习题详解-第10章微分方程与差分方程初步
第十章微分方程与差分方程

微积分教案第十章 微分方程§10.1 微分方程的基本概念教学目的与要求:了解微分方程的阶、通解与特解等概念。
掌握一阶可分离变量方程的解法。
教学重点(难点):区分解与通解。
可分离变量方程的解法。
例:一条曲线通过点(1,2),且在曲线上任一点处的切线斜率为2x +1,求曲线方程。
定义:含未知函数、未知函数的导数或微分以及自变量之间关系的方程叫做微分方程。
微分方程中未知函数的最高阶导数称为微分方程的阶。
例:指出下列各微分方程的阶1. y''+y' 3+xy 4=sin x2. y'+xy''+(y'')3+2y 5=13. y'+y y'=1+x 54. y'''=y注意:在一个微分方程中,自变量x 、未知函数y 可以不出现,但未知函数的导数或微分不能不出现。
如果一个函数代入微分方程能使之成为恒等式,称该函数为微分方程的解。
如果微分方程的解中含有独立的任意常数个数与微分方程的阶相同,则称这解为微分方程的通解。
用一些条件确定通解中的任意常数而得到的解称为微分方程的特解。
用来确定通解中任意常数的条件叫做初始条件。
一阶微分方程初始条件的提法为:00y y x x ==二阶微分方程初始条件的提法为:00y yx x ==,*00y y x x ='=§10.2 一阶微分方程(一)一、可分离变量的微分方程一阶微分方程:y'=f (x ,y )若能化为y'=h (x )⋅g (y ),则称该方程为可分离变量的微分方程。
例如:y'=2x +1这是可分离变量的微分方程,解这个微分方程只要方程两边积分:y=x 2+x +C.又如y'=2xy 2这也是可分离变量的微分方程,但这个微分方程就不能两边直接积分,这是因为⎰dx xy 22含有未知函数y 。
但若把上面的微分方程变形为:xdx dy y212=两边积分得:C x y+=-21一般地,若y'=h (x )⋅g (y )把方程变形为:dx x h dy y g )()(1=,若y=ϕ(x )是方程的解,则有:dx x h dx x x g )()()]([1='ϕϕ两边对x 积分,左边利用凑微分法:⎰⎰=dx x h dy y g )()(1。
大一微积分下册经典题目及解析

微积分练习册[第八章]多元函数微分学习题8—1 多元函数的基本概念1。
填空题:(1)若yx xy y x y x f tan ),(22-+=,则___________),(=ty tx f (2)若xy y x y x f 2),(22+=,则(2,3)________,(1,)________y f f x-== (3)若)0()(22 y yy x x y f +=,则__________)(=x f (4)若22),(y x x yy x f -=+,则____________),(=y x f(5)函数)1ln(4222y x y x z ---=的定义域是_______________(6)函数y x z -=的定义域是_______________(7)函数xy z arcsin =的定义域是________________ (8)函数xy x y z 2222-+=的间断点是_______________ 2。
求下列极限:(1)xy xy y x 42lim0+-→→班级: 姓名: 学号:(2) x xy y x sin lim0→→(3) 22222200)()cos(1lim y x y x y x y x ++-→→微积分练习册[第八章] 多元函数微分学3.证明0lim 22)0,0(),(=+→y x xy y x4。
证明:极限0lim 242)0,0(),(=+→y x y x y x 不存在班级: 姓名: 学号:5。
函数⎪⎩⎪⎨⎧=≠+=(0,0)),( ,0)0,0(),(,1sin ),(22y x y x y x x y x f 在点(0,0)处是否连续?为什么?微积分练习册[第八章] 多元函数微分学习题 8—2偏导数及其在经济分析中的应用1.填空题(1)设y x z tan ln =,则__________________,=∂∂=∂∂yz x z ; (2)设)(y x e z xy+=,则__________________,=∂∂=∂∂y z x z ; (3)设zy x u =,则________,__________________,=∂∂=∂∂=∂∂z u y u x u ;(4)设x y axc z tan =,则_________________,_________,22222=∂∂∂=∂∂=∂∂y x z yz x z (5)设z yx u )(=,则________2=∂∂∂y x u ; (6)设),(y x f 在点),(b a 处的偏导数存在,则_________),(),(lim 0=--+→xb x a f b x a f x 2。
微分方程与差分方程习题课总结

方程中未知数下标的最大值与最小值的差 称为差分方程的阶.
差分方程的解
如果函数y = φ( x)代入差分方程后,方程两 边恒等,则称此函数为该差分方程的解.
差分方程的通解
含有相互独立的任意常数的个数与差分方程的 阶数相同的差分方程的解.
代入原方程, 得 P dP = f ( y, P ). dy
4.线性微分方程解的结构
(1) 二阶齐次方程解的结构:
形如 y + P( x) y + Q( x) y = 0
(1)
定理 1 如果函数 y1( x)与 y2 ( x)是方程(1)的两个
解,那末 y = C1 y1 + C2 y2也是(1)的解.(C1, C2 是常 数)
解法 由常系数齐次线性方程的特征方程的根确 定其通解的方法称为特征方程法.
y + py + qy = 0
特征方程为 r 2 + pr + q = 0
特征根的情况
实根r1 r2 实根r1 = r2
复根r1,2 = i
通解的表达式
y = C1e r1 x + C2e r2 x y = (C1 + C2 x)e r2 x
当Q( x) 0,
上述方程称为非齐次的.
齐次方程的通解为 y = Ce− P( x)dx (用分离变量法)
非齐次微分方程的通解为
y = e− [ P( x)dx Q( x)e P( x)dxdx + C ] (用常数变易法)
3.可降阶的高阶微分方程的解法 (1) y(n) = f ( x) 型
(2) 0,1 设yx = x zx
常微分方程与差分方程

yx1 yx zx1 yx zx1 zx
z x1Δ y x y xΔ z x
嘉兴学院
19 May 2019
第十章 常微分方程与差分方程
第10页
又证明(3)
yx zx
解 yx yx1 yx
( x 1)! x!
x x!
2 yx yx x x! x 1 x 1! x x!
x 2 x 1 x!
嘉兴学院
19 May 2019
第十章 常微分方程与差分方程
第7页
例4 设y x(n) x( x 1)(x 2)( x n 1), x(0) 1,求Δ y x (即Δ( x(n) )).
nx(n1) (公式)
嘉兴学院
19 May 2019
第十章 常微分方程与差分方程
第8页
2.差分的四则运算法则
(1)(Cyx ) Cyx (C为常数) (2)( yx zx ) yx zx
3 yx zx yx1zx zxyx yxzx zx1yx
解 yx ( x 1)(n) x(n) ( x 1)x( x 1)( x 1 n 1) x( x 1) ( x n 2)( x n 1)
( x 1) ( x n 1)x( x 1)( x n 2)
第十章 常微分方程与差分方程
第1页
10.6 差分方程
嘉兴学院
19 May 2019
第十章 常微分方程与差分方程
第2页
10.6.1 差分的概念及性质
(完整版)微分方程试题及部分应用题答案整理版

第十章微分方程习题一.填空题:(33)1-1-40、微分方程4233''4''')'(x y x y y 的阶数是 . 1-2-41、微分方程0'2'2xy yy xy 的阶数是 . 1-3-42、微分方程0d d d d 22sxs x s的阶数是 .1-4-43、x y y y y sin 5''10'''4)()4(的阶数是 .1-5-44、微分方程xyxy2d d 满足条件1|'0xy 的特解是 .1-6-45、微分方程0d d yxy的通解是 .1-7-46、方程y e y x'的通解是 . 1-8-47、方程y y y ln '的通解是 .1-9-48、方程04'4''y y y 的通解是 . 1-10-49、方程04'4''y y y 的通解是 . 1-11-50、方程013'4''yy y 的通解是 .1-12-51、已知特征方程的两个特征根,3,221r r 则二阶常系数齐次微分方程为1-13-52、微分方程xe y ''的通解为 . 1-14-53、微分方程x e y xsin ''2的通解为 .1-15-54、若0d ),(dx ),(yy x Q y x P 是全微分方程, 则Q P,应满足 .1-16-55、与积分方程xy x f yx x d ),(0等价的微分方程初值问题是 .1-17-56、方程0d )2(d )(22yxy xx y xy 化为齐次方程是 .1-18-57、通解为21221,(C C e C eC yxx 为任意常数)的微分方程为 .1-19-58、方程yx e y 2'满足条件0xy 的特解是 .1-19-59、方程0dy1dx2x xy 化为可分离变量方程是1-20-60、方程xy y 2'的通解是1-21-61、方程x yxyxy xyd d d d 22化为齐次方程是1-22-62、若t ycos 是微分方程09''yy 的解, 则.1-23-63、若ktCe Q 满足Qdt dQ03.0, 则k.1-24-64、y y 2'的解是1-25-65、某城市现有人口50(万), 设人口的增长率与当时的人口数x (万)和x 1000的积成正比, 则该城市人口)(t x 所满足的微分方程为1-26-66、圆222r yx 满足的微分方程是1-27-67、ax ae y满足的微分方程是1-28-68、一阶线性微分方程)()(d dyx Q yx P x的通解是 .1-29-69、已知特征方程的两个根3,221r r , 则二阶常系数线性齐次微分方程为 .1-30-70、方程25x y是微分方程y xy 2'的解.1-31-71、二阶常系数非齐次微分方程的结构为其一个特解与之和.1-32-72、二阶常系数齐次线性微分方程0'''qypy y 对应的特征方程有两个不等实根,则其通解为 .1-33-73、将微分方程0)2()(22dyxy xdxy xy写成齐次微分方程的标准形式为二.选择题:(29)2-1-56、微分方程yx2dxdy 的通解是 ( )A.2x yB.25x y C.2Cx yD.Cxy 2-2-57、微分方程0dy 1dx 2x xy 的通解是 ( ) A.21x eyB.21x CeyC.x C yarcsin D.21xC y 2-3-58、下列方程中是全微分方程的是 ( )A.0dy dx )(2x y xB. 0dy dx x yC.0dy)(1dx)1(xy y xy D.dydx)(22xy y x2-4-59、下列函数组中,线性无关的是 ( ) A.xxe e 32, B.x x 2sin ,2cos C. x x x sin cos ,2sin D.2ln ,ln xx 2-5-60、方程03'2''y y y 的通解是 ( )A.xxe C eC y 321 B. xxeC eC y 321 C.xx eC eC y 321 D.xxeC e C y3212-6-61、方程0''y y 的通解是 ( ) A.x C ysin B.x C ycos C.x C xycos sin D.xC xC ycos sin 212-7-62、下列方程中是可分离变量的方程是( )A.xyyx 33dxdy B.dy 2dx)3(2xy y exC.234dxdy xyyx D.yx xyy321dxdy 2-8-63、微分方程0cot 'x y y 的通解是 ( ) A.x C ycos B.x C ysin C.x C ytan D.xC ycsc2-9-64、已知微分方程0''pyy 的通解为)(212x C C e yx,则p 的值是 ( )A.1B.0C.21D.412-10-65、微分方程02'yy 的通解是 ( )A.C x y2sin B.C eyx24 C.xCe y2 D.xCey 2-11-66、方程xy2dx dy的通解是 ( )A.C ex2B.Cxe2C.2CxeD.2)(C x e2-12-67、xe y ''的通解为y( )A.xe B.xe C.21C xC exD.21C x C ex2-13-68、微分方程xe21dxdy满足1xy 的特解为 ( )A.1221xeyB.3221x ey C.C ey x212 D.212121xey2-14-69、微分方程0ydy-dx 3x 的通解是 ( ) A.Cyx2422B.Cyx2422C.2422yxD.12422yx2-15-70、微分方程0ydy-dx 3x 的通解是 ( )A.222yxB.933yxC.133yxD.13333yx2-16-71、过点,0()2的曲线,使其上每一点的切线斜率都比这点纵坐标大5的曲线方程是( )A.32xyB.52xy C.53xey D.5xCe y 2-17-72、齐次方程x yxy tandx dy化为可分离变量的方程, 应作变换 ( )A.2ux yB.22x u yC.ux yD.33xu y2-18-73、设方程)()('x Q y x P y 有两个不同的解21,y y ,若21y y 也是方程的解,则( ) A.B.0 C. 1 D.,为任意常数2-19-74、方程dx 2dx dy y x x 的通解是 ( ) A.x Cxy2B. x xC y2sin C.C xy 2cos D.Cxy 22-20-75、下面各微分方程中为一阶线性方程的是 ( )A.xyxy 2'B .xxyy sin 'C .xyy' D.xyy 2'2-21-76、曲线上任一点P 的切线均与OP 垂直的曲线方程是 ( )A.y xy' B.y xy'C.x yy' D.xy y'2-22-77、方程2)3(,0'y yy 的解是 ( )A.xey 32 B.xey 32 C.32x ey D.32x ey 2-23-78、微分方程x y y ln '的通解是 ( ) A.xx eyln B. xx Ceyln C.xx x ey ln D.xx x Cey ln 2-24-79、下列哪个不是方程y y 4''的解 ( )A. xey22 B.xe y2 C.xey 2 D.xey 22-25-80、方程0sin '''653)4(yy y y x xyy的阶是 ( )A. 6B. 5C. 4D. 32-26-81、如果一条曲线在它任意一点的切线斜率等于y x2,则这条曲线是( )A.椭圆 B.抛物线 C.双曲线 D. 圆2-27-82、下列可分离变量的方程是 ( )A.xyy x dxdy33B.2)3(2xydy dxy exC. xy yx dxdy D.yx xyy dxdy 3212-28-83、微分方程0cot 'xy y 的通解是 ( )A.x C ycos B.x C ysin C.x C ytan D.xC y csc 2-29-84、已知微分方程0''pyy 的通解为)(212x C C e yx ,则p 的值( )A. 1B. 0C.21D.41三.计算题:(59)3-1-52、0d tan sec d tan sec 22y x y x y x 3-2-53、0ln 'yy xy 3-3-54、0d sec )2(d tan 32yy e x y e x x3-4-55、yx y y x xy22222')1(3-5-56、yx eye x dxdy3-6-57、0)1()1(xdy y ydxx3-7-58、x x y yy x d sin cos d sin cos ,4|0xy 3-8-59、0)0(,02')1(22y xy y x3-9-60、1)(,ln 2'e y x y y 3-10-61、x x y y y x d sin cos d sin cos ,4|0xy 3-11-62、0y)dx -(x dy)(y x3-12-63、)ln (ln dx d x y y y x 3-13-64、0)2(22dyx dx xy y3-14-65、xy x y xy tan'3-15-66、xyx y x y xy ln)('3-16-67、dxdy xydxdy xy223-17-68、x y yx y', 2|1x y 3-18-69、x y xy y', ey ex|3-19-70、2|,'122xy y xyxy3-20-71、xx yxy sin 1', 1|xy 3-21-72、xex y xy 43'3-22-73、342'xxyy 3-23-74、xyxy ln 11'3-24-75、xeyxxy x21'3-25-76、x xy y sec tan ', 0|0xy 3-26-77、xx yxy sin 1', 1|xy 3-27-78、22112'xy xx y ,|0xy 3-28-79、x x yxy ln ', ey ex|3-29-80、22d dyx xexy x3-30-81、)sin (cos d dy2x xy yx3-31-82、5d dyxyy x3-32-83、02d dy4xyxy x3-33-84、4)21(3131d dy yx yx3-34-85、xyxy x 2d dy23-35-86、xy y '''3-36-87、01)'(''2y yy 3-37-88、01''3y y 3-38-89、y y 3'', 1|0xy , 2|'0xy 3-39-90、223''yy ,1|3xy ,1|'3xy 3-40-91、02''yy 3-41-92、013'4''y y y 3-42-93、0'2''y y y 3-43-94、04'5''y y y 3-44-95、04'3''y y y , 0|0xy , 5|'0xy 3-45-96、029'4''y y y , 0|0x y ,15|'0xy 3-46-97、0'4''4y y y , 2|0x y , 0|'0x y 3-47-98、0'4''4y y y , 2|0xy , 0|'0xy 3-48-99、013'4''y y y , 0|0x y , 3|'0x y 3-49-100、04'4''y y y , 0|0x y , 1|'0xy 3-50-101、xey y y 2'''23-51-102、x eyy xcos ''3-52-103、xex y y y 3)1(9'6''3-53-104、'''22xy y ye3-54-105、123'2''x y y y 3-55-106、''sin 20y yx, 1|xy , 1|xy 3-56-107、52'3''yy y , 1|0xy , 2|'0xy 3-57-108、xe y y y 29'10'',76|0x y ,733|'0x y 3-58-109、xxe yy 4'', 0|0xy , 1|'0xy 3-59-110、xxeyy y 26'5''四.应用解答题:(14)4-1-9、一曲线通过点)3,2(, 它在两坐标轴间的任一切线段均被切点所平分, 求这曲线方程.4-2-10、已知xxxy t t y tt 03231d )(12, 求函数)(x y 4-3-13、求一曲线, 这曲线通过原点, 并且它在点),(y x 处的切线斜率等于y x2.4-4-14、试求x y ''的经过点)1;0(M 且在此点与直线12x y相切的积分曲线.4-5-15、设某曲线,它上面的任一点的切线与两坐标轴所围成的三角形面积总等于2,求这条曲线的方程所满足的微分方程. 4-6-16、已知某曲线经过点)1,1(, 它的切线在纵轴上的截距等于切点的横坐标,求它的方程.4-7-17、设可导函数)(x 满足xx t t t x x 01d sin )(2cos )(, 求)(x .4-8-10、已知某商品需求量Q 对价格p 的弹性为22pEpEQ, 最大需求量为1000Q, 求需求函数)(p f Q.4-9-11、设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系4-10-12、在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).4-11-13、如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为02v , 求鱼雷的航行曲线方程.4-12-14、根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dL L Ak x,(其中0,0Ak), 若不做广告, 即0x时纯利润为0L , 且A L 0, 试求纯利润L 与广告费x 之间的函数关系.4-13-15、在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101,投资额)(t I 是国民收入增长率t d dy的31. 设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.4-14-16、试建立描述市场价格形成的动态过程的数学模型.五.证明题:(2)5-1-18、设),(1x y )(2x y 是二阶齐次线性方程0)(')(''y x q y x p y 的两个解,令)()(')(')()(')(')()()(21212121x y x y x y x y x y x y x y x y x w 证明: )(x w 满足方程0)('wx p w5-2-19、设1y , 2y , 3y 是线性方程)()(d dyx Q y x P x的3个相异特解,证明1213y y y y 为一常数.部分应用题答案487.在串联电路中, 设有电阻R, 电感L 和交流电动势tE Esin 0, 在时刻0t时接通电路, 求电流i 与时间t 的关系(0E ,为常数).解. 设)(t i i, 由回路电压定律tE dtdi LRisin 0, 即tLE LR dtdisin 0]sin [)(0C dt teLE et i t dtLRLR =]sin [0C dt te LE et t LR LR =)cos sin (2220t L t R LRE CetLR将0|0ti 代入通解得222LRLE C)cos sin ()(2220t L t R LeLRE t i t LR488.设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系解:.物体重力为mg w, 阻力为kv R , 其中g 是重力加速度, k 是比例系数.由牛顿第二定律得kvmg dtdv m ,从而得线性方程gv mk dtdv ,|0tv tmkdtdtCeg km C dt gee v km m k ][, 将0|0tv 代入通解得gkm C)1(t mk eg km v, 再积分得122C gekm gtkm Stmk,将0|0t S 代入求得gkm C 221)1(22t mkeg km gtkm S 489. 如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.解:设鱼雷的航行曲线方程为)(x y y, 在时刻t , 鱼雷的坐标巍巍),(y x P , 敌舰的坐标为),1(0t v Q .因鱼雷始终对准敌舰, 故x yt v y 1'0, 又弧OP 的长度为x tv dxy 0022'1,从以上两式消去t v 0得''121''')1(2y y y y x , 即2'121'')1(y y x 根据题意, 初始条件为0)0(y , 0)0('y 令p y', 原方程化为2121')1(pp x , 它是可分离变量得方程,解得21)1(112x C pp , 即21)1('1'12x C y y 将0)0('y 代入上式得11C , 故21)1('1'2x y y 而21)1(''1'1'122x y y y y , 得2121)1()1(21'x x y 积分得22321)1(31)1(C x x y, 将0)0(y 代入上式得322C ,所以鱼雷的航行曲线为32)1(31)1(2321x x y490.根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(d dLL A k x ,(其中0,0Ak ), 若不做广告, 即0x时纯利润为0L , 且AL 0, 试求纯利润L 与广告费x 之间的函数关系.解:依题意得)(L A k dx dL,|L L x, 解可分离变量得微分方程, 得通解kxCeAL , 将00|L L x 代入通解, 得AL C 0, 所以纯利润L 与广告费x 之间的函数关系为kxeA LAx L )()(.491.在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I 均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy的31.设0t时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.解:依题意:yS101,dt dyI31, 解之得通解tCe y103, 将5|0ty 代入通解得5C, 所以国民收入函数为tey 1035492.试建立描述市场价格形成的动态过程的数学模型.解:设在某一时刻t , 商品的价格为)(t p , 因供需差价, 促使价格变动. 对新的价格,又有新的供需差, 如此不断地调节价格, 就构成了市场价格形成的动态过程.假设价格)(t p 的变化率dt dp与需求和供给之差成正比. 记需求函数为),(r p f , 供给函数为)(p g , 其中r 为参数. 于是得微分方程)](),([p g r p f k dtdp,)0(p p , 其中0p 为0t时商品的价格, k 为正常数.若需求供给函数均为线性函数, b kpr p f ),(, d cpp g )(, 则方程为)()(d b k p c k k dtdp ,)0(p p , 其中d c b k ,,,均为正常数, 其解为ckd b eckd b p t p tc k k )(0)()(下面对所得结果进行讨论:(1) 设p 为静态均衡价格, 则应满足0)(),(p g r p f , 即dpc bpk ,则c kdb p, 从而价格函数pep p t p c k k )(0)()(,取极限:pt p t)(lim .它表明: 市场价格逐步趋于均衡价格. 若初始价格p p 0, 则动态价格就维持在均衡价格p 上, 整个动态过程就变为静态过程.(2) 由于tc k k ec kk p pdtdp)(0)()(, 所以当p p 0时, 0dtdp,)(t p 单调下降向p 靠拢, 这说明: 初始价格高于均衡价格时,动态价格会逐渐降低, 逐渐接近均衡价格; 而当初始价格低于均衡价格时, 动态价格会逐渐增高, 逐渐接近均衡价格.。
习题详解-第10章 微分方程与差分方程初步

两端分别积分:
2 y 2x +ln2 C1 ,即 2x +2 y C 0( C ln 2 C1 )
这就是方程通解 . (3)这是可分离变量方程,分离变量得
cos y dy cos x dx sin y sin x
两端分别积分:
ln sin y ln sin x ln C , 即 sin y Cesinx
是解,又因为含有两个任意常数 C1,C2 ,且方程是二阶的,故是通解.
4.
已知函数
x=C1coskt+C2sinkt(k≠0)是微分方程
d2x dt 2
k2x
0 的通解,求满足初始条件
x| t0 2 x| t0 0
的特解. 解 : 上 题 可 知 是 微 分 方 程 通 解 , 且 x(t) C1k sin kt C2k cos kt, 代 入 初 值 条 件 x |t 0 2, x |t0 0 ,得 C1 2,C2 0 ,所以特解为 x 2coskt(k 0).
x dx
dx
u 1 du dx u
两端分别积分:
u ln u x C 即 y ln y x C xx
这就是方程通解 .
(6)这是齐次方程,化简得
dy
1
y x
dx 1 y
x
令 u y , 则 dy u du , 代入原方程并整理
x dx
dx
u 1 du dx ,两端分别积分: 1 ln 1 2u u2 x 1 C
(3)
y
x
y y2
,
y(2)
1;
(4) y y x y5 , y(0) 1 .
解 (1)这是一个齐次线性方程,整理得
dy dx
微积分第十章微风方程与差分方程期末复习
2
x
2
dx dy
2 y
x
1
2 y
3
则z x
2
x
4、P323 分析:
7
设f ( x) y( x) y ( x)
y( x) y ( x) f ( x)
一阶线性非齐次方程
ye
x
P ( x )d x
P ( x ) d x dx C Q( x) e
* n
代入原方程:得A
1 3
,B
2 9
yn ( n ) 2 3 9
*
1
2
n
(3)原方程的通解为:
yn Yn yn C (1) ( )2 n
n
*
n
2
3
9
7、P323
2(3)
解: (1)先求对应的齐次方程 运用迭代法得:Yn C (1)
n
(2)再求非齐次方程的一个特解
方法2 用通解公式
ye
P ( x )d x
P ( x ) d x dx C Q( x) e
4. 伯努利方程 方法:
令u y
1 n
, 化为线性方程求解.
机动
目录
上页
下页
返回
结束
例1.求微分方程 y ln ydx sin xdy 0 的通解。 解: 分离: 积分:
e [ f ( x)e dx C ]
x
x
f ( x)e dx C
x
e
x
x
lim y ( x) lim
x
微分差分方程习题
微分方程和差分方程作业题参考答案一、微分方程初值问题(1)用四阶Runge-Kutta 法求解微分方程初值问题的数值解(步长h取0.1),求解范围为区间[0,3].(2)用ode45 方法常微分方程初值问题的数值解(近似解),然后利用画图来比较两者间的差异.解(1)代码clearf=sym('y-exp(x)*cos(x)');a=0; b=3; h=0.1;n=(b-a)/h+1; % n=(b-a)/h;x=0; y=1;szj=[x,y];for i=1:n-1 % i=1:nl1=subs(f,{'x','y'},{x,y});l2=subs(f,{'x','y'},{x+h/2,y+l1*h/2});l3=subs(f,{'x','y'},{x+h/2,y+l2*h/2});l4=subs(f,{'x','y'},{x+h,y+l3*h});y=y+h*(l1+2*l2+2*l3+l4)/6;x=x+h;szj=[szj;x,y];endplot(szj(:,1),szj(:,2), 'dg-');(2)代码fun=inline('y-exp(x)*cos(x)','x','y');[x,y]=ode45(fun,[0,3],1)两个图放在一起比较如下:结论:通过对这个微分方程的两种不同方法的求解,从图形中可以看出,两种方法所得到的数值解大致重合,因此可以得出对于这个微分方程,用这两种方法的效果大致一样。
二、设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐?解:分析和建模设t时刻(单位为分钟)容器中每升盐水中所含净盐的百分比为x(t),考虑时间区间],[tt t∆+内容器中净盐量的变化等于注入清+,并利用质量守恒定律;]t t∆,[t水所含的净盐量减去放出盐水中的净盐量。
微积分第2版-朱文莉第10章 微分方程与差分方程习题详解(1-3节)
微积分第2版-朱文莉第10章微分方程与差分方程习题详解(1-3节)题10.1(A)1.指出下列微分方程的阶数:1) x(y')-2yy'+x=;2) y^2(4)+10y''-12y'+5y=sin2x;3) (7x-6y)dx+(x+y)dy=S;4) 2d^2S/dt^2+S=0.解:(1) 1阶;(2) 4阶;(3) 1阶;(4) 2阶。
2.判断下列各题中的函数是否为所给微分方程的解?若是解,它是通解还是特解?1) x(dy/dx)=-2y,y=Cx^-2(C为任意常数);2) 2x(y'')-2y'+y=0,y=xe;3) y''-2/(y'+y)=0,y=C1x+C2/x^2(C1,C2为任意常数);4) xdx+ydy=R,x+y=const(R为任意常数)。
解:(1) 通解;(2) 否;(3) 通解;(4) 通解。
3.验证:函数y=(C1+C2x)e^-x(C1,C2为任意常数)是方程y''+2y'+y=的通解,并求满足初始条件y(0)=4,y'(0)=-2的特解。
解:由已知得y=C1e^-x+C2xe^-x,y'=C2e^-x-C1e^-x-C2xe^-x。
将y代入方程得(C1-2C2)e^-x=0,因为e^-x不为0,所以C1=2C2.所以通解为y=(C1+C2x)e^-x=(2C2+2C2x)e^-x=(2+2x)e^-x。
将初始条件代入得C1=4,C2=2,所以特解为y=(4+2x)e^-x。
4.已知曲线上任一点(x,y)处的切线斜率等于该点的横坐标与纵坐标的乘积,求该曲线所满足的微分方程。
解:根据题意,设曲线为y=f(x),则斜率为f'(x),根据题意得f'(x)=xf(x),即y'=xy,所以微分方程为dy/dx=xy。
微积分 第十章 第一节 差分方程的基本概念
一般地,k 阶差分定义为
k yt (k1 yt ) k1 yt 1 k1 yt
k
(
1)i
C
i k
yt k i
,
k 1, 2,
i0
例1 设 yt t 2 , 求 yt , 2 yt , 3 yt .
yt yt1 yt (t 1)2 t 2 2t 1,
2 yt (yt ) (2t 1) [2(t 1) 1] (2t 1) 2,
5
三、差分方程的解
定义 若一个函数代入差分方程后,方程两边恒等,则 称此函数为该差分方程的解.
若差分方程的解中含有相互独立的任意常数且个 数恰好等于差分方程的阶数, 则称该解为差分方程的 通解.
差分方程满足初始条件的解称为该问题的特解.
6
第一节
1
微分方程刻划了自变量 x 是连续变化的过程中 变量 y 的变化率,在现代科学技术和经济领域中,有 些自变量往往不是连续变化的, 而是取一系列离散 的值,例如按年、月、日等,此时要描述这种自变量 是离散的变化关系就是本章要介绍的差分方程.
显然微分方程和差分方程是两类不同的方程, 但它们有许多共同点,因此与微分方程对照,采用类 比的方法是学习差分方程有效的方法.
3 yt (2 yt ) (2) 0 .
4
二、差分方程
定义 含有未知函数 yt 在 t 的两个或两个以上的函数值 yt , yt1 , 的函数方程称为差分方程;差分方程中所出现的
未知函数下标的最大值与最小值的差称为差分方程的阶.
G(t, yt , yt1 ,, ytn ) 0, F (t, yt , yt , 2 yt ,, n y为定义在整数集上的函数,简记yt , 一阶差分:yt yt1 yt 一阶差分的差分称为 yt 的二阶差分,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题10-11. 指出下列方程的阶数:(1)4620x y y x y '''''-+=. (2)22d d 0d d Q Q Q L R t c t++=. (3)2d cos d ρρθθ+=. (4)2()d 2d 0y x y x x y -+=.解:(1)三阶(2)二阶(3)一阶(4)一阶2. 验证下列给出的函数是否为相应方程的解: (1)2x y y '=, 2y Cx =.(2)2(+1)d d x y y x =, +1y x =.(3)20y y y '''++=, x y x e -=.(4)22d 0.4d s t=-, 2120.2s t c t c =-++. 解:(1)是,代入即可. (2)是,代入即可;(3)是,因为 ,2x x x x y e xe y e xe ----'''=-=-+,满足20y y y '''++=;(4)是,代入,212d d 0.4,0.4d d s s t C t t=-+=-,显然满足. 3. 验证:函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程222d 0d x k x t += 的通解.解:221212()sin cos ,()cos sin ,x t C k kt C k kt x t C k kt C k kt '''=-+=--满足222d 0d x k x t+=,所以是解,又因为含有两个任意常数12,C C ,且方程是二阶的,故是通解.4. 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程222d 0d x k x t+=的通解,求满足初始条件 x | t =0 =2, x '| t =0 =0的特解.解:上题可知是微分方程通解,且12()sin cos ,x t C k kt C k kt '=-+代入初值条件0|02,|0t t x x ='===,得122,0C C ==,所以特解为2cos (0).x kt k =≠习题10-21. 求下列微分方程的通解:(1)()2310y y x '++=; (2) 2+'=x yy ;(3) d d sin xcos y y sin y cos x x =; (4) 2d d d d x xy y y x y y +=+;(5) 22d d d d y y y x xy x x+=; (6) d d y x yx x y -=+; (7) 22d d y y x xy x=+; (8) )2(tan 212y x y +='. 解:(1)这是可分离变量方程,分离变量得()231d =d y y x x+-两端分别积分:()34111=+34y x C,+-这就是方程通解 .(2)这是可分离变量方程,分离变量得2d =2d y x y x-两端分别积分:122+ln2y x C ,--=⋅即12+202x y C (C ln C )--==⋅这就是方程通解 .(3)这是可分离变量方程,分离变量得d d cos y cos xy x sin y sin x=两端分别积分:ln sin y ln sin x lnC,-=--即sin x sin y Ce =这就是方程通解 .(4)这是可分离变量方程,分离变量得21d =d 11y y x y x --两端分别积分:21111+22ln(y )ln(x )lnC,-=-即221+1y C(x )=- 这就是方程通解 . (5)这是齐次方程,令,x yu =则d d ,d d y u u x x=+代入原方程并整理 1d d u u x u-=两端分别积分:ln u u x C -=+即ln y yx C x x-=+ 这就是方程通解 .(6)这是齐次方程,化简得1d d 1yy x yx x-=+令,x yu =则d d ,d d y u u x x=+代入原方程并整理 21d d 12u u x u u +=--,两端分别积分:211ln 1222u u x C ---=+即222ln 10y y x C x x--++= 这就是方程通解 .(7)这是齐次方程,化简得2d d 1y y x yx x⎛⎫ ⎪⎝⎭=+令,x yu =则d d ,d d y u u x x=+代入原方程并整理 1d d u u x u +=-,两端分别积分:ln u u x C +=-+ 即ln 0y y x C x x++-= 这就是方程通解 .(8)这是特殊方程,用换元法,令,2y x u +=则d 1d 1,d 2d y u x x ⎛⎫=- ⎪⎝⎭代入原方程并整理 2cos ud d u x =,两端分别积分:11sin 224u u x C +=+即42sin(24)40y x x y C -++-=这就是方程通解 .2. 求下列微分方程满足所给初始条件的特解: (1) 3sin y y x '=, (0)1y =;(2) 222(1)(1)x y y x +'=+, (0)0y =; (3) d tan d y y y x x x =+,(1)6y π=;(4) 222d d 2x yx xy y y xy=-+-,(0)1y =. 解 (1)分离变量:31d sin d y x x y =. 两端分别积分:31d sin d y x x y =⎰⎰. 解得:21cos 2x C y -=-+. 将(0)1y =代入通解中,求得12C =.故所求特解为212cos 1x y=-. (2)分离变量:2221d d 1(1)xy x y x =++. 两端分别积分:211arctan d 2(1)y x C x =-⋅++.将(0)0y =代入通解中,求得12C =.故所求特解为2111arctan d 2(1)2y x x =-⋅++.(3) 这是齐次方程,令,x yu =则d d ,d d y u u x x=+代入原方程并整理1d d .tan u x u= 两边积分得,ln sin ln C x u +=即.sin x Ce u =变量回代得所求通解.sinx Ce xy=由(1)6y π=代入通解,得612C e π-=,故所求初值问题的解为61sin .2x y e e x π-=3. 一曲线在两坐标轴间的任一切线线段均被切点所平分,且通过点(1,2),求该曲线方程.解:设曲线方程为:()y f x =由题意可得方程: 2002y yy x x-'==--,且(1)2y =,解分离变量方程得:xy C =,由(1)2y =得2C =,故所求曲线为:2xy =.4. 物体冷却的数学模型在多个领域有广泛的应用.例如,警方破案时,法医要根据尸体当时的温度推断这个人的死亡时间,就可以利用这个模型来计算解决.现设一物体的温度为100℃,将其放置在空气温度为20℃的环境中冷却.试求物体温度随时间t 的变化规律.解 设物体的温度T 与时间t 的函数关系为),(t T T =建立该问题的数学模型:⎪⎩⎪⎨⎧=--==100|)20(0t T T k dtdT )2()1( 其中)0(>k k 为比例常数.下面来求上述初值问题的解.分离变量,得;20kdt T dT-=- 两边积分,201⎰⎰-=-kdt dT T 得1|20|ln C kt T +-=-(其中1C 为任意常数), 即 kt kt C C kt Ce e e e T --+-=±=±=-1120(其中1C e C ±=). 从而,20kt Ce T -+=再将条件(2)代入,得,8020100=-=C于是,所求规律为.8020kt e T -+=习题10-31. 求下列微分方程的通解:(1) cos sin x y y x e '+=; (2) 2x y y e '-=;(3) 2(1)x x y x y e '=-+; (4) 22d (2)d 0y x x x y y y +--=;(5) ()1y x e y '-=; (6) 3(1)2(1)2x y y x y -'=+- 解 (1) 这是一阶线性非齐次方程,其中()sin ,P x x =cos ()x Q x e =. 首先求出Pd sin d cos x x x x ==-⎰⎰ (积分后,不再加任意常数), 然后用公式(10-6)可得所求通解为d d d d P x P x P xy Ce e Qe x --⎰⎰⎰=+⎰cos cos x x Ce xe =+.(2) 这是一阶线性非齐次方程,其中1(),2P x =-1()2x Q x e =.首先求出Pd 2x x -=⎰ (积分后,不再加任意常数),然后用公式(10-6)可得所求通解为d d d d P x P x P xy Ce e Qe x --⎰⎰⎰=+⎰24xx Ce =+. (3) 这是一阶线性非齐次方程,其中1()1,P x x =-21()x Q x e x =.首先求出Pd ln x x x =-⎰ (积分后,不再加任意常数), 然后用公式(10-6)可得所求通解为d d d d P x P x P xy Ce e Qe x --⎰⎰⎰=+⎰2x xe e C x x=⋅+.(4)将x 看作y 的函数,即对()x x y =进行求解,可将原方程化为未知函数为()x x y =的线性方程212d 1d y xx y y-+⋅=, 于是,212()yP y y -=()1Q y =. 首先求出1Pd 2ln y y y=--⎰,然后代入通解公式,可得所求通解为112ln 2ln 1d y y yyx eey C +--⎛⎫=⋅+ ⎪⎝⎭⎰ 11122221d yyy y e e y C Cy e y y -⎛⎫=⋅+=+ ⎪⎝⎭⎰.(5)将x 看作y 的函数,即对()x x y =进行求解,可将原方程化为未知函数为()x x y =的线性方程d d y xx e y--=-, 于是,()1P y =-()y Q y e -=-.首先求出Pd y y =-⎰,然后代入通解公式,可得所求通解为()d y y y xe e e y C --=-⋅+⎰12y y e Ce -=+.(6)令,1-=x yu 则d d (1),d d y u u x x x=+-代入原方程并整理 22d d .31u xu u x =-- 两边积分得,ln ln )3ln(2C x u +-=-变量回代得所求通解223.(1)y Cx x-=-2. 求解下列初值问题:(1) 2(2)d d 0y x y x x y -+=,1x y e ==; (2)sin x y y x '+=,()1y π=; (3) 2y y x y '=-,(2)1y =; (4) 5y y x y '-=,(0)1y =.解 (1)这是一个齐次线性方程,整理得2d (12)0d y x y x x -+⋅=, 其通解为2(12)1d 2=x xx xy Ce Cx e --⎰=,将初始条件1x y e ==代入上式,可得1C =,故所求特解为12=x y x e .(2) 这是一阶线性非齐次方程,其中1(),P x x =1()sin Q x x x =.首先求出Pd ln x x =⎰ (积分后,不再加任意常数), 然后用公式(10-6)可得所求通解为d d d d P x P x P xy Ce e Qe x --⎰⎰⎰=+⎰cos C xx-=将初始条件()1y π=代入上式,可得1C π=-,故所求特解为1cos x y xπ--=.(3)将x 看作y 的函数,即对()x x y =进行求解,可将原方程化为未知函数为()x x y =的线性方程d 1d x x y y y-=-, 于是,1()P y y=-()Q y y =-.首先求出Pd ln y y =-⎰,然后代入通解公式,可得所求通解为1()d x y y y C y ⎛⎫=⋅-+ ⎪⎝⎭⎰2Cy y =-.将初始条件(2)1y =代入上式,可得3C =,故所求特解为23x y y =-.(4) 这是伯努利方程,以5y 除方程的两端,得54d ,d y y y x x ---=即44d()1,4d y y x x ----= 令4,z y -=则上述方程变为 d 44.d zz x x+=- 解此线性微分方程(过程略),可得414x z x Ce -=-++,得所求通解为4441()4x y z x Ce -==-++,将初始条件(0)1y =代入上式,可得34C =,故所求特解为44413()44x y z x e -==-++.3. 通过适当变换求下列微分方程的通解:(1) d 11d y x x y-=-; (2)d 4d y y x x x -=. 解 (1)令y x u -=则d d 1,d d y u x x=+原方程化为 d 1d u x u=-. 分离变量,得d d u u x =-, 两端积分得22u x C =-+ 以y x u -=代入上式,得通解2()2y x x C -=-+.(2)这是伯努利方程,其中214,(),()2n P x Q x x x==-=,则有公式得通解 1(1)()d (1)()d 12()(1)d n P x x n P x x nyy e Q x n e x C ----⎛⎫⎰⎰==-+ ⎪⎝⎭⎰ 2ln 22ln 1(d )2x x e x e x C -=⋅⋅+⎰21().2x C x =+ 4. 求过原点的曲线,使其每一点的切线斜率等于横坐标的2倍与纵坐标之和. 解:由题意可得方程d 2d yx y x=+, 这是一阶非齐次线性方程,其中()1,P x =-()2Q x x =,然后用公式(10-6)可得所求通解为d d d d P x P x P xy Ce e Qe x --⎰⎰⎰=+⎰22x x Ce -=--+.习题10-41. 求下列微分方程的通解:(1) sin 2y x x ''=-; (2) 2cos x y e x '''=-;(3) -20x y y '''= ; (4) 4x y y x '''+=; (5) 2=2()y y '''; (6)31y y ''=解:(1) 21cos ,y x x C '=--+3121sin ,3y x x C x C =--++(2) 211sin 2x y e x C ''=-+,2121cos ,4x y e x C x C '=+++2212311sin .82x y e x C x C x C =++++(3) 该方程是不显含y 的方程,令y p '=,则y p '''=.原方程化为一阶方程20xp p '-=.分离变量,得12d d p x p x=. 两边积分得: 21p C x =再积分一次即得原方程的通解为 31213y C x C =+.(4) 该方程是不显含y 的方程,令y p '=,则y p '''=.原方程化为一阶方程4xp p x '+=.整理,得4pp x'+=, 这是一阶非齐次线性方程,解得12C p x x=+再积分一次即得原方程的通解为 212ln y C x x C =++.(5)该方程是不显含x 的方程,令y p '=,则d d py py''=,原方程化为 2d 2d ppp y=. 分离变量得d 2d py p=.两边积分得: 211y p C e =.再由211d d y yC e x=,解得212y e C x C -=+. (6)该方程是不显含x 的方程,令y p '=,则d d py p y''=,原方程化为3d d y p p y =.得22112211C y p C y y -=-+=.解得:d d y x可解得通解为:221121()C y C x C -=+.2. 求解下列初值问题:(1) 12cos y x x '''=+,(0)1,(0)(0)1y y y '''=-==;(2) 21,x y x y '''+=10,x y==11x y ='=;(3) 2()yy y '''=,(0)(0)1y y '==. 解 (1)相继积分三次得出:216sin y x x C ''=++,3122cos y x x C x C '=-++,4212311sin 22y x x C x C x C =-+++, 以(0)1,(0)(0)1y y y '''=-==代入后可得出1231,2,1C C C ===-,于是所求特解为4211sin 2122y y x x x x ==-++-. (2)令,y p '=代入方程并整理,有211.p p x x'+=这是一阶线性非齐次方程,代入公式,得11(ln )p y C x x'==+由条件11x y ='=得11,C =所以1(1ln )y x x'=+两端再积分,得221ln (ln ).2y x x C =++又由条件10,x y ==20,C =于是所求初值问题的解为21ln (ln ).2y x x =+(3)令,y p '=由d d py p y''=代入方程并化简得d .d p y p y= 上式为可分离变量的一阶微分方程,解得p y Cy '== 再分离变量,得d d ,yx Cy= 由初始条件(0)(0)1y y '==得出1,C = 从而得d d ,yx y= 再两边积分,得1x y C e =, (0)1y =,得11,C =从而所求特解为x y e =.3. 已知平面曲线()y f x =的曲率为32(1)y y '''+,求具有常曲率(0)K K >的曲线方程.解:由题意得方程32(0)(1)y K K y ''=>'+,令(),y p x '=代入方程,有32(1)p K p '=+ 即32d d .(1)p K x p =+解之,得1Kx C =+ 32d d .(1)p K x p =+习题10-51.下列函数组在其定义区间内哪些是线性无关的?(1) 22,;x x e x e (2) ,()ax bx e e a b ≠;(3) 1cos2x +,2sin x ; (4) cos ,x sin x .解:(1)无关;(2)无关;(3)无关;(4)无关.2. 验证1y x =与2x y e =是方程(1)0x y xy y '''--+=的线性无关解,并写出其通解.解:当1y x =,11y '=,10y ''=,代入满足方程;当2x y e =,2x y e '=,2x y e ''=,代入也满足方程;另外,1y x =,2x y e =是线性无关的(由定义可知),方程的通解为:112212x y C y C y C x C e =+=+. 3. 求下列微分方程的通解:(1) 230y y y '''--=; (2) 280y y y '''--=; (3) 440y y y '''++=; (4) 690y y y '''-+=; (5) 250y y y '''++=; (6) 160y y ''+= ; (7) x y y x e ''+=+ ;(8) 4sin y y x ''+=.解:(1) 特征方程2230r r --=的根为:121=3r r =-,,通解为312x x y C e C e -=+; (2) 特征方程2280r r --=的根为:1224r r =-=,,通解为2412x x y C e C e -=+; (3) 特征方程2440r r ++=的根为:122r r ==-,通解为2212x x y C e C xe --=+; (4) 特征方程2690r r -+=的根为:123r r ==,通解为3312x x y C e C xe =+;(5) 特征方程2250r r ++=的根为:1,212r i =-±,通解为12(cos 2sin 2)x y e C x C x -=+; (6) 特征方程2160r +=的根为:1,24r i =±,通解为12cos4sin 4y C x C x =+; (7) 特征方程210r +=的根为:12r r i ==±,齐次通解为12cos sin y C x C x =+; ()x f x x e =+可以看成是1()f x x =与2()x f x e =之和.所以分别求方程y y x ''+=与方程x y y e ''+=的特解. 容易求得方程y y x ''+=的一个特解为:1y x =.按例9的方法可求得方程x y y e ''+=的一个特解为:212x y e =.于是原方程的一个特解为12y y y =+=12x x e +.故原方程的通解为y y Y =+=12x x e +12cos sin C x C x ++.(8) ()4sin f x x =为(cos sin )αxe A ωx B ωx +型的函数,且0α=,1ω=,αωi i +=是特征方程210r +=的根,所以取1k =.设特解为()cos sin y x C x D x =+.()cos sin cos sin y C x D x x D x C x '=++-.2cos 2sin (cos sin )y D x C x x C x D x ''=--+.代入原方程,得 2c o s 2s i n 4s i D x C x x -=.比较两端sin x 与cos x 的系数,得2,0C D =-=,故原方程的特解为2cos y x x =-. 而对应齐次方程0y y ''+=的通解为12cos sin Y C x C x =+. 于是原方程的通解为y y Y =+2cos x x =-+12cos sin C x C x +. 4. 求解下列初值问题:(1) 20,y y y '''++=y |x =0=4、y '| x =0=-2;(2) 20y y y '''-+=,(0)(0)1y y '==解:(1) 特征方程2210r r ++=的根为:121r r ==-,通解为12x x y C e C xe --=+;代入初值条件00|4|2x x y y =='==-、,得124,2C C ==,方程特解为42x x y e xe --=+.(2) 特征方程2210r r -+=的根为:121r r ==,通解为12x x y C e C xe =+;代入初值条件(0)(0)1y y '==,得121,0C C ==,方程特解为x y e =.5. 求下列微分方程的一个特解:(1) 2331y y y x '''--=+; (2) 94y y x '''+=-;(3) 2x y y y e '''-+=; (4) 9cos 21y y x x ''+=++.解:(1) 因为()31f x x =+,且y 的系数30q =-≠,设特解为y Ax B *=+. 则()y A '*=,()0y ''*=,代入原方程,得23()31A Ax B x --+=+,使两端x 同次幂的系数相等:11,2A B =-=,所求的特解为12y x *=-+.(2) 因为()4f x x =-,且y 的系数0q =,设特解为()y x Ax B *=+. 则()2y Ax B '*=+,()2y A ''*=,代入原方程,使两端x 同次幂的系数相等得,137,1881A B -==,所求的特解为21371881y x x *=-.(3) 1α=是特征方程2210r r -+=的重根,取2k =,所以可设原方程的特解为2x y Bx e =,则22224x x x x x y Bxe Bx e y Be Bxe Bx e '''=+=++,,代入原方程得解得12B =,故方程有一特解为212x y Bx e =.(4) ()cos 21f x x x =++可以看成是1()21f x x =+与2()cos f x x =之和. 所以分别求方程921y y x ''+=+与方程9cos y y x ''+=的特解. 容易求得方程921y y x ''+=+的一个特解为:12199y x =+.另求得方程9cos y y x ''+=的一个特解为:21cos 8y x =.于是原方程的一个特解为12y y y =+=211cos 998x x ++.习题10-61. 求下列函数的一阶与二阶差分:(1) y t =3t 2-t 3; (2) y t =e 2t ; (3) y t =ln t ; (4) y t =t 2·3t .解:(1) ()()()2323231133+32t y t t t t t t ∆=+-+--=-+[],()22()3+326t t y y t t t ∆=∆∆=∆-+=-;(2) 2(1)222e e e (1)t t t t y e +∆=-=-,()22222222()e (1)(1)(e )e (1)t t t t t y y e e e ∆=∆∆=∆-=-⋅∆=-,(3) ln(1)ln t y t t ∆=+-,()2()ln(1)ln ln(2)2ln(1)ln t t y y t t t t t ∆=∆∆=∆+-=+-++(4) ()()21221333263t t t t y t t t t +∆=+-=++,()()()()22122()326332(1)693263t t t t t y y t t t t t t +∆=∆∆=∆++=+++-++()2342430t t t =++2. 将差分方程Δ2y t +2Δy t =0表示成不含差分的形式.解:因为1t t t y y y +∆=-,21()t t t t Δy ΔΔy Δy Δy +==-212t t t y y y ++=-+, 故220t t y y ∆+∆=可化为211222()0t t t t t t t y y y y y y y ++++-++-=-= 3. 指出下列等式哪一个是差分方程,若是,确定差分方程的阶:(1) y t +5-y t +2+y t -1=0; (2) Δ2y t -2y t =t ; (3) Δ3y t +y t =1; (4) 2Δy t =3t -2y t ; (5) Δ2y t =y t +2-2y t +1+y t .解:(1) 是差分方程.由于方程中未知函数下标的最大差为6,因此方程的阶为7; (2) 是差分方程.由于2t y ∆212t t t y y y ++=-+,方程变为212t t t y y y t ++--=,方程中未知函数下标的最大差为2,因此方程的阶为2;(3)是差分方程.由于Δ3y t 32133t t t t y y y y +++=-+-,方程变为321331t t t y y y +++-+=,未知函数下标的最大差为2,因此方程的阶为2;(4) 将原方程变形为2(y t +1-y t )= 3t -2y t ,即2y t +1=3t,不符合定义3′,因此,该等式不是差分方程.(5) 不是差分方程.由于2t y ∆212t t t y y y ++=-+,方程变为00=,所以不是差分方程.4. 验证y t =C (-2)t 是差分方程y t +1+2y t =0的通解.解:112(2)2(2)0t t t t y y C C +++=-+-=,所以是解,又方程的阶数是1,所以是通解.习题10-71. 求下列一阶常系数线性齐次差分方程的通解: (1) y t +1-2y t =0; (2) y t +1+3y t =0; (3) 3y t +1-2y t =0.解:(1)特征方程为:λ-2=0,特征根为λ=2,于是原方程的通解为 y t =C 2t . (2)特征方程为:λ+3=0,特征根为λ=-3,于是原方程的通解为 y t =C (-3)t . (2)特征方程为:3λ-2=0,特征根为23λ=-,于是原方程的通解为()2.3tt y C =-2. 求下列差分方程在给定初始条件下的特解:(1) y t +1-3y t =0,且y 0=3; (2) y t +1+y t =0,且y 0=-2.解 (1)特征方程为30λ-=,特征根为3λ=,于是原方程的通解为 3.tt y C = 将初始条件y 0=3代入,得出C =3,故所求解为13.t t y +=(2)特征方程为10λ+=,特征根为1λ=-,于是原方程的通解为(1).t t y C =- 将初始条件y 0=-2代入,得出C =-2,故所求解为2(1).t t y =-- 3. 求下列一阶常系数线性非齐次差分方程的通解: (1) y t +1+2y t =3; (2) y t +1-y t =-3; (3) y t +1-2y t =3t 2; (4) y t +1-y t =t +1; (5) 11522tt t y y +⎛⎫-= ⎪⎝⎭; (6) y t +1+2y t =t 2+4t .解 (1) 由于a =-2,k =3,令y *t =A (待定系数),代入方程得A +2A =3,从而A =1,即y *t =1,故原方程的通解为y t =C (-2)t +1.(2) 由于a =1,k =-3,令y *t =At (待定系数),代入方程得A =-3,即y *t =-3t ,故原方程的通解为y t =-3t+C .(3) 设y *t =A 0+A 1t +A 2t 2为原方程的解,将y *t 代入原方程并整理,比较同次幂系数, 可得A 0=-9,A 1=-6,A 2=-3.从而*2963t y t t =-+--,故原方程的通解为29632.t t y t t C =-+--+(4) 由于a =1,设y *t =(A 0+A 1t )t 为原方程的解,将y *t 代入原方程并整理,比较同次幂系数, 可得0112A A ==,从而*1(1)2t y t t =+,故原方程的通解为1(1).2t y t t C =++(5) 由15122a k b ===,,,令原方程有一个特解为*5·()2t t y A =,解得35A =. 于是原方程的通解为()351·().522tt t y C =+ (6)设f 1(t )= t 2,f 2(t )= 4t ,则f (t )=f 1(t )+f 2(t ).对于f 1(t )= t 2,因a =-2≠1,可令特解y *t 1= A 0+A 1t +A 2t 2;对于f 2(t )= 4t ,因a =-2≠4,可令y *t 2=B4t故原方程的特解可设为y *t = A 0+A 1t +A 2t 2 +B4t ,代入原方程,得0121211,27934A A AB =-=-==-,,,于是21121 42793t t y t t *-=-+-+-,故所求通解为21121 4(2).2793t t t y t t C -=-+-+-+- 4. 求下列差分方程在给定初始条件下的特解:(1) y t +1-y t =3+2t ,且y 0=5; (2) 2y t +1+y t =3+t ,且y 0=1; (3) y t +1-y t =2t -1,且y 0=2.解 (1) 由于a =1,设y *t =(A 0+A 1t )t 为原方程的解,将y *t 代入原方程并整理,比较同次幂系数, 可得012,1A A ==,从而*(2)t y t t =+,故原方程的通解为(2).t y t t C =++又有初始条件y 0=5,可知5C =,故特解为(2) 5.t y t t =++(2) 由于12a =-,设y *t =A 0+A 1t 为原方程的解,将y *t 代入原方程并整理,比较同次幂系数,可得0171,93A A ==,故原方程的通解为171().392t t y t C =++-又有初始条件y 0=1,可知29C =,故特解为1721().3992t t y t =++⋅-(3) 由a =1可知,对应的齐次方程的通解为y t =C .设f 1(t )=2t ,f 2(t )=-1,则f (t )=f 1(t )+f 2(t ).对于f 1(t )=2t ,因a =1≠3,可令y *t 1=A 2t ;对于f 2(t )=-1,因a =1,可令y *t 2=Bt .故原方程的特解可设为y *t =A 2t +Bt ,代入原方程,得11A B ==-,,故所求通解为2t t y C t =+-又有初始条件y 0=2,可知1C =,故特解为12t t y t =+-.5. 某人向银行申请1年期的贷款25000万元,约定月利率为1%,计划用12个月采用每月等额的方式还清债务,试问此人每月需付还银行多少钱?若记y t 为第t 个月后还需偿还的债务,a 为每月的还款额,写出y t 所满足的差分方程以及每月还款额的计算公式.解 先对问题的进行分析, 第1个月后还需偿还的贷款为y 1= y 0 (1+1%)-a;第2个月后还需偿还的贷款为y 2=y 1(1+1%)-a ;……第t +1个月后还需偿还的贷款为y t +1=y t (1+1%)-a ,即y t +1-1.01y t =-a .这是一个一阶常系数线性非齐次差分方程,其对应的齐次方程的特征根为λ=1.01≠1,设差分方程有特解y *t =A ,代入得到100A a =,于是有通解(1.01)100t t y C a =+.代入初始条件y 0=25000,及12(1.01)1000t y C a =+=得1210025000(1.01)1000C a C a +=⎧⎨+=⎩, 从上面的等式解得1212250001.011001.01100a ⋅=⋅-.6. 设某产品在时期t 的价格、供给量与需求量分别为P t ,S t 与Q t (t =0,1,2,…).并满足关系:(1)S t =2P t +1,(2)Q t =-4P t -1+5,(3) Q t =S t .求证:由(1)(2)(3)可推出差分方程P t +1+2P t =2.若已知P 0,求上述差分方程的解. 解 由题意可得2P t +1=-4P t -1+5,即2P t+1=-4P t +4,得差分方程P t +1+2P t =2,容易求得方程的特解为:*23y =,方程的通解为:2(2)3t y C =+-,00,t y p ==当时,023C p =-所以,故所求差分方程的解为022()(2).33t y p =+--7. 设C t 为t 时期的消费,y t 为t 时期的国民收入,I =1为投资(各期相同),设有关系式C t =ay t -1+b ,y t =C t +1,其中a ,b 为正常数,且a <1,若基期(即初始时期)的国民收入y 0为已知,试求C t ,y t表示为t 的函数关系式.解 由C t =ay t -1+b ,y t =C t +1,得11t t y ay b -=+-,又因为a <1,故可设特解为*y A =,代入得11b A a +=-,所以方程的通解为11t b y Ca a +=+-,00,t y y ==当时,011bC y a +=--所以,故所求差分方程的解为011()11t t b b y y a a a ++=-+--,从而01()11t t b a bC y a a a++=-+--.复习题10 (A )1. 通解为y =C e -x +x 的微分方程是 . 解 方程是一阶的,e1xy C -'=-+,方程为1y x y '=-+.2. 通解为y =C 1e x +C 2e 2x 的微分方程是 .解 易见这是二阶常系数方程的解,特征根为121,2r r ==,特征方程为2320r r -+= 所以微分方程为320y y y '''-+=.3. 微分方程x d y -(x 2e -x +y )d x =0的通解是 .解 方程可化为e x yy x x-'-=,通解为x y xe Cx -=-+. 4. 微分方程xy ′+y =0满足初始条件y (1)=1的特解是 . 解 分离变量得d d y xy x=-,通解为xy C =,初始条件y (1)=1特解为1xy .= 5. 设非齐次线性微分方程y ′+P (x )y =Q (x )有两个不同的解y 1(x )与y 2(x ),C 是任意常数,则该方程的通解是 .A C [y 1(x )+y 2(x )]BC [y 1(x )-y 2(x )]C y 1(x )+C [y 1(x )-y 2(x )]D y 1(x )+C [y 1(x )+y 2(x )]解 非齐次通解=齐次通解+非齐次特解,齐次通解()()12Y C y x y x =-[],非齐次特解为:()()12=y*y x y*y x =或者,所以选择C.6. 微分方程y ″+4y =sin2x 的一个特解形式是 .A C cos2x +D (sin2x )B D (sin2x )C x [C cos2x +D (sin2x )] D x ·D (sin2x )解 因为0α=,2ω=,2i i αω+=是特征方程240r +=的根,所以取1k =.设特解为 ()cos 2sin 2y x C x D x =+.选择C.7. 解下列一阶微分方程: (1) (1+y 2)d x =xy (x +1)d y ; (2) x (y ′+1)+sin(x +y )=0;(3) (cos )d cos d y yx y x x y x x+=; (4) xy ′+2y =sin x ;(5) tan y d x =(sin y -x )d y ; (6) (y -2xy 2)d x =x d y .解 (1)分离变量()21d d 11y y x x x y =++,积分得211ln(1)ln ln()221x y C x ++=+, 化简得22(1)()1x C y x +=+; (2)令d d ,1d d y uu x y x x =+=-则,原方程化为d d d sin 0,d sin u u x x u x u x+==-即,积分得 ln(csc cot )ln ln u u x C -=-+,化简并整理得通解:1cos()sin()x y Cx y x-+=+.(3) (1cos )d d d ,,d d d cosy yy y y u x x u x u y x x x xx+===+原方程可化为令则,原方程化为d cos d x u u x =,积分得sin ln ||,u x C =+方程通解为sin ln ||.yx C x=+(4)这是一阶线性非齐次方程,2sin (),()x P x Q x x x==,所以方程通解为()d d 21(d )sin cos P x P x y e Qe x C x x x C x-⎰⎰=+=-+⎰(5) )设()x x y =,方程化为d sin cot cos d tan x y xx y y y y-==-+,这是一阶线性非齐次方程,()cot ,()cos P y y Q y y ==,所以方程通解为d d 211(d )sin sin 2P y P yx e Qe y C y C y -⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰(6)方程可化22d ?22d y y xy yy x x x-==-,这是伯努利方程,其中1(),()2,2P x Q x n x =-=-=,所以方程通解为2(1)()d (1)()d 1()(1)d ,n P x xn P x x nx C ye Q x n e x C x ----+⎛⎫⎰⎰=-+= ⎪⎝⎭⎰即 2x y x Cy -=.8. 解下列二阶微分方程:(1) (1+x )y ″+y ′=ln(1+x ); (2) y ″+3y ′+2y =2x 2+x +1; (3) y ″+2y ′-3y =2e x ; (4) y ″+y =x +cos x .解 (1)易见不显含y ,令(),=,y p x y p ''''=则代入方程得()()1ln 1x p p x '++=+,即()ln 111x pp x x +'+=++,所以11()((1)ln(1))1p x C x x x x =+++-+ 1ln(1)1C x x x -=+++,两边积分12()d =(+2)ln(1)2y p x x x C x x C =++-+⎰. (2)这是二阶常系数非齐次方程,由=20,p ≠设特解为2y Ax Bx C *=++,带入方程并对比两端x 的系数,得5131,,24A B C ==-=,故非齐次特解为2513*24y x x =-+ ;齐次通解为212x x y C e C e --=+,从而方程通解为221251324x x y C e C e x x --=++-+.(3) 这是二阶常系数非齐次方程,因为1α=是特征方程2230r r +-=的单根,所以取1k =.设特解为x y Bx e =,代入原方程后,解得12B =,故方程的一个特解为:12x y xe =.所求的通解为31212x x x y C e C e xe =++.(4) ()cos f x x x =+可以看成是1()f x x =与2()cos f x x =之和.所以分别考察方程y y x ''+=与方程cos y y x ''+=的特解.容易求得方程y y x ''+=的一个特解为:1y x =.容易求得方程cos y y x ''+=的一个特解为:21sin 2y x x =.于是原方程的一个特解为12y y y =+=12x x sin x +. 又原方程所对应的齐次方程40y y ''+=的通解为12cos sin Y C x C x =+, 故原方程的通解为1212y C cos x C sin x x x sin x =+++. 9. 解下列差分方程: (1) y t +1+4y t =2t 2+t -1; (2) y t +1-y t =t ·2t +3.解 (1) 由于a =4,令 y *t =A 0+A 1t +A 2t 2 (待定系数),代入方程得23612*125255t y t t =-++,故原方程的通解为23612(4)125255t t y t t C =-+++-. (2) 分别求y t +1-y t =t ·2t 和y t +1-y t =3的特解,对y t +1-y t =t ·2t ,由a =3,b =2,可设原方程有一特解为y *t =(A 0+A 1t )2t ,代入原方程,可解得*(2)2tt y t =-+;对y t +1-y t =3,由a =1,可设原方程有一特解为y *t =Bt ,代入原方程,可解得*3t y t =;故原方程的通解为(2)23tt y C t t =+-++(B )1. 设曲线y =f (x )过点(0,-1),且其上任一点处的切线斜率为2x ln(1+x 2),则f (x )= .解 易得微分方程 ()22ln 1y x x '=+,直接积分得 ()()()2222ln 1d =ln 1d 1y x x x x x =+++⎰⎰,利用分部积分法()222(1)ln 1y x x x C =++-+,过点(0,-1),代入可得1C =-,所以f (x )= ()222(1)ln 1 1.x x x ++--2. 某企业每年的工资总额在比上一年增加10%的基础上再追加奖金3百万元.若以y t 表示第t 年的工资总额(单位:百万元),则y t 满足的差分方程是 .解 易见 1(10.01)3t t y y +=++,所以差分方程为11.13t t y y --=.3. 微分方程33d d 2y y y x x x =-满足初始条件y (1)=1的特解是 . 解 令,,y u y xu x ==则所以d d d d y uu x x x =+,带入方程得,3d 1,d 2u x u x =-求解得2ln ,ux C -=+即2ln ,x x C y ⎛⎫=+ ⎪⎝⎭代入条件y (1)=1,可得1C =,化简得y =4. 差分方程2y t +1+10y t =5t 的通解是 .解 由51a =-≠,设特解为*t y Bt A =+,代入得55,7212A B =-=,所以通解为 55(5)7212t t y C t =--+. 5. 设三个线性无关函数y 1,y 2,y 3都是二阶线性非齐次微分方程y ″+Py ′+Qy =f (x )的解,C 1,C 2是独立的任意常数,则该方程的通解是 .A C 1y 1+C 2y 2+y 3B C 1y 1+C 2y 2-(C 1+C 2)y 3 C C 1y 1+C 2y 2-(1-C 1+C 2)y 3 D C 1y 1+C 2y 2+(1-C 1-C 2)y 3解 非齐次通解=齐次通解+非齐次特解,121323,y y y y y y ---,是齐次方程y ″+Py ′+Qy =0的解,而且是线性无关的,所以齐次通解为:1122123C y C y (C C )y ++--,非齐次特解为:()()()123==y*y x y*y x y*y x =或或,所以选择D.6. 设f (x )=g 1(x )·g 2(x ),其中g 1(x ),g 2(x )在(-∞,+∞)内满足条件g 1′(x )=g 2(x ), g 1(x )=g 2′(x ),且g 1(0)=0,g 1(x )+g 2(x )=2e x .(1) 求f (x )所满足的一阶微分方程; (2) 求出f (x )的表达式.解 (1) 1212()()()()()f x g x g x g x g x '''=+2221()()g x g x =+ 21212[()()]2()()g x g x g x g x =+-2(2)2()x e f x =-故f (x )所满足的一阶微分方程为:2()2()4x f x f x e '-=.(2) 2d 2d 2()(4d )x xx f x e e e x C -⎰⎰=+⎰24(4d )x x e e x C -=+⎰24()xx ee C -=+22x xe Ce-=+由g 1(0)=0,则f (0)=g 1(0)·g 2(0)=0,代入上式得:1C =- 所以f (x )的表达式为:22()x x f x e e -=-.7. 设连续函数f (x )满足210()2()d (1)x f x x f tx t e x =+-⎰,且f (0)=1,求f (x ).解 设0()()d ,xy F x f u u ==⎰显然()y f x '=,又,00;u xt u t ===令当时,1u x t ==当时,;且d d u x t =,11()d =()d ()()d xf u u f tx x t f x x f tx t y ⋅===⎰⎰⎰则,所以21()2()d (1)x f x x f t x t e x =+-⎰可化为微分方程22(1)x y y e x '-=-,这是一阶线性非齐次方程,解得2d d 21(d )2P x P xx x y e Qe x C Ce e -⎰⎰=+=-⎰,22()2x x y f x Ce xe '==-,又因为f (0)=1,可得21C =,所以22()x x f x e xe =-.8. 在xOy 坐标平面中,连续曲线L 过点M (1,0),其上任意点P (x ,y )(x ≠0)处的切线斜率与直线OP 的斜率之差等于ax (常数a >0).(1) 求L 的方程;(2) 当L 与直线y =ax 所围成平面图形的面积为4时,确定a 的值.解 (1)由题意可得方程yy a x x'-=,这是一阶线性非齐次方程,其中1(),P x x=-()Q x ax =,所以d d 2(d )P x P x y e Qe x C Cx ax -⎰⎰=+=+⎰,又曲线L 过点M (1,0),故C a =-,所以曲线方程为y = ax 2–ax.(2)由定积分的知识可知,围成面积()222230014 d ()433x x a S ax ax ax x ax ax ===-+=-==⎰,故3a =.9. 验证函数36931()3!6!9!(3)!nx x x x y x n =++++++-∞<<+∞满足微分方程y ″+y ′+y =e x;利用所得结果求幂级数30(3)!nn x n ∞=∑的和函数.解 25831(),2!5!8!(31)!n x x x xy x n -'=+++++-∞<<+∞- 4732(),4!7!(32)!n x xx y x x n -''=+++++-∞<<+∞-231(),2!3!!n x x x x y y y x e x n "+'+=++++++=-∞<<+∞所以是微分方程的解,下面我们来求微分方程y ″+y ′+y =e x 的通解,这是常系数二阶0y y y "+'+=的通解为:212()x Y e CC -=+,故y ″+y ′+y =e x 通解为 2121()3x x y Y y eC x C x e -=+=++,令369321211()3!6!9!(3)!3x n x x x x x y e C C e n -=++++++=++,下面确定系数,令0x =,得1113C =+,即123C =,两边同时求导得25831212122!5!8!(31)!111()223n x xx x x x y n e C C e --'=+++++-=--+再令0x =,得1211023C -++=,即20C =,所以3369320211(3)!3!6!9!(3)!33xn n x n x x x x x e x e n n ∞-==++++++=+∑.。