固体酸碱催化剂与催化作用

(推荐)固体酸催化剂

固体酸催化剂 酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 中文名固体酸催化剂 功能来源催化活性的酸性部位特点一类重要催化剂 性质酸中心、酸强度和酸度 与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。 ①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: 红外光谱研究表明,800℃焙烧过的γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。 SiO2-Al2O3的酸中心模型 (见图)有多种模式。 ②酸强度,可用哈梅特酸强度函数 0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。 2应用 在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO2-Al2O3、 B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为0≤3.3, 0≤1.5,0≤-3,-3< 0<+1.5。在同类型的催化剂上进行同一反应时, 催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,

酸碱催化剂及其催化机理

酸碱催化剂及其催化机理 小组成员:*** *** *** 石油炼制和石油化工是催化剂最大的应用领域,在国民经济中占有重要地位。在石油炼制和石油化工中,酸催化剂占有重要的地位。烃类的催化裂化,芳烃和烯烃的烷基化,烯烃和二烯烃的齐聚、共聚和高聚,烯烃的水合制醇和醇的催化脱水等反应,都是在酸催化剂的作用下进行的。工业上用的酸催化剂,多数是固体。20世纪60年代以来,又发现一些新型的固体酸催化剂,其中最有影响的是分子筛型催化剂,其次是硫酸盐型酸性催化剂。 1. 固体酸碱的定义和分类 固体酸:一般认为是能够化学吸附碱的固体,也可以了解为能够使碱性指示剂在其上面改变颜色的固体。固体酸又分为布朗斯特(Brφnsted)酸和路易斯(Lewis)酸。前者简称为B酸,后者简称为L酸。B酸B碱的定义为:能够给出质子的都是酸,能够接受质子的都是碱,所以B酸B碱又叫质子酸碱。L酸L碱的定义为:能够接受电子对的都是酸,能够给出电子对的都是碱,所以L酸L碱又叫非质子酸碱。 2. 固体酸碱的强度和酸碱量 B酸强度,是指给出质子的能力;L酸强度是指接受电子对的能力。酸强度通常用Hammeett函数H0表示,定义如下: 若一固体酸表面能够吸附一未解离的碱,并且将它转变为相应的共轭酸,且转变是借助于质子自固体酸表面传递于吸附碱,即:式中[B]a和[BH+]a分别为未解的碱(碱指示剂)和共轭酸的浓度。pKa是共轭酸BH+解离平衡常数的负对数,类似pH。若转变是借助于吸附碱的电子对移向固体酸表面,即 式中[A:B]是吸附碱B与电子对受体A形成的络合物AB的浓度。H0越小酸度越强。酸量:固体表面上的酸量,通常表示为单位重量或单位表面积上酸位的毫摩尔数,即m mol/wt或m mol/m2。酸量也叫酸度,指酸的浓度。 固体碱的强度,定义为表面吸附的酸转变为共轭碱的能力,也定义为表面给出电子对于吸附酸的能力。碱量的表示,用单位重量或者单位表面积碱的毫摩尔数,即m mol/wt或m mol/m2。碱量也叫碱度,指碱中心的浓度。 酸碱对协同位:某些反应,已知虽由催化剂表面上的酸位所催化,但碱位或多或少地起一定的协同作用。有这种酸-碱对协同位的催化剂,有时显示更好的活性,甚至其酸-碱强度

固体催化剂表面酸碱性测定

固体催化剂表面酸碱性测定 --吸附指示剂滴定法 固体酸(碱)催化剂表面中心的酸(碱)性质会直接决定催化剂的催化性能,因此,在研究固体酸(碱)催化剂的作用原理、改进现有的固体酸(碱)催化剂、研制新型酸(碱)催化材料和研究催化剂酸(碱)位的性质、来源及结构等方面,都离不开对表面酸(碱)性的表征。科学工作者在固体催化剂表面酸碱性质表征领域做了大量系统研究,建立了许多测定方法,如吸附指示剂滴定法、程序升温热脱附法、红外光谱法、吸附微量热法、热分析方法和核磁共振谱等。其中,操作简便的吸附指示剂滴定法得到广泛应用。本文阐述吸附指示剂滴定法操作体系。 1固体酸表面酸性测定—吸附指示剂胺滴定法 早在50年代初,Walling提出利用吸附在固体酸表面的Hammett指示剂的变色的方法来测定固体表面酸的酸强度;Tamele用对二甲氨基偶氮苯为指示剂,以正丁胺滴定悬浮在苯溶剂中的固体酸来测定酸量。随后Benesi做了重大的改进,先让催化剂样品分别与不同滴定度的正丁胺达到吸附平衡,再采用一系列不同p K a 值的Hammett指示剂来确定等当点。这样就可以用比较短的时间测得酸强度分布,形成了一个测定固体表面酸酸强度分布的吸附指示剂正丁胺滴定法,又称非水溶液胺滴定法。由于操作比较简便,指示剂法广泛被采用。但是这个方法从理论依据到试验操作都有不少缺陷,如到达吸附平衡耗时长等;几十年来,这个方法有了一些改进,包括使用超声波振荡器加快吸附平衡的到达,选用硝基取代苯类具更弱碱性的化合物作为指示剂测超强固体酸酸性,针对不同的样品体系选用合适的滴定用有机胺和溶剂等。 1.1 基本原理 1.1.1 酸强度: 酸强度是指给出质子(B酸)或是接受电子对(L酸)的能力。不同的测定方法采用不同的物理化学参数来表征。指示剂法用Hammett酸度函数H o表示,H o有

固体酸催化剂的研究进展讲课稿

精品文档 炭基固体酸催化剂的研究进展 摘要 酸催化反应在化工工业生产中广泛应用,目前工业上硫酸、盐酸等液体酸催化剂使用较普遍,液体酸存在一次性消耗大、对设备腐蚀严重、后处理困难,对环境污染较大等缺点。固体酸催化剂作为一种新型的环保材料,在化工生产中的应用变得越来越广泛,主要用于缩酮缩醛反应、水解反应、烷基化反应、酯化反应等。其中,炭基固体酸催化剂是近年来较为热门的研究课题,以葡萄糖、淀粉、蔗糖、纤维素作为原料在一定条件下制备新型固体酸催化剂。炭基固体酸催化剂酸量高、催化活性和选择性好、易回收再生使用和对设备腐蚀性小等优点。本文简单介绍生物质炭基固体酸催化剂的制备原料、分类及制备方法,分析其作为催化剂的作用机理,简述炭基固体酸催化剂的现状并展望其发展前景及方向。 (正文部分) 碳基固体磺酸作为一种新型的固体酸催化剂,具有催化活性高、酸密度大、后处理简单、价 格低廉等优点。目前碳材料种类繁多且存储量巨大,其中木纤维原料作为碳材料的一种,是可再 生能源,在环境、能源状况日渐恶化的今天具有重要利用价值。炭基固体酸催化剂指的是以炭材 料为载体,在其表面上负载一些酸性基团或者固体酸,使其具备液体的 B 酸及L 酸活性中心。由于炭材料具有疏水性的特点,使得反应后的分离操作变得简单且催化剂易于回收,其巨大的比 表面积能够提高其催化活性,近年来,有关炭基固体酸的研究在国内外均有报道。 1. 炭基固体酸分类 以炭基固体酸载体的不同可将其分为两类:一类为以碳材料为载体,在其表面键合上-SO3H 基团的磺化碳固体酸;另一类为以活性炭为载体,在其表面负载上杂多阴离子的活性炭载杂多酸 催化剂。 根据结构不同可以将磺化碳基固体酸分为普通碳基固体酸、多孔碳基固体酸和有序中孔碳基 固体酸三种。普通碳基固体酸的孔道结构为大孔,比表面积一般小于 5 m2/g, 这种材料以 无定型炭的形式存在,孔道无序排列;多孔碳基固体酸的孔道大部分都为中孔,比表面积可达到1000m/g以上,孔道无序排列,孔径分布和比表面积的大小由制备方法决定;有序中孔碳基固体酸的孔道为中孔,比表面积一般高于400 m2/g ,这些孔道以一定的形状有序排列,孔道形状、孔径大小和比表面积由模板剂类型和制备方法决定。 2. 炭基固体酸原料及制备方法 2.1 炭基固体酸催化剂的原料 精品文档 精品文档

相关文档
最新文档