想求离心率.同时提醒我们,记住一些常用结论,有助于快速解题,如焦点三角形面积公式、定值结论等.这里用到椭圆的通径(即过焦点且垂直于对称轴的弦). 三、焦半径的应用 椭圆上任一点到焦点的距离为焦半径,当焦点在x 轴上时,设椭圆上任一点P(x 0,y 0),则|PF 1|=a +ex 0,|PF 2|=a -ex 0. 例3椭圆x 29+y 2 4 =1的两个焦点为F 1、F 2,点P 为其上的动点,当已知∠F 1PF 2为钝角,点P 的横坐标的取值范围为____________. 解:由已知,a =3,b =2,∴c =5,e =53 , 设点P 的横坐标为x P ,则由椭圆焦半径公式|PF 1|=3+ 53x P ,

相关文档
最新文档