双曲线提高班讲义
双曲线专题复习讲义及练习学生

双曲线专题复习讲义考点1双曲线的定义及标准方程 题型1:运用双曲线的定义题型1求离心率或离心率的范围 2 2[例3]已知双曲线X y 每 1,(a 0,b 0)的左,右焦a b点分别为F 1,F 2,点P 在双曲线的右支上,且端点,若该椭圆的长轴长为 4,则△ AF 1F 2面积的最大值 为 ___ .4.过点(-6 , 3)且和双曲线x 2-2y 2=2有相同的渐近线 的双曲线方程为 _________________ 。
| PF 1 | 4|PF 2 |,则此双曲线的离心率 e 的最大值为_.【新题导练】双曲线x264 y236=1上一点P 到双曲线右焦点的距离是4,那么点P 到左准线的距离是 题型2与渐近线有关的问题在双曲线的几何性质中,应充分利用双曲线的渐近线方程,简化 解题过程.同时要熟练掌握以下三方面内容: (1)已知双曲线方程,求它的渐近线;(2)求已知渐近线的双曲线的方程; (3)渐近线的b 、f c2 — a2 /c2. ----------斜率与离心率的关系,如k =a —a2—1= . e2—1. 【新题导练】 21. 设P 为双曲线X 2- 1上的一点F 1、F 2是该双曲 12 线的两个焦点,若|PF 1|: |PF 2|=3 : 2,则厶PF 1F 2的面 积为 ( ) A. 6、3 B. 12 C. 12 .3 D. 24 2 2 2. 如图2所示,F 为双曲线C : — — 1的左焦点, 9 16 双曲线C 上的点P 与P 7 i i 1,2,3关于y 轴对称, [例4]若双曲线2X ~2a2莒 1(a 0,b 0)的焦点到渐b 2 近线的距离等于实轴长,则双曲线的离心率为7. 【新题导练】2双曲线— 42y_ 9 1的渐近线方程是A.2 x B. 3C.D.2则 RF P 2F P 3F F 4F F ^F P 6F 的值是() 8.焦点为(0, 6),且与双曲线1有相同的渐近线A . 9 B. 16 C. 18 D. 27 题型2求双曲线的标准方程 2 [例2 ]已知双曲线C 与双曲线— 16 2—=1有公共焦点, 4的双曲线方程是2A .—122y 2421B .—122x24 )2C . 乂242 x12 2 D .— 24 2乂 112双曲线专题练习且过点(3 ...2,2).求双曲线C 的方程. 【新题导练】3.已知双曲线的渐近线方程是 y 2,焦点在坐标轴上 且焦距是10,则此双曲线的方程为 __________________ ; 4•以抛物线y 2 8 -. 3x 的焦点F 为右焦点,且两条渐近线 是x J3y 0的双曲线方程为 _________________________ .考点2双曲线的几何性质一、填空题21 .椭圆工9k= 。
双曲线讲义(学生版)

双曲线专题讲义1.2.等轴双曲线及性质(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫作等轴双曲线,标准方程可写作:x 2-y 2=λ(λ≠0). (2)等轴双曲线⇔离心率e =2⇔两条渐近线y =±x 相互垂直. 3.点P (x 0,y 0)和双曲线x 2a 2-y 2b2=1(a >0,b >0)的关系(1)双曲线内(含焦点部分)⇔x 20a 2-y 20b 2>1;(2)双曲线上⇔x 20a 2-y 20b 2=1;(3)双曲线外(不含焦点部分)⇔x 20a 2-y 20b 2<1.求双曲线离心率、渐近线问题的一般方法(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用b 2=c 2-a 2和e =ca 转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.(2)求渐近线时,利用c 2=a 2+b 2转化为关于a ,b 的方程或不等式.双曲线渐近线的斜率与离心率的关系k =±ba =±c 2-a 2a =±c 2a2-1=±e 2-1. 双曲线定义1. 已知P 是双曲线1366422=-y x 上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________.2. 已知点F 1(0,-13)、F 2(0,13),动点P 到F 1与F 2的距离之差的绝对值为26,则动点P 的轨迹方程为( ) A .y =0 B .y =0(x ≤-13或x ≥13) C .x =0(|y |≥13) D .以上都不对3. 若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________. 参考答案:1. 33 2. C 3. 18 双曲线方程的认识1. (2013·福建)双曲线8kx 2-ky 2=8的一个焦点坐标为(0,3),则k 的值是 ( )A .1B .-1C .653D .-653 2. 若方程15222=---ky k x 表示双曲线,则实数k 的取值范围是( )A .52<<kB .5>kC .2<k 或5>kD .以上答案均不对3. 方程x 2k -1+y 2k -3=1表示焦点在x 轴上的双曲线,则k 的取值范围为________.4. 已知方程:22(1)(3)(1)(3)m x m y m m -+-=--表示焦距为8的双曲线,则m 的值等于( ) A .-30 B .10 C .-6或10 D .-30或3A .2322-=-y xB .()12322±¹-=-x y xC . 2322=-y x面积是9,则a +b 的值等于( )A .4B .5C .6D .73. 已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点.若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为__________.参考答案:1.A 2.B 3. 2 3 双曲线性质离心率1. 设21,F F 分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点.若在双曲线上存在点P .使21PF PF ^,且°=Ð3021F PF ,则双曲线的离心率为___________.2. 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为30°的直线,交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为 ( )A . 6B . 3C .2D .333. 设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点,P 是C 上一点,若a PF PF 6||||21=+,且12PF F D 的最小内角为30°,则C 的离心率为( )A .2B .26C .23D .34. 如图,1F 、2F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF D 为等边三角形,则双曲线的离心率为( )A .4B .7C .332 D .3 5. 过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =uuu r uuu r,则双曲线的离心率是 ( )A B C D 6. 双曲线2214x y k+=的离心率(1,2)e Î,则k 的取值范围是( )A . (10,0)-B . (12,0)-C . (3,0)-.D . (60,12)-- 参考答案:1. 13+ 2-6 BDBCB渐近线1. 双曲线22149x y -=的渐近线方程是A .32y x =±B .23y x =±C .94y x =±D .49y x =±2. 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x3. 已知0a b >>,椭圆1C 的方程为2222=1x y a b +,双曲线2C 的方程为22221y x a b -=,1C 与2C 的离心率之积为2,则2C 的渐近线方程为( ). 0A x ±= .0B y ±= .20C x y ±= .20D x y ±=4. 设21,F F 分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点.若在双曲线右支上存在点P ,满足||||212F F PF =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A .043=±y xB .034=±y xC .053=±y xD .045=±y x5. 1F 、2F 是双曲线12222=-by a x 0(>a ,)0>b 的左、右焦点,过1F 的直线l 与双曲线的左、右两个分支分别交于点A 、B ,若2ABF D 为等边三角形,则该双曲线的渐近线的斜率为( )(A )33±(B )2± (C )15± (D )6± 参考答案: ACBBD直线与双曲线位置关系 1. 若直线2y kx =+与双曲线的一个顶点.(1)求双曲线的方程;(2)经过的双曲线右焦点2F 作倾斜角为30°直线l ,直线l 与双曲线交于不同的B A ,两点,求AB 的长.【答案】(1)16322=-y x ;(2)5316.2. 已知双曲线)0,0(12222>>=-b a by a x 的离心率为2,焦点到渐近线的距离等于3,过右焦点2F 的直线l交双曲线于A 、B 两点,1F 为左焦点.(1) 求双曲线的方程;(2) 若AB F 1D 的面积等于62,求直线l 的方程.【答案】(1) 1322=-y x ;(2) )2(-±=x y .3. 双曲线22221(0,0)x y a b a b-=>>的两个焦点分别为1(2,0)F -,2(2,0)F ,点P 在双曲线上.(1)求双曲线的方程;(2)过(0,2)Q 的直线l 与双曲线交于不同的两点E 、F ,若OEF D 的面积为,O 为坐标原点,求直线l 的方程.【答案】(1)222x y -=;(220y -+=20y +-=. 中点弦1. 直线l 经过11P (,)与双曲线1222=-y x 交于A B 、两点,且P 平分是线段AB ,那么直线l 的方程为( ) A 、210x y --= B 、230x y +-= C 、210x y -+= D 、不存在2. 若双曲线的中心为原点,F (3,0)是双曲线的焦点,过F 的直线l 与双曲线相交于P ,Q 两点,且PQ 的中点为M (-12,-15),则双曲线的方程为( )A .16322=-y xB . 14522=-y xC 13622=-y xD . 15422=-y x3. 已知双曲线191622=-y x 及点)1,2(P ,是否存在过点P 的直线l ,使直线l 被双曲线截得的弦恰好被P 点平分?若存在,求出直线l 的方程;若不存在,请说明理由. 【答案】不存在.4. 已知直线l 交双曲线2212y x -=于A B 、不同两点,若点(1,2)M 是线段AB 的中点,求直线l 的方程及线段AB 的长度【答案】。
(完整word版)双曲线讲义

圆锥曲线第二讲 双曲线一 双曲线的定义平面内到两个定点12,F F 的距离之差的绝对值等于常数2a (小于12F F )的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.两焦点之间的距离叫做双曲线的焦距.注:(1)定义中的限制条件1202a F F <<.当122a F F =时,点的轨迹是分别以12,F F 为端点的两条射线;当122a F F >时,轨迹不存在;当20a =时,点的轨迹是线段12F F 的垂直平分线.(2)定义中的绝对值必不可少.若没有绝对值符号则点的轨迹表示双曲线的一支.例 1 已知1(5,0)F -,2(5,0)F ,动点P 满足122PF PF a -=,当a 为3和5时,P 的轨迹分别是_________.双曲线的一支和一条射线.例2 已知点(,)P x y 的坐标满足下列条件,是判断下列各条件下点P 的轨迹是什么图形:(16=;(26=练习1 已知平面上定点1F ,2F 及动点M ,命题甲:22()MF MF a a -=为常数,命题乙:M 点轨迹是以1F ,2F 为焦点的双曲线,则甲是乙的____条件.必要不充分条件练习2 若平面内一动点(,)P x y 到两定点1(1,0)F -,2(1,0)F 的距离之差的绝对值为定值(0)a a ≥,讨论点P 的轨迹方程.二 双曲线的标准方程(1)设(,)M x y 是双曲线上任意一点,焦点1F ,2F 的坐标分别为(,0)c -,(,0)c ,M 与1F 和2F 的距离之差的绝对值等于常数2(0)a c a >>,则双曲线的标准方程为 :22221(0,0)x y a b a b-=>>其中:①222c a b =+; ②a c b c <<且,a 和b 大小关系不明确(2)设(,)M x y 是双曲线上任意一点,焦点1F ,2F 的坐标分别为(0,)c ,(0,)c -,M 与1F 和2F 的距离之差的绝对值等于常数2(0)a c a >>,则双曲线的标准方程为 :22221(0,0)y x a b a b-=>>其中:①222c a b =+; ②a c b c <<且,a 和b 大小关系不明确例1 若方程22123x y m m +=--表示双曲线,则实数m 的取值范围为______.(3,2)(3,)-+∞U例2 若1k >,则关于,x y 的方程222(1)1k x y k -+=-所表示的曲线是____.焦点在y 轴上的双曲线.例3 方程221cos 2010sin 2010x y ︒︒-=所表示的曲线为_______.焦点在y 轴上的双曲线.练习1 若方程2221523x y m m m +=---表示焦点在y 轴上的双曲线,则实数m 的取值范围为_____.(5,)+∞练习2 已知双曲线2288kx ky -=的一个焦点为(0,3),则k =_____.-1三 双曲线的定义及其标准方程的应用例1 若12,F F 是双曲线221916x y -=的两个焦点,若双曲线上一点M 到它的一个焦点的距离等于16,则点M 到另一个焦点的距离为____(4或28),若P 是双曲线左支上的点,且1232PF PF =g ,则12F PF V 的面积为_____.16例2 在ABC V 中,,,a b c 为其三边边长,点B ,C 的坐标分别为(1,0)B -,(1,0)C ,则满足1sin sin sin 2C B A -=的顶点A 的轨迹方程为______.224141()32x y x -=>例 3 已知(3,0)M -,(3,0)N ,(1,0)B ,动圆C 与直线MN 切于点B ,过,M N 与圆C 相切的两直线相交于P ,则点P 的轨迹方程为________.221(1)8y x x -=>例4 已知F 是双曲线221412x y -=的左焦点,点(1,4)A ,P 是双曲线右支上的动点,则PF PA +的最小值为_____.9练习1在平面直角坐标系xoy 中,已知ABC V 的顶点(6,0),(6,0)A C -,若顶点B在双曲线2212511x y -=的左支上,则sin sin sin A C B -=______.56练习2若点P 是以(A B 为焦点,实轴长为2210x y +=的一个交点,则PB PA +的值为______.例3 已知2225:(2)4A x y ++=e ,221:(2)4B x y -+=e ,动圆P 与A e ,B e 都外切,则动圆P 圆心的轨迹方程为_____.221(0)3y x x -=>练习4 已知双曲线的方程2214y x -=,点A 的坐标为(0),B 是圆2x +2(1y =上的点,点C 为其圆心,点M 在双曲线的右支上,则MA MB +的最小值为1四 双曲线的简单几何性质注:(1)标准方程中参数,,a b c ,其中c 最大,,a b 大小关系不确定.(2)我们把ce a=称为双曲线的离心率且1e >.22221x y a b -=的渐近线方程为b y x a=±.(3)如果12,F F 是双曲线的两个焦点,P 是双曲线上的任意一点,则121cos 1F PF -≤∠<.(求离心率的范围)(4)122PF PF c +≥,122PF PF c -<.(求离心率范围)(5)等轴双曲线:虚轴长和实轴长相等的双曲线.等轴双曲线的离心率e =(6)共轭双曲线:两个实轴和虚轴互为对调的双曲线称为共轭双曲线.三 双曲线的定义练习(5.3)已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=,与222222:1sin sin tan y x C θθθ-=的()D .A 实轴长相等 .B 虚轴长相等 .C 焦距相等 .D 离心率相等 四 双曲线标准方程的求解(先定位后定量)例1(调研)设双曲线与椭圆2212736x y +=有共同的焦点,且与椭圆相交,一个交点的坐标为4),则此双曲线的标准方程是______.22145y x -=例2 (调研)已知双曲线的渐近线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的标准方程为________.22131********y x -= 练习1(简单)设椭圆1C 的离心率为513,焦点在x 轴上且长轴长为26.若曲线2C 上的点到椭圆的两个焦点的距离之差的绝对值等于8,则曲线2C 的标准方程为_______.221169x y -= 例2(5.3)已知双曲线:C 22221x y a b -=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为_______.221205x y -= 五 双曲的简单几何性质双曲线的几何性质的实质是围绕双曲线中的“六点”(两个焦点,两个定点,两个虚轴的端点),“四线”(两条对称轴,两条渐近线),“两形”(中心,焦点以及虚轴端点构成的三角形,双曲线是一点和两个焦点构成的三角形)研究它们之间的相互关系.例 1(简单)设双曲线22221x y a b-=,的虚轴长为2,焦距为近线的方程为_______.y x =例2(练透)已知双曲线22221x y a b-=的离心率为2,则双曲线的渐近线方程为_____.12y x =±.练习1(调研)设12,F F 是双曲线22124y x -=的两个焦点,P 是双曲线上的一点,1234PF PF =,则12PF F V 的面积等于_____.24例2(简单)若直线1y kx =+与双曲线221916y x -=的一条渐近线垂直,则实数k=____.43±六 双曲线的离心率 离心率的取值问题例1(练透)12,F F 是双曲线:C 22221x y a b-=的左右焦点,过1F 的直线l 与C 的左右两支分别交于,A B 两点,若22::3:4:5AB BF AF =,则双曲线的离心率为例2(练透)过双曲线2222:1(0,0)x y C a b a b-=>>的一个焦点F 作双曲线的一条渐近线的垂线,若垂足恰好在线段OF 的垂直平分线,则双曲线的离心率为____.练习1(练透)设12,F F 是双曲线2222:1(0,0)A x y C a b a b-=>>的两个焦点,P 是C 上的一点,若126PF PF a +=,且12PF F V 的最小内角为30︒,则C 的离心率为练习2(练透) 设12,F F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,A 为双曲线的左顶点,以12,F F 为直径的圆交双曲线的某条渐近线于,M N 两点,且满足120MAN ︒∠=,则该双曲线的离心率为________.3练习3(练透)设12,F F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,若双曲线右支上存在一点P ,使得22()0OP OF F P +=u u u r u u u u r u u u u rg ,O为坐标原点,且12PF =u u u r u u u r,则该双曲线的离心率为1离心率的范围问题双曲线的离心率范围问题主要考查两点:(1)利用三角形的三边关系得到关于,a c 的齐次不等式,解不等式得到离心率范围.(2)若果12,F F 是双曲线的两个焦点,P 是双曲线上的任意一点,则121cos 1F PF -≤∠<.通过余弦定理得到关于,a c 的齐次不等式,解不等式得到离心率范围.例1 (调研)已知双曲线2222:1(0,0)A x y C a b a b-=>>的左右焦点为12,F F ,点P在双曲线的右支上,且124PF PF =,则此双曲线的离心率e 的最大值为_____.53. 例2(调研)已知(1,2),(1,2)A B -,动点P 满足AP BP ⊥u u u r u u u r ,若双曲线22221x y a b-=的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值范围是____.12e <<练习1(5.3)已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,P 为双曲线右支上任意一点,若212PF PF 的最小值为8a ,则双曲线的离心率的取值范围是_____.(1,3]练习2(练透)点P 是双曲线22221(0,0)x y a b a b-=>>左支上的一点,其右焦点为(,0)F c ,若M 为线段FP 的中点,且M 到坐标原点的距离为8c,则双曲线的离心率取值范围是_______.4(1,]3练习3(练透)已知点F 是双曲线22221(0,0)x y a b a b-=>>的左焦点,点E 是右顶点,过F 且垂直于x 轴的直线与双曲线交于,A B 两点,若ABE V 是锐角三角形,则双曲线的离心率取值范围为______.(1,2) 七 双曲线的综合问题例1 (练透)设双曲线22143x y -=的左右焦点分别为12,F F ,过1F 的直线l 交双曲线左支于,A B 两点,则22BF AF +的最小值为____.11。
双曲线讲义

双曲线及其标准方程(一)学习目标 1.掌握双曲线的定义;2.掌握双曲线的标准方程.1.定义:平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹。
12,F F 叫做双曲线的 ,两焦点间的距离12F F 叫做双曲线的 .反思:设常数为2a ,2a <12F F ?2a =12F F 时,轨迹是 ;2a >12F F 时,轨迹 . 试试:点(1,0)A ,(1,0)B -,若1AC BC -=,则点C 的轨迹是 .2.标准方程:22222221,(0,0,)x y a b c a b a b-=>>=+(焦点在x 轴)其焦点为 1(,0)F c -,2(,0)F c .例1已知双曲线的两焦点为1(5,0)F -,2(5,0)F ,双曲线上任意点到12,F F 的距离的差的绝对值等于6,求双曲线的标准方程.变式。
已知双曲线221169x y -=的左支上一点P 到左焦点的距离为10,则点P 到右焦点的距离为 .例2 :已知双曲线的焦点在坐标轴上,且双曲线上两点21,P P 的坐标分别为()3,42-,9,54⎛⎫⎪⎝⎭求双曲线的标准方程.变式:已知双曲线的焦点在坐标轴上,且双曲线上两点21,P P 的坐标分别为)7,26(,)72,3(---,求双曲线的标准方程.例3 方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,求角α所在的象限.作业1.动点P 到点(1,0)M 及点(3,0)N 的距离之差为2,则点P 的轨迹是( ). A. 双曲线 B. 双曲线的一支 C. 两条射线 D. 一条射线2.双曲线2255x ky +=的一个焦点是(6,0),那么实数k 的值为( ). A .25- B .25 C .1- D .13.双曲线的两焦点分别为12(3,0),(3,0)F F -,若2a =,则b =( ). A. 5 B. 13 C. 5 D. 134.如果22121x y k k+=---表示焦点在y 轴上的双曲线,则k 的取值范围( )A .()1,+∞B .()2,+∞C .()2,1-D .()(),22,-∞-⋃+∞5.已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=. 则动点P 的轨迹方程 .6.与椭圆2244x y +=的公共焦点,且过点)1,2(M 的双曲线的标准方程为___ .7.过双曲线3422y x -=1左焦点1F 的直线交双曲线的左支于N M ,两点,2F 为其右焦点,则MN NF MF -+22的值为____________.8.实半轴长等于52,并且经过)2,5(-B 的双曲线的标准方程是____________.双曲线方程2学习目标 :1..掌握双曲线的焦点三角形;2.掌握双曲线的标准方程的求法.(1)直接法:(2)定义法(3)待定系数法例1 双曲线221169x y -=上有一点P ,12,F F 是焦点,且 6021=∠PF F ,则21F PF ∆的面积为例2 已知直线x y l =:1与直线x y l -=:2,动点),(y x P 到21,l l 的距离之积等于1,求点P 的轨迹方程例3:求与两个定圆02410:221=-++x y x C 和圆02410:222=+-+x y x C 都外切或都内切的动圆的圆心的轨迹方程作业1.双曲线x y 222-=8的实轴长是( )(A )2 (B)22 (C) 4 (D) 422.双曲线191622=-y x 上一点P 到点(5,0)的距离为15,则点P 到点(-5,0)的距离为( ) A.7 B.23 C.7或23 D.5或253.已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则 21PF PF ⋅= ( )(A)2 (B)4 (C) 6 (D) 84.53<<m 是方程165222=--+-m m y m x 表示的图形为双曲线的________条件. 5.双曲线08822=+-kx ky 的一个焦点为(0,3),则k =________.6.已知双曲线13622=-y x 的焦点为12,F F ,点M 在双曲线上且x MF ⊥1轴,则1F 到M F 2的距离_ __.7.12,F F 为双曲线1422-=-y x 的两个焦点,点P 在双曲线上,且 9021=∠PF F ,则21F PF ∆的面积_ _.8.与双曲线141622=-y x 有公共焦点,且过点(32,2)的双曲线的标准方程是________.双曲线的简单几何性质(1)学习目标 .理解并掌握双曲线的几何性质.1.图形2.范围:x : y :3.对称性:双曲线关于 轴、 轴及 都对称.4.顶点:( ),( ).实轴,其长为 ;虚轴,其长为 .5.离心率:1c e a =>.6.渐近线:双曲线22221x y a b-=的渐近线方程为:0x y a b ±=.7.实轴与虚轴等长的双曲线叫 双曲线.例1求双曲线2214925x y -=的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程.例2求双曲线的标准方程: ⑴实轴的长是10,虚轴长是8,焦点在x 轴上;⑵离心率2e =,经过点(5,3)M -;⑶渐近线方程为23y x =±,经过点9(,1)2M -.例3已知12,F F 是双曲线22221x y a b-=()0,0>>b a 的两个焦点,PQ 是经过1F 且垂直于x 轴的双曲线的弦,如果 902=∠Q PF ,求双曲线的离心率作业1. 中心在坐标原点,离心率为35的双曲线的焦点在y 轴上,则它的渐近线方程为( ) A. x y 45±= B. x y 54±= C. x y 34±= D. x y 43±=2. 17922=-y x 的焦点到准线的距离是( )A. 47 B. 425 C. 47或425 D. 423或493. 与双曲线116922=-y x 有共同的渐近线,且准线方程为532-=y 的双曲线的标准方程为A.1366422=-x y B. 1366422=-y x C. 1643622=-x y D. 1)996()9128(2222=-x y 4. 双曲线的两条准线把两焦点所连线段三等分,则它的离心率为( ) A.2 B.3 C.26D. 32 5. 双曲线4222=-my mx 一条准线是1=y ,则m 为( )A.23 B. 23- C. 32 D.32-双曲线的简单几何性质(2)学习目标 1.掌握定义;2.灵活掌握标准方程.3.直线与双曲线的位置关系4.点差法5.弦长公式典型例题例1 如果直线1-=kx y 与双曲线422=-y x (1)没有公共点,求k 的取值范围. (2)只有一个公共点,求k 的取值范围. (3)与右支有两个公共点,求k 的取值范围. (4)两支各有一个公共点,求k 的取值范围.变式:如果直线1-=kx y 与双曲线422=-y x (1)有两个公共点,求k 的取值范围.(2)与左支有有两个公共点,求k 的取值范围.例2过点P (8,1)的直线与双曲线4422=-y x 相交于B A ,两点,且点P 是线段AB 的中点,求直线AB 的方程变式:已知双曲线1322=-y x ,过点P (2,1)点作一直线交双曲线于B A ,两点,若P 为AB 的中点.(1)求直线AB 的方程 (2)求弦AB 的长例3设双曲线的顶点是椭圆14322=+y x 的焦点,该双曲线又与直线06315=+-y x 交于B A ,两点,且OB OA ⊥(O 为坐标原点)(1)求此双曲线的方程;(2)求AB 的长变式:已知直线1+=ax y 与双曲线1322=-y x 交于B A ,两点,若以AB 为直径的圆过坐标原点,求实数a 的值。
高中数学讲义:解析几何专题双曲线(解析版)

圆锥曲线第2讲 双曲线【知识要点】 一、双曲线的概念 1. 双曲线的第一概念:平面内到两个定点、的距离之差的绝对值等于定长()的点的轨迹叫双曲线,这两个定点叫做双曲线的核心,两个核心之间的距离叫做焦距。
注1:在双曲线的概念中,必需强调:到两个定点的距离之差的绝对值(记作),不但要小于这两个定点之间的距离(记作),而且还要大于零,不然点的轨迹就不是一个双曲线。
具体情形如下:(ⅰ)当时,点的轨迹是线段的垂直平分线; (ⅱ)当时,点的轨迹是两条射线; (ⅲ)当时,点的轨迹不存在; (ⅳ)当时,点的轨迹是双曲线。
专门地,假设去掉概念中的“绝对值”,那么点的轨迹仅表示双曲线的一支。
注2:假设用M 表示动点,那么双曲线轨迹的几何描述法为(,),即。
2. 双曲线的第二概念:平面内到某必然点的距离与它到定直线的距离之比等于常数()的点的轨迹叫做双曲线。
二、双曲线的标准方程 1. 双曲线的标准方程(1)核心在轴、中心在座标原点的双曲线的标准方程是(,); (2)核心在轴、中心在座标原点的双曲线的标准方程是(,).注:假设题目已给出双曲线的标准方程,那其核心究竟是在轴仍是在轴,要紧看实半轴跟谁走。
假设实半轴跟走,那么双曲线的核心在轴;假设实半轴跟走,那么双曲线的核心在轴。
2. 等轴双曲线当双曲线的实轴与虚轴等长时(即),咱们把如此的双曲线称为等轴双曲线,其标准方程为()注:假设题目已明确指出所要求的双曲线为等轴双曲线,那么咱们可设该等轴双曲线的方程为(),再结合其它条件,求出的值,即可求出该等轴双曲线的方程。
进一步讲,假设求得的,那么该等轴双曲线的核心在轴、中心在座标原点;假设求得的,那么该等轴双曲线的核心在轴、中心在座标原点。
三、双曲线的性质以标准方程(,)为例,其他形式的方程可用一样的方式取得相关结论。
(1)范围:,即或;1F 2F a 22120F F a <<a 221F F c 202=a 21F F c a 22=c a 22>c a 220<<a MF MF 221=-ca 220<<c F F 221=2121F F MF MF <-e 1>e x 12222=-b y a x 0>a 0>b y 12222=-b x a y 0>a 0>b x yx x y yb a 22=λ=-22y x 0≠λλ=-22y x 0≠λλ0>λx 0<λy 12222=-b y a x 0>a 0>b ax ≥a x ≥a x -≤(2)对称性:关于轴、轴轴对称,关于坐标原点中心对称;(3)极点:左、右极点别离为、; (4)核心:左、右核心别离为、; (5)实轴长为,虚轴长为,焦距为;(6)实半轴、虚半轴、半焦距之间的关系为;(7)准线:; (8)焦准距:;(9)离心率:且. 越小,双曲线的开口越小;越大,双曲线的开口越大;(10)渐近线:; (11)焦半径:假设为双曲线右支上一点,那么由双曲线的第二概念,有,;(12)通径长:.注1:双曲线(,)的准线方程为,渐近线方程为。
高中数学双曲线讲义及练习

双曲线的定义与性质要求层次重难点双曲线的定义及标准方程 A由定义和性质求双曲线的方程;由双曲线的标准方程探求几何性质双曲线的简单几何性质A(一) 知识内容1.双曲线的定义:平面内与两个定点1F ,2F 的距离的差的绝对值等于常数(小于12||F F 且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.两焦点的距离叫做双曲线的焦距. 2.双曲线的标准方程:①22221(00)x y a b a b -=>>,,焦点坐标为(0)c -,,(0)c ,,222c a b =+; ②22221(00)y x a b a b-=>>,,焦点坐标为1(0)F c -,,2(0)F c ,,222c a b =+; 3.双曲线的几何性质(用标准方程22221(00)x y a b a b-=>>,来研究): ⑴范围:x a ≥或x a -≤;如图.⑵对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,这个对称中心又叫做双曲线的中心.⑶顶点:双曲线与它的对称轴的两个交点叫做双曲线的顶点. ⑷实轴与虚轴:两个顶点间的线段叫做双曲线的实轴.如图中,1A ,2A 为顶点,线段12A A 为双曲线的实轴.在y 轴上作点1(0)B b -,,2(0)B b ,,线段12B B 叫做双曲线的虚轴. ⑸渐近线:直线by x a =±;⑹离心率:ce a=叫做双曲线的离心率,1e >.双曲线的离心率越大,它的开口就越开阔.例题精讲高考要求知识框架双曲线<教师备案>1.渐近线的理解:过双曲线上的一点()M x y ,(考虑对称性,不妨设M是第一象限内的点)作平行于y 轴的直线,设它与直线by x a =相交于点P ,(见上页图)则||b PM x a =(b xa ==当x a >时,x 随着x 的增大而增大,从而||PM 越来越接近于0.这说明,当点M 以双曲线C 的顶点2A 开始在第一象限沿此双曲线移动并越来越远离点2A 时,点M 和直线b y x a =就越来越接近,而且bx a的下方,且与直线越来越接近,不会相交. 其它象限内的情况与此类似. 2.双曲线的开口大小:渐近线的斜率的绝对值b a ==e 越大,ba也越大,双曲线的形状就从扁狭逐渐变得开阔.3.画双曲线的草图时,一般都是先画出以2,2a b 为边长的矩形,它的对角线恰为双曲线的渐近线,且双曲线的顶点在此矩形上,故可由此作出双曲线的较好的草图.4.求双曲线的渐近线方程有一个比较容易的办法是直接令右边的常数为零,方程所表示的两条直线就是所求的渐近线方程.对于双曲线22221y x a b-=,它的渐近线方程即为22220y x a b -=,即直线ay x b=±.(二)典例分析【例1】 ⑴动点P 与点1(05)F -,、2(05)F ,满足216PF PF -=,则点P 的轨迹方程为( ) A .221916x y -= B .221169x y -+=C .221(3)169x y y -+=≥D .221(3)169x y y -+=-≤⑵P 是双曲线2216436x y -=上一点,1F 、2F 是双曲线的两个焦点,且117PF =,求2PF 的值.【变式】 在ABC △中,BC 固定,顶点A 移动.设||2BC =,当三个角A B C ,,满足条件1|sin sin |sin 2C B A -=时,求顶点的轨迹方程.【例2】 如图,已知双曲线的左、右焦点分别为12F F ,,过1F 的直线与左支交于A B ,两点,若5AB =且实轴长为8,则2ABF △的周长为 .xyOA BF 1F 2【例3】 根据下列条件,求双曲线的标准方程.⑴6c =(52)-,,焦点在x 轴上.⑵与双曲线221164x y -=有相同焦点,且经过点(322).【例4】 已知下列双曲线方程,求它们的焦点坐标、顶点坐标、渐近线方程,以及焦距、实轴和虚轴长,并在同一坐标系中分别画出这两个双曲线的图象. ⑴223412x y -= ⑵224312y x -=【例5】 求顶点间的距离为6,渐近线方程为32y x =±的双曲线的标准方程.【例6】 双曲线221916x y -=的两焦点为12F F ,,若双曲线上一点P 满足12PF PF ⊥,则点P 到x 轴的距离为 .已知双曲线的中心在原点,两个焦点12F F ,分别为0)和(0),点P 在双曲线上且12PF PF ⊥,且12PF F △的面积为1,则双曲线的方程为_________.【变式】 ⑴椭圆22221(0)x y a b a b +=>>,则双曲线22221x y a b-=的离心率为_______.⑵设双曲线与椭圆2212736x y +=有共同的焦点,且与椭圆相交,一个交点的纵坐标为4,求双曲线的方程.【变式】 已知双曲线22221x y a b-=(00)a b >>,的实轴长为8,点P 3)是双曲线上的一点, ⑴求此双曲线的方程;⑵写出双曲线的离心率、渐近线方程;⑶与此双曲线有共同的焦点,且离心率为2的椭圆的标准方程.【变式】 中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点1F 、2F ,且12F F =椭圆的长轴长与双曲线的实轴长之差为8,离心率之比为3:7,求这两条曲线的方程.【例7】 ⑴双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为_______;⑵求与双曲线221169x y -=共渐近线且过点3)A -的双曲线方程.【变式】 设12F F ,为双曲线22221(00)sin 2x y b b θθ-=<>π≤,的两个焦点,过1F 的直线交双曲线的同支于A B ,两点,如果||AB m =,则2AF B ∆的周长的最大值是( ). A .4m - B .4 C .4m + D .42m +【变式】 椭圆22214x y a +=与双曲线2212x y a -=的焦点相同,则a = .【例8】 双曲线2214x y k+=的离心率(1,2)e ∈,则k 的取值范围是( )A .(,0)-∞B .(3,0)-C .(12,0)-D .(60,12)--【变式】 设1F 、2F 为双曲线2214x y -=的两个焦点,点P 在双曲线上满足1290F PF ∠=︒,则12F PF △的面积是( )A.1 2 C.2【变式】 (2009海淀一模)已知实数x y ,满足()2222100x y a b a b-=>>,,则下列不等式中恒成立的是( )A .b y x a <B .2b y x a >-C .b y x a >-D .2by x a<【变式】 (2009湖南13)过双曲线2222:1(00)x y C a b a b-=>>,的一个焦点作圆222x y a +=的两条切线,切点分别为A ,B .若120AOB ∠=︒(O 是坐标原点),则双曲线C 的离心率为 .【例9】 (2009辽宁16)已知F 是双曲线221412-=x y 的左焦点,()14A ,,P 是双曲线右支上的动点,则+PF PA 的最小值为 .【例10】 (2002年北京卷文)已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程是( )A .x y =B .y =C .x y =D .y x =【变式】 (2007年浙江省宁波二中高二期中联考数学选修2-1测试)P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆1C :22(5)4x y ++=和2C :22(5)1x y -+=上的点,则PM PN -的最大值为 .【例11】 已知双曲线C :22221x y a b-=(00)a b >>,C 的两个焦点为12F F ,,直线l 过2F ,且l 与线段12F F 的垂直平分线交点为P ,线段2PF 与双曲线交点为Q ,12tan F F Q ∠=,2:2:1PQ QF =,求双曲线的方程.【变式】 (2008重庆8)已知双曲线22221x y a b-=(00a b >>,)的一条渐近线为y kx =()>0k ,离心率e =,则双曲线方程为( ) A .222214x y a a-=B .222215x y a a -=C .222214x y b b -=D .222215x y b b-=【变式】 (2008四川延7)若点(20)P ,到双曲线22221x y a b-= )AB C . D .【变式】 (2008山东10)设椭圆1C 的离心率为513,焦点在x 轴上且长轴长为26.若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )A .2222143x y -=B .22221135x y -=C .2222134x y -=D .222211312x y -=【例12】 ⑴(2008四川11)已知双曲线C :221916x y -=的左、右焦点分别为1F 、2F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆ 的面积等于( )A .24B .36C .48D .96 ⑵(2009东城一模11)如图,已知ABCDEF 为正六边形,若以C ,F 为焦点的双曲线恰好经过A ,B ,D ,E 四点,则该双曲线的离心率为______.F ED CBA【变式】 (2008福建11)双曲线22221x y a b-=()00a b >>,的两个焦点为1F 、2F ,若P 为其上一点,且122PF PF =,则双曲线离心率的取值范围为( )A .()13,B .(]13,C .()3+∞,D .[)3+∞,【变式】 如图,OA 是双曲线的实半轴,OB 是虚半轴,F 为焦点,且30BAO ∠=︒,ABF S ∆=1(62-,则设双曲线方程是 .【例13】 (2009华师大附中高三测试8)已知点1F 、2F 分别是双曲线22221x y a b-=的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若2ABF ∆为锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,)+∞B .(1,C .(1,2)D .(1,1+【变式】 (2009丰台二模12)已知点(2,3)P -是双曲线22221(0,0)x y a b a b-=>>上一点,双曲线两个焦点间的距离等于4,则该双曲线方程是 .【例14】 (2008海南宁夏14)双曲线221916x y -=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则AFB ∆的面积为________.【变式】 (2008陕西9)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )AB C D【例15】 ⑴(2009四川理)已知双曲线2221(0)2x y b b -=>的左右焦点分别为1F ,2F ,其一条渐近线方程为y x =,点)0Py 在该双曲线上,则12PF PF ⋅=( )A .12-B .2-C .0D .4⑵P 是双曲线22221(00)x y a b a b-=>>,左支上的一点,12F F ,为其左、右焦点,且焦距为2c ,则12PF F △的内切圆圆心的横坐标为 .【变式】 已知双曲线22221(00)x y a b a b-=>>,的左,右焦点分别为12F F ,,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 .【例16】 (2009山东理)设双曲线22221x y a b-=的一条渐近线与抛物线21y x =+只有一个公共点,则双曲线的离心率为( )A .54B .5C D【变式】 (2009浙江理)过双曲线22221(00)x y a b a b-=>>,的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为B ,C .若12AB BC =,则双曲线的离心率是( )A B C D【变式】 (2009辽宁理)已知F 是双曲线221412-=x y 的左焦点,()14A ,,P 是双曲线右支上的动点,则+PF PA 的最小值为 .【例17】 (2008重庆理21)如图,()20M -,和()20N ,是平面上的两点,动点P 满足: 6.PM PN += ⑴求点P 的轨迹方程;⑵若2·1cos PM PN MPN=-∠,求点P 的坐标.【例18】 (2009重庆20)已知双曲线22214x y a -=(0)a >的离心率e⑴求该双曲线的方程;⑵如图,点A的坐标为()0,B是圆22(1x y +-=上的点,点M 在双曲线右支上,求MA MB +的最小值,并求此时M 点的坐标.【例19】 已知点P 在双曲线222x y a -=(0a >)的右支上(P 与2A 不重合),12A A ,分别为双曲线的左、右顶点,且21122A PA PA A ∠=∠,则12PA A ∠=( ) A .30︒ B .27.5︒ C .25︒ D .22.5︒【变式】 已知点A,(B ,点P满足PA PB -=,求点P 满足的轨迹方程.【例20】 (2009上海理)已知双曲线22:12x Cy -=,设过点()0A -的直线l 的方向向量()1e k =, .⑴当直线l 与双曲线C 的一条渐近线m 平行时,求直线l 的方程及l 与m 的距离; ⑵证明:当k时,在双曲线C 的右支上不存在点Q ,使之到直线l.【例21】 (2009陕西理)已知双曲线C 的方程为()2222100y x a b a b-=>>,,离心率e ,. ⑴求双曲线C 的方程;⑵如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,若AP PB λ=,123λ⎡⎤∈⎢⎥⎣⎦,,求AOB ∆面积的取值范围.【例22】 到两定点1(30)F -,.2(30)F ,的距离之差的绝对值等于6的点M 的轨迹( )A .椭圆B .线段C .双曲线D .两条射线【例23】 (2009安徽6)的是( ) A .22124x y -=B .22142x y -=C .22146x y -=D .221410x y -=【例24】 已知方程22111x y k k-=+-表示双曲线,则k 的范围为( )A .11k -<<B .0k >C .0k ≥D .1k >或1k <-【例25】 双曲线22149y x -=的渐近线方程是( )A . 32y x =±B . 23y x =±C . 94y x =±D . 49y x =±【例26】 已知双曲线221y x m-=的离心率2e =,则m = .【例27】 若双曲线的实轴长为2,焦距为6,则该双曲线的离心率为 ( )A .13B . 23C . 32 D . 3【例28】 若R k ∈,则“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件.B .必要不充分条件.C .充要条件D .既不充分也不必要条件【例29】 离2244x y -=有公共焦点的椭圆的标准方程为________.【例30】 双曲线虚轴的一个端点为M ,两个焦点为12F F ,,12120F MF ∠=︒,则双曲线的离心率为_____.【例31】 一个焦点为(130)-,,且离心率为135的双曲线的标准方程为_________,顶点坐标为_________,虚轴长为_________,渐近线方程为__________.【例32】 经过定点(32),,实轴长为2,且焦点在x 轴上的双曲线的标准方程为 ,焦点坐标为__________,渐近线方程为_________.【例33】 双曲线的焦点在y 轴上,虚轴长为12,离心率为54,则双曲线的方程为_____________.【例34】 已知双曲线22221x y a b-=的离心率e =,过点(0)(0)A a B b -,,,,那么ab = .【例35】 讨论221259x y k k+=--表示何种圆锥曲线,它们有何共同特征.【例36】 已知双曲线与椭圆221925x y +=共焦点,它们的离心率之和为145,求双曲线方程.【例37】 若双曲线的渐近线方程为3y x =±,它的一个焦点是,则双曲线的方程是 ______.【例38】 (2008海南宁夏2)双曲线221102x y -=的焦距为( )A .B .C .D .【例39】 若双曲线()2222103x y a a -=>的离心率为2,则a 等于( )A .2BC .32D .1【例40】 两个正数a 、b 的等差中项是5,等比中项是4.若a b >,则双曲线221x y a b-=的离心率e 等于 .【例41】 双曲线22221(00)x y a b a b-=>>,b 等于( )A .1 BC .2D .【例42】 双曲线的虚轴长为4,离心率e ,1F 、2F 是它的左、右焦点,若过1F 的直线与双曲线的左支交于A 、B 两点,且AB 是2AF 与2BF 的等差中项,则AB =________【例43】 设12F F ,分别是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=°且12||3||AF AF =,则双曲线的离心率等于( )A B C D【例44】 椭圆22221(0)x y a b a b +=>>,则双曲线22221x y a b-=的离心率为 .【例45】 设P 是双曲线22219x y a -=上一点,双曲线的一条渐近线方程为320x y -=,1F 、2F 分别是双曲线的左、右焦点,若1||3PF =,则2||PF =( ) A .1或5B . 6C .7D .9【例46】 (2009安徽理))A .22124x y -=B .22142x y -=C .22146x y -=D .221410x y -=【例47】 双曲线C 的左、右焦点12F F ,与椭圆2214924x y +=的焦点相同,且离心率互为倒数,则双曲线C的方程是______________;它的渐近线的方程是__________.【例48】 (2009海南宁夏理)双曲线221412x y -=的焦点到渐近线的距离为( )A .B .2CD .1【例49】 (2008全国II9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .)2B .C .()25,D .(2【例50】 (2009四川8)已知双曲线2221(0)2x y b b -=>的左、右焦点分别为1F 、2F ,其一条渐近线方程为y x =,点)0Py 在该双曲线上,则12PF PF ⋅=( )A .12-B .2-C .0D .4【例51】 (2008全国II11)设ABC ∆是等腰三角形,120ABC ∠=︒,则以A ,B 为焦点且过点C 的双曲线的离心率为( )A B C .1+ D .1【例52】 (2009湖南卷理)已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60︒,则双曲线C 的离心率为_________.【例53】 已知椭圆的中心在原点,焦点在坐标轴上,焦距为且其实轴比椭圆的长轴小8,两曲线的离心率之比为37∶,求此椭圆、双曲线的方程.【例54】 已知圆1M :22(4)25x y ++=,圆2M :22(4)1x y -+=,一动圆与这两个圆都外切.求动圆圆心P 的轨迹方程;【例55】 已知(70)(70)(212)A B C --,,,,,,椭圆过A ,B 两点且以C 为其一个焦点,求椭圆另一焦点的轨迹.【例56】 以双曲线两焦点为直径端点的圆与双曲线的四个交点连同双曲线的焦点恰好构成一个正六边形,则该双曲线的离心率为 .【例57】 已知动点P 与双曲线221x y -=的焦点12F F ,的距离之和为定值,且12cos F PF ∠的最小值为13-.求动点P 的轨迹方程.。
高二数学双曲线讲义
高二 年级 数学 科辅导讲义(第 讲)学生姓名: 授课教师: 授课时间: 11.23一、知识点讲解(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。
||221F F a =表示两条射线;||221F F a >没有轨迹;(2)双曲线的标准方程、图象及几何性质:渐近线通 径(3)双曲线的渐近线:①求双曲线12222=-b y a x 的渐近线,可令其右边的1为0,即得02222=-b y a x ,因式分解得到0x y a b±=。
②与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x ;(4)等轴双曲线为222t y x =-,其离心率为2(4)常用结论:(1)双曲线)0,0(12222>>=-b a b y a x 的两个焦点为21,F F ,过1F 的直线交双曲线的同一支于B A ,两点,则2ABF ∆的周长=(2)设双曲线)0,0(12222>>=-b a by a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线交双曲线于Q P ,两点,则Q P ,的坐标分别是 =||PQ二、例题讲解。
例1、如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a by a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为( )(A )3 (B )5 (C )25(D )31+ 例2、设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( )A .63B .12 C.123 D .24例3、已知中心在原点,顶点A 1、A 2在x 轴上,离心率e=321的双曲线过点P(6,6)(1)求双曲线方程(2)动直线l 经过△A 1PA 2的重心G ,与双曲线交于不同的两点M 、N ,问 是否存在直线l,使G 平分线段MN ,证明你的结论 同步练习XYOF 1F 2P 2r1. 如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( ) (A)364 (B)362 (C)62 (D)322. 已知双曲线C ∶22221(x y a a b-=>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是(A )a(B)b(C)ab(D)22b a +3. 以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A 221090x y x +-+= B .2210160x y x +-+= C .2210160x y x +++= D .221090x y x +++= 4. 以双曲线222x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( )A.22430x y x +--= B.22430x y x +-+= C.22450x y x ++-=D.22450x y x +++=5. 若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( )A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)6. 若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2那么则双曲线的离心率是( )(A )3 (B )5 (C )3 (D )57. 已知双曲线)0(12222>=-b b y x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点),3(0y P 在双曲线上.则12PF PF ⋅=( )A. -12B. -2C. 0D. 4 填空题8. 过双曲线221916x y -=的右顶点为A ,右焦点为F 。
高教版拓展模块 3.2.2 双曲线的几何性质 说课课件(共43张PPT).ppt
教学过程分析
教学策略与
评价分析
实轴与虚轴等长的双曲线叫等轴双曲
y线.ຫໍສະໝຸດ B222
− 2 = 1中 =
2
渐近线方程为 = ±
A2
A1 b
F1 O a F2
B1
x
3.2.2 双曲线的几何性质
四、理论推证
教学内容解析
双曲线的离心率
学生学情分析
类比椭圆,我们把双曲线的焦距与实轴长之比
何研究这些性质?
学生学情分析
教学过程分析
教学策略与
评价分析
对称性
范围
顶点
离心率
3.2.2 双曲线的几何性质
二、数学实验
教学内容解析
教学目标设置
思考
2 2
观察双曲线 2 − 2 = 1,你能归纳出双曲线的范围吗?
学生学情分析
教学过程分析
教学策略与
评价分析
思考
2 2
你能用不等式推导双曲线 2 − 2 = 1的范围吗?
八、课外探究
教学内容解析
教学目标设置
学生学情分析
教学过程分析
教学策略与
评价分析
设计意图
拓展作业则通过阅读教材扩展内容,激发学生的自主学习
兴趣,培养创新思维。这样的作业设计既保证了基础知识的
掌握,又促进了学生能力的全面发展。
3.2.2 双曲线的几何性质
教学内容解析
教学目标设置
学生学情分析
教学过程分析
双曲线的几何性质
教学内容解析
教学目标设置
2
2
标准方
程 2 − 2 = 1( > 0, > 0)
双曲线课件-2025届高三数学一轮复习
|PF1|-|PF2|=±2 a =±6,又|PF 1|=5,则|PF 2|=11.
6.
2
2
已知双曲线 C : 2 - 2 =1( a >0, b >0)的焦距为4
线 C 的渐近线方程为
3 ,实轴长为4 2 ,则双曲
2 x ± y =0 .
[解析] 由题意知,2 c =4 3 ,2 a =4 2 ,则 b = 2 − 2 =2,所以 C 的渐近线
C.
2 2
2
双曲线 - =1的渐近线方程是y=± x
9
4
3
D. 等轴双曲线的渐近线互相垂直,离心率等于 2
2. [浙江高考]渐近线方程为 x ± y =0的双曲线的离心率是(
A.
2
2
B. 1
C. 2
C )
D. 2
[解析] 因为双曲线的渐近线方程为 x ± y =0,所以无论双曲线的焦点在 x 轴上还是
轴上.又离心率 e =
2 ,所以 =
2 ,所以 a = 2 ,则 b 2= c 2- a 2=2,所以双曲
2
2
线 C 的标准方程为 - =1.
2
2
解法二
因为双曲线 C 的离心率 e = 2 ,所以该双曲线为等轴双曲线,即 a = b .又
双曲线 C 的焦点为(-2,0)和(2,0),所以 c =2,且焦点在 x 轴上,所以 a 2+ b 2=
1
以| PF 1|·| PF 2|=8,所以 △ = | PF 1|·| PF 2|·sin
2
1 2
解法二
60°=2 3 .
2
2
由题意可得双曲线 C 的标准方程为 - =1,所以可得 b 2=2,由双曲
高中双曲线复习讲义
的面积为( A. 6 3
) B.12
(2) ( 10 年江西文)点 A( x0 , y0 ) 在双曲线
x2 y 2 1 的右支上,若点 A 到右焦点的距离等于 2 x0 ,则 4 32
x0
;
(3) (江西卷)已知 F1,F2 为双曲线
x2 y 2 1(a 0,b 0且a b) 的两个焦点, P 为双曲线右支上异于顶 a 2 b2
P 的轨迹 E 的方程; ⑴求线段 P1 P 2 的中点
⑵设轨迹 E 与 x 轴交于 B、D 两点,在 E 上任取一点 Q (x1, y1) ( y1 0) ,直线 QB,QD 分别交 y 轴于 M ,N 两 点.求证:以 MN 为直径的圆过两定点。
y
P
P 2
A
P1 F1
O
F2
x
6
) C.
B、C,且|AB|=|BC|,则双曲线 M 的离心率是 ( A. 10 B. 5
10 3
D.
5 2
3、 (江西卷)P 是双曲线
x 2 y2 - =1 的右支上一点,M、N 分别是圆(x+5)2+y2=4 和(x-5)2+y2=1 上的 9 16
) C.8 D.9 B.7
点,则|PM|-|PN|的最大值为( A. 6
知识回顾
一、抛物线定义:(1)第一定义:当 || PF 1 | | PF 2 || 2a | F 1F 2 | 时, P 的轨迹为双曲线; 当 || PF 1 | | PF 2 || 2a | F 1F 2 | 时, P 的轨迹不存在; 当 | PF1 PF 2 | 2a F1F 2 时, P 的轨迹为以 F1、F2 为端点的两条射线。 (2)双曲线的第二义: 平面内到定点 F 与定直线 l (定点 F 不在定直线 l 上)的距离之比是常数 e ( e 1 )的点的轨迹为双曲线。 二、双曲线性质:来自7、P 为双曲线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图
3
图4
2
《双曲线》
例题讲解
1、如图1,直线y=mx 与双曲线y=
x
k
交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( ) A .2
B 、m -2
C 、m
D 、4
2、如图2,已知双曲线)0k (x
k
y >=
经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________.
图1 图2 3、已知, A 、B 、C 、D 、E 是反比例函数16
y x
=
(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图3所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)
4、如图4,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点
12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()2
0y x x
=
≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,
并设其面积分别为12345S S S S S 、、、、,则5S 的值为 .
图5
5、如图5,直线43y x =
与双曲线k y x =0x >)交于点A .将直线43y x =向右平移92
个单位后,与双曲线k y x =(0x >)交于点B ,与x 轴交于点C ,若2=BC
AO
,则
k = .
6、已知反比例函数x
y 6
=
和一次函数3+=kx y 的图像交与()11,y x A ,()22,y x B ,且52
22
1=+x x ,求k 的值及B A ,点的坐标。
7、(1)探究新知:
如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.
(2)结论应用:
① 如图2,点M ,N 在反比例函数x
k
y =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F . 试证明:MN ∥EF .
② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与EF 是否平行.
图 3
A
B
D
C
图 1
8、阅读理解:对于任意正实数a 、b ,
∵2≥0,
∴a b -≥0,
∴a b +
≥a =b 时,等号成立.
结论:在a b +
≥a 、b 均为正实数)中,若ab 为定值p ,则a+b
≥,只有
当a =b 时,a+b
有最小值
根据上述内容,回答下列问题:
若m >0,只有当m = 时,1
m m
+
有最小值 . 思考验证:如图1,AB 为半圆O 的直径,C 为半圆上任意一点(与点A 、B 不重合),过点C 作CD ⊥AB ,垂足为D ,AD =a ,DB =b .试根据图形验证a b +
≥号成立时的条件.
探索应用:如图2,已知A(-3,0),B(0,-4),P 为双曲线x
y 12
=
(x >0)上的任意一点,过点P 作PC ⊥x 轴于点C ,PD ⊥y 轴于点D .求四边形ABCD 面积的最小值,并说明此时四边形ABCD 的形状.
9、如图,()111P ,x y ,()222P ,x y ,……()P ,n n n x y
212P A A ∆,323P A A ∆,……1P A A n n n -∆都是等23A A ,……1A A n n -都在x 轴上.
⑴求1P 的坐标;⑵求12310y y y y ++++ 的值
图2
图1
练习:1、如图,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在 函数 1
y x
=(0x >)的图象上,则点E 的坐标是( , ).
2、如图,已知双曲线(0)k
y k x
=
>与直线y k x '=交于A,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2),则点B 的坐标为 ;
若点A 的横坐标为m, 则点B 的坐标可表示为 ; (2)如图2,过原点O 作另一条直 线l,交双曲线(0)k
y k x
=
>于P,Q 两点,点P 在第一象限. ①说明四边形APBQ 一定是平行四边形;
②设点A,P 的横坐标分别为m,n, 四边形APBQ 可能是矩形吗?可能是正方形吗?若可能, 直接写出m,n 应满足的条件;若不可能,请说明理由.
3、已知:等腰三角形OAB 在直角坐标系中的位置如图,点A 的坐标为(-),点B 的坐标为(-6,0).
(1)若将三角形OAB 沿x 轴向右平移a 个单位,此时点A 恰好落在反比例函数y =的图像上,求a 的值;
(2)若三角形OAB 绕点O 按逆时针方向旋转α度(090α<<).
①当α=30
时点B 恰好落在反比例函数k
y x
=
的图像上,求k 的值. ②问点A 、B 能否同时落在①中的反比例函数的图像上,若能,求出α的值;若不能请说明。