平行度误差检测方法介绍(精)

平行度误差检测方法介绍(精)
平行度误差检测方法介绍(精)

---专业提供SPC数据分析软件等机械测量解决方案

平行度误差检测方法介绍

---专业提供SPC数据分析软件等机械测量解决方案

摘要:平行度是属于形位公差中的一种,平行度评价直线之间、平面之间或直线与平面之间的平行状态。下面我们将对平行度的误差检测方法进行讲解。

什么是平行度?

指两平面或者两直线平行的程度,指一平面(边)相对于另一平面(边)平行的误差最大允许值。

平行度公差

平行度公差是一种定向公差,是被测要素相对基准在方向上允许的变动全量。所以定向公差具有控制方向的功能,即控制被测要素对准基准要素的方向。

平行度公差的分类

1、面对面的平行度公差

该项平行度公差为:所指表面必需位于距离为0.05mm,且平行于基准平面的两平行平面之间。公差带是距离为公差值t且平行于基准平面的两平行平面之间的区域。

2、面对线的平行度公差

指平面必须位于距离为0.05mm,且平行于基准轴线的两平行平面之间。公差带是距离为公差值t且平行于基准轴线的两平行平面之间的区域。

3、线对线的平行度公差

给定方向线对线的平行度公差

平行度公差为孔D的实际轴线必须位于距离为公差值0.2mm,平行位于基准轴线A且垂直于给定方向的两平行平面之间。公差带是距离为公差值t且平行于基准轴线且垂直于给定方向的两平行平面之间的区域。

任意方向上线对线的平行度公差

平行度公差为孔D的实际轴线必须位于直径为公差值0.1mm,轴线平行于基准轴---专业提供SPC数据分析软件等机械测量解决方案

线A的圆柱面所构成的公差带区域内。任意方向上线对线的平行度公差带是直径为公差值t,轴线平行于基准轴线的圆柱面内的区域。

平行度误差检测方法

传统测量方法

1、测量面对面平行度误差

公差要求是测量面相对于基准平面的平行度误差。基准平面用平板体现,如下图所示。测量时,双手推拉表架在平板上缓慢地作前后滑动,用百分表或千分表在被测平面内滑过,找到指示表读数的最大值和最小值。

被测平面对基准平面的平行度误差可按公式计算为:

2、测量线对面平行度误差

公差要求是测量孔的轴线相对于基准平面的平行度误差。需要用心轴模拟被测要素,将心轴装于孔内,形成稳定接触,基准平面用精密平板体现,如下图所示:测量时,双手推拉表架在平板上缓慢地作前后滑动,当百分表或千分表从心轴上素线滑过,找到指示表指针转动的往复点(极限点)后,停止滑动,进行读数。

在被测心轴上确定两个测点a、b

,设二测点距离为

12,指示表在二测点的

读数分别

---专业提供SPC数据分析软件等机械测量解决方案

为Ma、Mb,若被测要素长度为l1,那么,被测孔对基准平面的平行度误差可按比例折算得到。计算公式为:

3、测量线对线平行度误差

公差要求是测量孔的轴线相对于基准孔的轴线的平行度误差。需要用心轴模拟被测要素和基准要素,将两根心轴装于基准孔和被测孔内,形成稳定接触,如下图所示:

测量前,要先找正基准要素,找正基准心轴上素线与平板工作面平行。实验时用一对等高支承基准心轴,就认为找正好了。也可以用一个固定支承和一个可调支承基准心轴,双手推拉表架在平板上缓慢地作前后滑动,调整可调支承,

指示表在基准心轴上素线左右两端的读数相同时,就认为找正好了。

测量方法与计算公式与线对面平行度误差的测量方法与计算公式相同。

---专业提供SPC数据分析软件等机械测量解决方案

利用数据采集仪连接百分表测量方法

测量仪器:偏摆仪、百分表、数据采集仪。

测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件自动计算出平行度误差,最后数据采集仪会自动判断所测零件的平行度误差是否在平行度公差范围内,如果所测平行度误差大于平行度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。

测量效果示意图:

优势:

1)无需人工用肉眼去读数,可以减少由于人工读数产生的误差;

2)无需人工去处理数据,数据采集仪会自动计算出平行度误差值。

3)测量结果报警,一旦测量结果不在平行度公差带时,就会自动报

警。

以上是对平行度以及其误差检测方法进行了详细的介绍,如需了解更多,可直接与我们的工作人员联系。

同轴度测量方法[1]

同轴度测量方法 方法一:用两个相同的刃口状V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备:百分表、表座、表架、刃口状V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状V 形块上,基准轴线由V 形块模拟,如下图所示。 同轴度测量方法示意图 3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax 与最小读数Mmin 的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面A 、B、C、D),取各截面测得的最大读数Mimax 与最小读数Mimin 差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ = (Mmax -Mmin )/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并检验零件的行为误差是否合格。 方法二:利用数据采集仪连接百分表测量法[1] 1、测量仪器:偏摆仪、百分表、数据采集仪 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图: 数据采集仪连接百分表测量同轴度误差示意图 优势:1)无需人工用肉眼去读数,可以减少由于人工读数产生的误差; 2)无需人工去处理数据,数据采集仪会自动计算出同轴度误差值。 3)测量结果报警,一旦测量结果不在同轴度公差带时,数据采集仪就会自动报警。

建筑物垂直度标高全高测量记录(已填内容)参考模板

建筑物垂直度、标高、全高测量记录

注:垂直度测量平面示意图及偏差方向见背页 说明 1. 超过允许偏差的偏差值在表中用~~标出; 2. 在备注栏中应注明建筑物标高、全高的设计值;每层所测的具体位置或轴线未描述清楚的也可在备注栏中标出或另外做出详细记录; 3. 主体结构验收前 , 应对建筑物每层楼面标高、各大角或转角垂直度进行测量;房屋竣工验收前,也应对各大角或转角垂直度进行测量,故本表每个工程均应有两张。测量由监理单位会同施工单位进行, 测量数据作为验收的依据之一。 4. 砌体结构外墙垂直度全高查阳角,不应少于4处 , 每层每 20m 查一处;内墙按有代表性的 自然间抽 10%, 但不应少于3间,每间不应少于2处,柱不少于 5 根。混凝土结构按楼层、结构缝或施工段划分检验批。在同一检验批中 , 对梁、柱 , 应抽查构件数量的 109 毛 , 且不少于 3 件 ; 对墙和板,应按有代表性的自然间抽查 10%, 且不少于3间;对大空间结构,墙可按相邻轴线间高度 5m 左右划分检查面,板可按纵横轴线划分检查面,抽查 10%, 且均不少于3面。

建筑物垂直度、标高、全高测量记录

注:垂直度测量平面示意图及偏差方向见背页 说明 1. 超过允许偏差的偏差值在表中用~~标出; 2. 在备注栏中应注明建筑物标高、全高的设计值;每层所测的具体位置或轴线未描述清楚的也可在备注栏中标出或另外做出详细记录; 3. 主体结构验收前 , 应对建筑物每层楼面标高、各大角或转角垂直度进行测量;房屋竣工验收前,也应对各大角或转角垂直度进行测量,故本表每个工程均应有两张。测量由监理单位会同施工单位进行, 测量数据作为验收的依据之一。 4. 砌体结构外墙垂直度全高查阳角,不应少于4处 , 每层每 20m 查一处;内墙按有代表性的 自然间抽 10%, 但不应少于3间,每间不应少于2处,柱不少于 5 根。混凝土结构按楼层、结构缝或施工段划分检验批。在同一检验批中 , 对梁、柱 , 应抽查构件数量的 109 毛 , 且不少于 3 件 ; 对墙和板,应按有代表性的自然间抽查 10%, 且不少于3间;对大空间结构,墙可按相邻轴线间高度 5m 左右划分检查面,板可按纵横轴线划分检查面,抽查 10%, 且均不少于3面。

三种常用的检测路基压实度检测的方法

路基压实度测定方法及其操作规程 灌砂法 1 目的和适用范围 1.1 本试验法适用于在现场测定基层(或底基层)、砂石路面及路基土的各种材料压实层的密度和压实度检测,但不适用于填石路堤等有大孔洞或大孔隙的材料压实层的压实度检测。 1.2 用挖坑灌砂法测定密度和压实度时,应符合下列规定: (1)当集料的最大粒径小于13.2mm、测定层的厚度不超过150mm时,宜采用φ100mm的小型灌砂筒测试。 (2)当集料的最大粒径等于或大于13.2mm,但不大于31.5mm,测定层的厚度不超过200mm时,应用φ150mm的大型灌砂筒测试。 2 仪具与材料技术要求 本试验需要下列仪具与材料: (1)灌砂筒:有大小两种,根据需要采用。型式和主要尺寸见图1及表1。当尺寸与表中不一致,但不影响使用时,亦可使用。储砂筒筒底中心有一个圆孔,下部装一倒置的圆锥形漏斗,漏斗上端面开口,直径与储砂筒底中心有一个圆孔,漏斗焊接在一块铁板上,铁板中心有一圆孔与漏斗上开口相接。在储砂筒筒底与漏斗顶端铁板之间设有开关。开关为一薄铁板,一端与筒底及漏斗铁板铰接在一起,另一端伸出筒身外,开关铁板上也有一个相同直径的圆孔。

图1 灌砂筒和标定罐(尺寸单位:mm)(2)金属标定罐:用薄铁板制作的金属罐,上端周围有一罐缘。 (3)基板:用薄铁板制作的金属方盘,盘的中心有一圆孔。 (4)玻璃板:边长约500--600mm的方形板。 (5)试样盘:小筒挖出的试样可用饭盒存放。大筒挖出的试样可用300mm×500mm×400mm的搪瓷盘存放。 (6)天平或台秤:称量10--15kg,感量不大于1g。用于含水量测定的天平精度,对细粒土、中粒土、粗粒土宜分别为0.01g、0.1g、1.0g。 (7)含水量测定器具:如铝盒、烘箱等。

现场压实度检测方法

压实度检测方法 第一节压实度试验检测方法 路基、路面压实质量是道路工程施工质量管理最重要的内在指标之一,只有对路基、路面结构层进行充分压实,才能保证路基、路面的强度。刚度及路面的平整度,并可以保证及 延长路基、路面工程的使用寿命。 现场压实质量用压实度表示,对于路基土及路面基层,压实度是指工地实际达到的干密度与室内标准击实试验所得的最大于密度的比值;对沥青路面,压实度是指现场实际达到的 密度与室内标准密度的比值。 一、标准密度(最大干密度)和最佳含水量的确定方法 由于筑路材料结构层次等因素的不同,确定室内标准密度的方法也多样化,有些方法需在实践中进一步完善。最大干密度是指在标准击实曲线(驼峰曲线)上最大的干密度值,该 值对应的含水量即为最佳含水量。 (一)路基土的最大干密度和最佳含水量确定方法 路基受到的荷载应力,随深度而迅速减少,所以路基上部的压实度应高一些;另外,公路等级高,其路面等级也高,对路基强度的要求则相应提高,所以对路基压实度的要求也应高一些。因此,高速、一级公路路基的压实度标准,对于路床0~80cm应不小于95%,路堤80~150cm应不小于93%,150cm以下应不小于90%;对于零填及路堑、路槽底面以 0~30cm应不小于95%。 在平均年降雨量少于150mm且地下水位低的特殊干旱地区(相当于潮湿系数≤0.25地区)的压实度标准可降低2%~3%。因为这些地区雨量稀少,地下水位低,天然土的含水量大大低于最佳含水量,要加水到最佳含水量情况下进行压实确有很大困难,压实度标准适当降低也不致影响路基的强度和稳定性。在平均年降雨量超过2000mm,潮湿系数>2的过湿地区和不能晾晒的多雨地区,天然土的含水量超过最佳含水量5%时,要达到上述的要求 极为困难,应进行稳定处理后再压实。 由于上的性质、颗粒的差别,确定最大干密度的方法也有区别,除了一般上的“击实法”以外,还有粗粒上和巨粒上最大干密度的确定方法。由于击实功的不同,可分为重型和轻型击实,两个试验的原理和基本规律相似,但重型击实试验的击实功提高了4.5倍。击实试验中按采集土样的含水量,分湿土法和干土,法;按土能杏重复使用,也分为两种,即土能重复使用和不能重复使用。选择时应根据下列原则进行:根据工程的具体要求,按击实试验方法种类中规定选择轻型或重型试验方法;根据土的性质选用于土法或湿土法,对于高含水量上宜选用湿土法;对于非高含水量土则选用于土法;除易击碎的试样外)试样可以重复使用。 振动台法与表面振动压实仪法均是采用振动方法测定土的最大干密度。前者是整个土样同时受到垂直方向的振动作用,而后者是振动作用自上体表面垂直向下传递的。研究结果表明,对于元粘聚性自由排水上这两种方法最大干密度试验的测定结果基本一致,但前者试验设备及操作较复杂,后者相对容易,且更接近于现场振动碾压的实际状况。因此,使用时可根据试验设备拥有情况择其一即可,但推荐优先采用表面振动压实仪法。已有的国内外研究结果表明,对于砂、卵、漂石及堆石料等无粘聚性自由排水上而言,一致公认采用振动方法而不是普通击实法。因此,建议采用振动方法测定无粘聚性自由排水土的最大干密度。 各试验方法的仪器设备、试验步骤等详见《公路土工试验规程》(JTJI051-93)。 (二)路面基层混合料最大干密度及最佳含水量确定方法 常见的路面基层材料有半刚性基层及粒料类基层,粒料类基层最大干密度的确定可参照粗粒土和巨粒土的振动法。半刚性基层材料按照《公路工程元机结合料稳定材料试验规程》(JTJ057-94)执行,用标准击实法求得,但当粒料含量高时(50%以上),由于击实筒空间

平行度检测仪的设计方法

第28卷第4期长春理工大学学报 Vo l 128No 142005年12月 J ou rnal of Changchun Un i versit y of Science and T echnology Dec .2005 收稿日期:2005-08-12 基金项目:振兴东北老工业基地项目(04-02GG156) 作者简介:张立颖,女(1976-),硕士研究生,主要从事光学仪器装调方面的研究。 平行度检测仪的设计方法 张立颖 刘德尚 王文革 (中国科学院长春光学精密机械与物理研究所,长春 130031) 摘 要:国内现有的平行度检测方法和检测设备都是用于检测可见光的平行度。对于激光和红外平行度的精密检测,还没有一个好的检测方法。本文介绍了一种既可以检测可见光又可以检测激光、红外平行度的检测仪,并且论述了设计原理、装调方法以及精度的验证,其检测精度可以达到?2d 。关键词:平行度;激光;红外 中图分类号:TH74512 文献标识码:A 文章编号:1672-9870(2005)04-0033-03 Design of t he L ight Parallelis m Detector Z HANG L i y ing LIU D es hang WANG W enge (Changchun Instit u te o f Op tics ,F i n eM echanics and Phy sics ,Chinese Acade my of Siences ,Changchun 130031)Abst ract :In our nation ,w e have l o ts o f m ethods and equ i p m ents to detect the parallelis m of v isible li g h.t But w e don t 'kno w how to detect the paralle lis m of laser and i n frared ,This paper descri b es briefly the desi g n idea,asse m b l y techn i q ue and ho w to test and verify its accuracy .A t las,t we get the conclu -si o n that the accuracy of the ne w detecto r is less than ?2d ,and the dectctor can be used i n v isi b l e ligh.t K ey w ords :Pa ra lle lis m;Laser ;Infrared 随着激光与红外技术的发展,红外跟踪器和激光测距机已被广泛应用在现代化的光电经纬仪上。 然而令人遗憾是,对于激光、红外系统的平行度的标校却一直没有一个令人满意的方法,无奈人们只能在几十公里外制造一个红外目标,并把这个目标假设为无穷远光源来标校激光、红外系统的平行度,这个方法测量误差大,实现也困难。本文设计的平行度检测仪(以下简称检测仪)从根本上解决了这个难题,它的结构简单、成本低,既可以在实验室使用,又可以直接安装在红外跟踪车上,在外场随时标校激光、红外的平行度,同时它又可兼做红外目标模拟器,因此具有良好的市场前景。 1 检测仪的结构及检测原理 111 检测仪的结构 用于检测激光、红外平行度的检测仪的组成包括,光学部分:(1)衰减片;(2)平面镜组;(3)分光镜;(4)平行光管;(5)红外光源;(6)特 制耙面。机械部分:(1)导轨;(2)可移动支架。用于可见光测量时,只需把红外光源更换为普通光源,将特制耙面更换为普通星点板即可。112 检测仪的检测原理11211 检测仪的光学系统 检测仪的光学系统如图1所示。检测仪由A 、B 两个光路组成。激光经过(光路A )衰减片衰减后,从平面镜2的周围入射到分光镜上,经过平行光管汇聚到特制耙面上,使耙面发热形成红外光源,发射出的光经过平行光管后变成平行光,经过分光镜把光分成两束,一束(光路A )原路返回,一束(光路B)进入红外接收系统。11212 检测仪的工作过程 ①红外光源发射出的光经过特制耙面(此时耙面可以视为一个星点)通过平行光管变成平行光,再经过分光镜进入光路B ,并呈像在红外成像器的光轴中心。 ②激光测距机发出的激光通过光路A 最终汇

三米直尺法检测平整度作业指导书

三米直尺法检测平整度作 业指导书 This manuscript was revised by the office on December 10, 2020.

T0931-2008三米直尺法检测平整度作业指导书 一目的和适用范围及标准 本方法规定用三米直尺测定路表面的平整度。定义三米直尺基准面距离路表面的最大间隙表示路基路面的平整度,以mm计。 本方法适用于测定压实成型的路面各层表面的平整度,以评定路面的施工质量及使用质量,也可用于路基表面成型后的施工平整度检测。 二仪具与材料 本试验需要下列仪具与材料: (1)3m直尺:硬木或铝合金钢制,底面平直,长3m。 (2)最大间隙测量器具: 楔形塞尺:木或金属制的三角形塞尺,有手柄。塞尺的长度与高度之比不小于10,宽度不大于15mm,边部有高度标记,刻度精度不小于或等于0.2mm,也可使用其他类型的量尺。 深度尺:金属制的深度测量尺,有手柄。深度尺测量杆端头直径不小于10mm,刻度精度小于或等于。 (3)其它:皮尺或钢尺、粉笔等。 三方法与步骤 准备工作 (1)按有关规范规定选择测试路段。

(2)在测试路段路面上选择测试地点:当为施工过程中质量检测需要时,测试地点根据需要确定,可以单杆检测;当为路基路面工程质量检查验收或进行路况评定需要时,应连续测量10尺。除特殊需要者外,应以行车道一侧车轮轮迹(距车道线80~100cm)作为连续测定的标准位置。对旧路已形成车辙的路面,应取车辙中间位置为测定位置,用粉笔在路面上做好标记。 (3)清扫路面测定位置处的污物。 测试步骤 (1)在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测试地点的路面上。 (2)目测3rn直尺底面与路面之间的间隙情况,确定间隙最大的位置。 (3)用有高度标线的塞尺塞进间隙处,量测其最大间隙的高度(mm);或者用深度尺在最大间隙位置量测直尺上顶面距地面的深度,该深度减去尺高即为测试点的最大间隙的高度,精确至。 四计算 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10次时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。 五报告

压实度检测的常规方法及注意点

压实度检测的常规方法及注意点 一、压实度检测原理 压实度是控制土料、无机结合料、砂砾混合料及沥青混合料等压实质量的主要指标之一。压实度反应了现场压实后填筑材料的密实状况。压实度越高,密度越大,材料整体性能越好。例如:在道路施工中,对路基、路面结构层进行充分碾压后,才能保证其强度和刚度,投入使用后不致出现路面下沉、凹陷、裂缝。在房屋建筑工程中,为使浇筑的地坪不致下沉出现开裂,对基础回填也有压实度要求。 所谓压实度是指在施工现场抽取的样土经烘干至恒重测得的干密度与室内标准击实所得的最大干密度的比值。例如:10%灰土层现场取样的干密度为1.61g/cm3,设计压实度指标为≥97%,标准击实的最大干密度为1.67g/cm3取样的压实度为1.61/1.67=96.4%,不符合设计要求。 二、击实实验 土样的密度与含水量的关系如下图所示: 密度 最大干密度 含水量 最佳含水量 密度随含水量的不断增大而增大,当达到最大值时,随含水量的不断增大而减小。标准击实试验就是获得土样的干密度与含水量的关系曲线,然后求得最大干密度下的含水量即最佳含水量。 标准击实试验根据击实功的不同分为重型击实和轻型击实二种。实验室试验一般是通过调整击实锤重量及落距、样土体积来转换轻型或重型试验。选择何种试验方法应根据施工技术要求及施工工艺来确定。在实际操作中采用选择何种试验方法必须要明确。因为二者由于击实功的不同,所得的干密度相差甚远,对以此为基准计算得出的压实度结果截然不同。通常是道路、场地等按市政道路设计要求的应采用重型击实;一般的房屋建筑工程回填以轻型击实为多。

标准击实的作用:一是取得的最佳含水量可为实际施工中提供材料含水量的控制指标;二是为以后的压实度检测提供最大干密度标准值。 (一)、试样制备的注意点 1、试样含水量的确定 标准击实的试件一般制备6个,其中5个是用作正常实验,一个备用。在制备试件时应注意控制试件的预估最佳含水量。通常是土样的塑性指标,若不知塑性指标时可根据经验来确定。即:素土为:14%左右、5%灰土为:14%左右、7%灰土为:16%左右、9%灰土为:18%左右、砂石混合料为:5%左右、二灰碎石为:8%左右。其中灰土混合料的含灰量与含水量是成正比的,含灰量高预估最佳含水量就相应提高;砂石混合料中砂的比例大,预估最佳含水量应相应增大;同理二灰碎石的二灰比例大,预估最佳含水量应相应增大。确定预估最佳含水量后,根据预估最佳含水量按一定等距确定5个试件的含水量。例如:素土的5个试件含水量分别为:10%、12%、14%、16%、18%。 2、试样土的搅拌与浸润 盛放试样的容器需保证不吸水,甚至可用湿布将容器擦拭一遍。加水可用洒水壶均匀喷洒。加水后,试样土必须反复搅拌均匀,否则会导致平行含水量测定的不准确或数据作废。试样土搅拌均匀后应放入密封容器中浸润24小时,浸润时间不能过短以保证水分充分均匀扩散。 (二)、试件制作的注意点 在试件的制作中应注意控制试件的高度,试件高度控制在高于试样筒3mm,不宜过高或过低,否则会影响击实功及试件不容易削平。对于无经验的初试者可尝试以下方法:若分5层击实的,将试样土平均分成5份,逐份加入击实。同理分3层的将试样土平均分成3份,逐份加入击实。每层击实完毕后应将样土表面刨毛,后再加入第二份样土进行击实,这样可使层间能充分结合。 当一个试样击实完毕后,对高出试样筒的余土沿筒口削除,尽量与试样筒口平齐,否则会影响试件密度的准确性。因为计算试件的湿密度是以试样筒的容积作为试件的体积,以试件质量除以试样筒的容积得出试件湿密度。如果试件高出试样筒,则湿密度会偏大,反之则偏小。 在试件中取含水量测定样品时注意取样需具有代表性,取样部位宜分别在试

测量同轴度误差的方法

测量同轴度误差的方法

一、同轴度 同轴度用于控制轴类零件的被测轴线对基准轴线的同轴度误差。 二、同轴度公差带 同轴度公差带是直径为公差值t,且与基准轴线同轴的圆柱面内的区域。如下图所示。?d孔轴线必须位于直径为公差值0.1mm,且与基准轴线同轴的圆柱面内。 三、任务:测量联动轴零件的同轴度误差 任务分析:被测项目是被测要素为大圆柱面的轴线,基准要素为两端小圆柱面的公共轴线。

含义:大圆柱面的轴线必须位于直径为公差值Φt(Φ0.08mm)的圆柱面内,此圆柱面的轴线与公共基准轴线A‐B(即 两个小圆柱面的公共轴线)重合。 根据含义可知,我们选择测量方法有两种。 四、测量方法 方法一: 用两个相同的刃口状 V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备 百分表、表座、表架、刃口状 V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状 V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状 V 形块上,基准轴线由 V 形块模拟,如图 3-77 所示。

3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax 与最小读数 Mmin 的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面 A 、B、C、D),取各截面测得的最大读数 Mimax 与最小读数 Mimin 差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ=(Mmax - Mmin )/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并 检验零件的行为误差是否合格。 方法二: 直接利用数据采集仪连接百分表实现高效测量 1、测量仪器:偏摆仪、百分表、太友科技QSmart 数据采集仪。 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值, 然后由数据采集仪软件里的计算软件自动计算出所测产品的同轴度误差(Δ=(Mmax - Mmin )/2),最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度公差范围内,如果所测同轴度误差大于圆度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。 测量效果示意图:

第五节 平整度试验检测方法

第五节平整度试验检测方法 一、概述 平整度是路面施工质量与服务水平的重要指标之一。它是指以规定的标准量规,间断地或连续地量测路表面的凹凸情况,即不平整度的指标。路面的平整度与路面各结构层次的平整状况有着一定的联系,即各层次的平整效果将累积反映到路面表面上,路面面层由于直接与车辆及大气接触,不平整的表面将会增大行车阻力,并使车辆产生附加振动作用。这种振动作用会造成行车颠簸,影响行车的速度和安全及驾驶的平稳和乘客的舒适,同时,振动作用还会对路面施加冲击力,从而加剧路面和汽车机件损坏和轮胎的磨损,并增大油耗。而且,不平整的路面会积滞雨水,加速路面的破坏。因此;平整度的检测与评定是公路施工与养护的一个非常重要的环节。 平整度的测试设备分为断面类及反应类两大类。断面类实际上是测定路面表面凹凸情况的,如最常用的3m直尺及连续式平整度仪,还可用精确测定高程得到;反应类测定路面凹凸引起车辆振动的颠簸情况。反应类指标是司机和乘客直接感受到的平整度指标,因此它实际上是舒适性能指标,最常用的测试设备是车载式颠簸累积仪。现已有更新型的自动化测试役备,如纵断面分析仪,路面平整度数据采集系统测定车等。国际上通用国际平整度指数IRI衡量路面行驶舒适性或路面行驶质量,可通过标定试验得出IRI与标准差ó或单向累计值VBI之间的关系。 二、平整度测试方法 (一)3m直尺法 3m直尺测定法有单尺测定最大间隙及等距离( 1.5m)连续测定两种。两种方法测定的路面平整度有较好的相关关系。前者常用于施工质量控制与检查验收,单尺测定时要计算出测定段的合格率;等距离连续测试也可用于施工质量检查验收,要算出标准差,用标准差来表示平整程度。 1.试验目的和适用范围

路基压实度的检测方式及存在问题的探讨

路基压实度 路基压实度【degree of compaction】(原:指的是土或其他筑路材料压实后的干密度与标准最大干密度之比,以百分率表示。)路基压实度是路基路面施工质量检测的关键指标之一,表征现场压实后的密度状况,压实度越高,密度越大,材料整体性能越好。 简介 密度(最大干密度)确定和现场密度试验。 设质量监督总站组织编写)路基压实度是填土工程的质量控制指标。先取压实前的土样送试验室测定其最佳含水量时的干密度,此为试样干密度。再取由实试验后所得的试样最大干密度,用实际干密度除以最大干密度即是土的实际压实度。用此数与标准规定的压实度 路基压实度=试样干密度/最大干密度(100%) 传统压实度检验方法 ①环刀法,是一种破坏性的检测方法,适用于不含骨料的细粒土。优点是设备简单操作方便;缺点是受土质限制,当环刀打入土中时,产生的应力使土松动,壁厚时产生的应力较大,因此干密度有所降低。②灌砂法,是一种破坏性检测方法,适用于各类土。优点是测定值精确;缺点是操作较复杂,须经常测定标准砂的密度和锥体重。③核子密度仪法,是一种非破坏性测定方法。能快速测定湿密度和含水量,满足现场快速、无破损的要求,并具有操作方便,显示直观的优点,但应与灌砂法进行对比标定后方可使用。 灌沙法的检测步骤 首先要在试验地点选一块平坦表面,其面积不得小于基板面积,并将其清扫干净。将基板放在此平坦表面上,沿基板中孔凿洞,洞的直径100毫米,在凿洞过程中应注意不使凿出的试样丢失,并随时将凿松的材料取出,放在已知质量的塑料袋内,密封。试洞的深度应等于碾压层厚度。凿洞毕,称此袋中全部试样质量,准确至1 克。减去已知塑料袋的质量后即为试样的总质量。然后从挖出的全部试样中取有代表性的样品,放入铝盒,用酒精燃烧法测其含水量。最后将灌砂筒直接安放在挖好的试洞上,这时灌砂筒内应放满砂,使灌砂筒的下口对准试洞。打开灌砂筒开关,让砂流入试洞内。直到灌砂筒内的砂不再下流时,关闭开关,取走灌砂筒,称量筒内剩余砂的质量,准确至1克。试洞内砂的质量=砂至满筒时的质量-灌砂完成后筒内剩余砂的质量-锥体的质量。挖出土的总质量除以试洞内砂的质量再乘以标准砂的密度可计算路基土的湿密度。干密度就等于湿密度/(1+0.01*含水量) 压实度就等于土的干密度/土的最大干密度*100% 在路基施工过程中,为控制好路基压实质量,提高现场压实机械的工作效率,需要重点做好四方面工作:一是通过试验准确确定不同种类填土的最大干密度和最佳含水量。二是现场控制填土的含水量。实际施工中,填土的含水量是一个影响压实效果的关键指标,路基施工中当含水量过大时应翻松晾晒或掺灰处理,降低含水量;当含水量过低时,应翻松并洒水闷料,以达到较佳的含水量。三是分层填筑、分层碾压。施工前,要先确定填土分层的压实厚度。

同轴度测量方法

同轴度测量方法 方法一: 用两个相同的刃口状V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备 百分表、表座、表架、刃口状V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状V 形块上,基准轴线由V 形块模拟,如下图所示。 同轴度测量方法示意图 3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax与最小读数Mmin的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面A 、B、C、D),取各截面测得的最大读数Mimax与最小读数Mimin差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ = (Mmax-Mmin)/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并 检验零件的行为误差是否合格。 方法二:利用数据采集仪连接百分表测量法[1] 1、测量仪器:偏摆仪、百分表、数据采集仪 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图:

钻孔灌注桩垂直度的简易检验方法

钻孔灌注桩垂直度的简易检验方法 桩孔垂直度是钻孔灌注桩的检验项目之一,一般规定桩孔垂直度 < 1%H(H为桩孔垂深)。钻孔灌注桩口径一般较大,使用口径小的测斜仪器,偏差值测不出来,满足不了工程需要。 我们在某新建的工程施工600 mm嵌岩钻孔灌注桩时出现了桩孔偏斜,钢筋笼下不到底,导管下不去。监理工程师、建设单位代表要求:桩孔垂直度必须达到设计要求,垂直度检验栏内必须填上数据,否则不能施工。我们利用重锤原理制作了一套检验器,根据几何原理计算桩孔垂直度(偏斜率)。随时进行检测,及时了解和掌握钻孔轴线在空间的位置,采取有效的防治措施,保证了施工质量,甲方非常满意。现将检测方法介绍如下。 2检验器的制作 按设计桩孔直径用钢筋制作平底同径检验器(相当于重锤),其规格尺寸为:直径等于桩孔设计直径,长度为3倍桩径;主筋616 mm;加强筋14 mm@1000-1500 mm,在首尾加强筋内设呈90°交角的内支撑;上部为提引梁圆环,圆环中心与检验器轴线重合;用14 m m 钢筋制作与转盘通孔槽直径相等的开口检测圆环,内用12 mm钢筋呈90°焊牢,交点处用钢锯锯成十字条痕 3检验方法 (1)移开转盘(桩孔直径小于转盘通孔直径时,可不移)。 (2)用升降机将检验器下入孔内,将转盘移回原位固定。

(3)提引绳从转盘中间穿过与检验器连接,将开口检测圆环放到转盘槽内,这时检测圆环的内支撑的交点0即是转盘中心又是设计钻孔中心。 (4)将检验器提起,下放到孔口,使其处于悬垂状态,此时提引绳与转盘平面有一个交点B(见图1),用直尺量出0B距离(精确到 1mm)。理论上0、B两点重合,实际情况并非如此。 (5)量出天车滑轮前沿距转盘平面的距离h(此高是固定的),以及转盘平面距孔口距离(精确到1mm)。 (6)继续下放检验器到预测定的位置,此时提引绳与转盘平面又会产生一个交点B',量出0B'的距离。 4桩孔垂直度(偏斜率)计算 把检验测定的数据代入下列公式,计算出桩孔垂直度(偏斜率)i,参看图1。 图1钻孔垂直度(偏斜率)计算要素示意图 桩顶偏斜距S' =0B(1+h ' /h)

压实度检测试验作业指导书

压实度检测试验作业指导书 室外试验: 压实度试验检测2人,试验用时25-40分钟。 目的和适用范围 1.1本方法适用于在现场测定基层(或底基层)、砂石路面及路基土的各种材料压实层的密度和压实度检测。但不适用于填石路堤等有大孔洞或大孔隙材料的压实度检测。 1.2用挖坑灌砂法测定密度和压实度时,应符合下列规定: ⑴当集料的最大粒径小于13.2mm、测定层的厚度不超过150mm时,宜采用Φ100mm的小型灌砂筒测试。 ⑵当集料的最大粒径等于或大于13.2mm,但不大于 31.5mm,测定层的厚度不超过200mm,时,应用Φ150mm的大型灌砂筒测试。 2仪具与材料技术要求 本方法需要下列仪具与材料: ⑴灌砂筒:有大小两种,根据需要采用。主要尺寸见表

T 0921。当尺寸与表中不一致,但不影响使用时,亦可使用。上部为储砂筒,筒底中心有一个圆孔。下部装一倒置的圆锥形漏斗,漏斗上端面开口,直径与储砂筒的圆孔相同,漏斗焊接在一块铁板上,铁板中心有一圆孔与漏斗上开口相接。在储砂筒筒底与漏斗顶端铁板之间设有开关。开关为一薄铁板,一端与筒底及漏斗铁板铰接在一起,另一端伸出筒身外,开关铁板上也有一个相同直径的圆孔。 ⑵金属标定罐:用薄铁板制作的金属罐,上端周围有一罐缘。 ⑶基板:用薄铁板制作的金属方盘,盘的中心有一圆孔。 ⑷玻璃板:边长约500~600mm的方形板。 ⑸试样盘:小筒挖出的试样可用饭盒存放,大筒挖出的试样可用300mm×500mm×40mm的搪瓷盘存放。 ⑹天平或台秤:称量10~15kg,感量不大于1g。用于含水率测定的天平精度,对细粒土、中粒土、粗粒土宜分别为 0.01g、0.1g、1.0g。 ⑺含水率测定器具:如铝盒、烘箱等。

三坐标测量同轴度方法

三坐标测量同轴度方法 方法一同轴度测量方法 两个孔的公共轴心线是指两孔各自被测表面长度的中点连线;假使是三个或三个以上的圆柱表面,它们的公共轴心线应该在图样上另做规定。 - 几种测量机通常采用的同轴度测量方法: 一、应用系统功能法: 即测量机软件系统中自带的同轴度和同心度测量标准子程序,用户在测量时可方便地进行调用。 二、极坐标测量法: 这是一种类似于平台测量的检测方法,其基准元素可以通过圆柱、阶梯柱、直线以及圆/圆等测量后构造的直线获得。可以说,几乎所有用作基准元素的单一基准或组合基准都将包括在内,而被测要素则更为简单,通常情况只是圆的测量。 其操作步骤如下: 1、测量单一基准轴线或公共基准轴线并用其建立第一轴(同心度测量除外); 2、将基准轴线清零(即平移原点到基准中心); 3、在被测元素(孔或轴)上测若干截圆(通常测两端); 4、输出被测截圆极径(PR值); 5、取其输出较大PR值的2倍为所测同轴度误差。 三、求距法: 该方法的基本原理是通过计算圆心到基准轴线距离的方法求得同轴度误差。与极坐标测量方法不同的是,被选定的基准轴线无须清零,但评定同轴度误差时同样要取计算结果中最大距离乘以2。 - 关于两个相邻较远的短基准同轴度的测量: 这是一个比较典型困扰测量机用户的问题,事实上已经证明由此单从测量数据上来看将有相当一部分工件被视为“超差品”,而那些“超差品”经装配实验后证明大多数没有问题。这就不得不需要引起测量机操作员的注意。分析其原因,既不是机器精度太低,也不是系统软件计算错误,主要是图样标注不妥。 对此,可采用以下几种相应的测量方法: 1、当基准元素为孔时,可插入配合间隙较为合适的心棒,以延长基准轴线的实测长度; 2、采用建立公共基准的测量方法,模拟专用心棒进行检验的方法,分别测量两圆柱对公共轴心线的同轴度;(参看前面公共基准轴线的建立方法和极坐标测量法); 3、在基准圆柱表面内测量更多的点,(多用于连续扫描测头)以加大计算的信息量,使系统确定最大内接圆或最小外接圆时有充足的表面形状信息。

垂直度误差检测

任务一垂直度误差检测 知识目标 理解直线度公差的含义 了解自准直仪的工作原理 技能目标 掌握自准直仪测量直线度误差的方法 熟悉直线度误差的评定方法 1、任务描述 2、任务分析 3、相关知识 (1)垂直度公差 限制实际要素对基准在垂直方向上变动量的一项指标。 垂直度公差也有面对面、面对线、线对面、线对线等情形,如图,面对面的垂直度公差带是间距等于公差值且与基准面垂直的两平行平面之间的区域。

线对面的垂直度公差带是直径等于公差值且与基准面垂直的圆柱面内的区域。 (2)检测原则 测量特征值的原则。 (3)方箱 是平台测量的主要辅助工具,具有垂直度精度很高的四个相邻平面,用作测量的辅助基准,也可用作划线使用。 (4)塞尺 也称厚薄规,测量精度一般为0.01mm,每把13、14、17、20片不等,当遇到测量很小的两个平面之间的距离时,塞尺可以测出缝隙的大小,使用时可以单片使用也可以不同厚度尺片组合一起。 使用时要注意用力适当,方向合适,不可强塞,防止弯曲过度甚至折断和操作,只检查某一间隙是否小于规定值时,则用符合规定的最大值的塞片塞该间隙,如果不能塞入即合格,反之不合格。 4、任务实施 (1)操作步骤 1)清洁工件、平板、方箱,检查百分表零位偏差 2)将方箱放在平板合适位置,将工件基准平面旋转在平板上 3)调整被测平面靠近方箱,保持基准平面与平板稳定接触 4)用塞尺测量间隙的最大值,并记录 5)塞尺读数的最大值就是垂直度误差,填写检测报告,给出合格性结论

6)仪器清洁保养并归位。 (2)注意事项 在检测过程中,实际基准平面要与平板保持稳定接触,用平板模拟理想基准平面。 5、知识拓展 (1)垂直度公差值 (2)垂直度误差其他检测方法介绍 垂直度误差可用平板和带指示表的表架、自准直仪和三坐标测量机等测量。主要有打表法、间隙法和水平仪光学仪器法。 1)先用直角尺调整指示表,当直角尺与固定支撑接触时,将指示表的指针调零,然后对工件进行测量,使固定支撑与被测实际表面接触,指示表的读数即该测点相对于理论位置的偏差。改变指示表在表架上的高度位置,对被测表面的不同点进行测量,取指示表读数的最大值与最小值之差作为被测表面对基准平面的垂直度误差。 2)面对线的垂直度误差测量 用导向块模拟基准轴线,将被测零件旋转在导向块内,然后测量整个被测表面,取指示表读数的最大值与最小值之差作为垂直度误差。 3)将被测零件的基准面固定在直角座上,同时调整靠近基准的被测表面的读数差为最小值,取指示表在整个表面各点测得的最大与最小读数之差,作为该零件睥垂直度误差。 4)将准直仪放置在基准实际表面上,时间调整准直仪使其光轴平行于基准实际表面,然后

3m直尺测定平整度试验方法

3m直尺测定平整度试验方法 1 目的和适用范围 1.1 本方法规定用3m直尺测定距离路表面的最大间隙表示路基路面的平整度,以mm计。 1.2 本方法适用于测定压实成型的路面各层表面的平整度,以评定路面的施工质量及使用质量,也可用于路基表面成型后的施工平整度检测。 2 仪具与材料 本试验需要下列仪具与材料: (1) 3m直尺:硬木或铝合金钢制,底面平直,长3m。 (2)楔形塞尺:木或金属制的三角形塞尺,有手柄。塞尺的长度与高度之比不小于10,宽度不大于15mm,边部有高度标记,刻度精度不小于0.2mm,也可使用其他类型的量尺。 (3)其它:皮尺或钢尺、粉笔等。 3 方法与步骤 3.1 准备工作 (1) 按有关规范规定选择测试路段。 (2) 在测试路段路面上选择测试地点:当为施工过程中质量检测需要时,测试地点根据需要确定,可以单杆检测;当为路基路面工程

质量检查验收或进行路况评定需要时,应连续测量10尺。除特殊需要者外,应以行车道一侧车轮轮迹(距车道线80~100cm)作为连续测定的标准位置。对旧路已形成车辙的路面,应取车辙中间位置为测定位置,用粉笔在路面上作好标记。 (3) 清扫路面测定位置处的污物。 3.2 测试步骤 (1) 在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测试地点的路面上。 (2)目测3m直尺底面与路面之间的间隙情况,确定间隙为最大的 位置。 (3)用有高度标线的塞尺塞进间隙处,量记其最大间隙的高度(mm),准确至0.2mm。 (4) 施工结束后检测时,按现行《公路工程质量检验评定标准》(JTJ071-94)的规定,每1处连续检测10尺,按上述(1)~(3)的步骤测记10个最大间隙。 4 计算 4.1 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10尺时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。

压实度检测方法

压实度检测方法 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

灌砂法检测压实度方法及步骤 一、现场压实度检测准备工作 1、需要的仪器:灌沙筒、金属标定罐、基板样、天平或台秤、含水率测定器具、量砂(标准砂)。 2、标准击实试验数据:最大干密度,最佳含水量 二、现场灌砂法压实度检测操作步骤: 1、首先要在实验地点选一块平坦表面,其面积不得小于基板面积,并将其清扫干净。 2、将基板放在此平坦表面上,沿基板中孔凿洞,在凿洞过程中应注意不使凿出的试样丢失,并随时将凿松的材料取出,放在已知质量的塑料袋内,密封。 3、试洞的深度应等于碾压层厚度。凿洞毕,称此袋中全部试样质量,准确至1克。减去已知塑料袋的质量后即为试样的总质量。 4、将灌沙筒直接安放在挖好的试洞上,这时灌沙筒内应放满砂,使灌沙筒的下口对准试洞。打开灌沙筒开关,让砂流入试洞内。直到灌沙筒内的砂不再下流时,关闭开关,取走灌沙筒,称量筒内剩余砂的质量,准确至1克。 三、含水率测定和计算: 1、从挖出的全部试样中取有代表性的样品,放入铝盒内,用酒精燃烧法测其含水量。 2、(湿土+铝盒)-(燃烧后的干土+铝盒)=水重 水重除以干土重=含水量

四、压实度计算: 1、试洞内砂的质量=砂至满筒时的质量-灌沙完成后筒内剩余砂的质量-锥体的质量。 2、挖出土的总质量/试洞内砂的质量*标准砂的密度=路基土的湿密度。 3、干密度=湿密度/(1+含水量) 4、压实度=土的干密度/土的最大干密度*100%。 五、注意事项: 1、当填料最大粒径小于15mm、测定层厚度不超过150mm时,宜采用?100mm的小型灌砂筒。 2、当填料粒径等于或者大于15mm、但不大于40mm,测定层超过150mm,但不超过200mm时,应采用?150mm的大型灌砂筒。

水泵机组同轴度的测量与校正

水泵机组同轴度的测量 与校正 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

水泵机组同轴度的测量与校正 状元水厂项慧均 摘要:本文主要是根据状元水厂的水泵机组的特点,叙述联轴器的配合偏差、机泵同轴度测量误差产生的原因及解决方法、主要以叙述水泵机组同轴度的测量和校正方法为主。 关键词:配合偏差,同轴度,联轴器,轴向窜动,径向偏差,轴向偏差,不同心度,不平行度。 前言:水泵机组的同轴度是指水泵轴和电机轴的装配偏差,而联轴器是电机和水泵传动的联接部件,机泵的配合偏差也就是联轴器的配合偏差,联轴器装配后都存在着配合偏差,联轴器的配合偏差过大会造成水泵机组的振动增大,是影响轴承、联轴器损坏的主要原因,因此,为了减少水泵机组的振动,就必须减少联轴器的配合偏差,把偏差调整到允许的范围内,才能有效地保证机组的机械寿命,在机泵的运行过程中,因机组自身的振动或基础与管路的沉降等等原因都会造成联轴器配合偏差变化,所以定期对水泵机组同轴度的测量与校正是机泵维护中的重要项目。 一. 联轴器配合偏差的介绍。 联轴器配合的偏差有三种:径向偏差、轴向偏差、角向偏差,径向偏差是指联轴器的两个圆心之间的偏差,可用不同心度来表示,轴向偏差是指两配合面之间的距离与标准配合距离之间的偏差,同轴度测量中用联轴器的间距来表示,间距的测量较简单,用游标尺可直接测量出来,由于轴向偏差的精度要求较低(误差为±3mm),且基座的沉降或设备的振动基本上不影响间距的变化,即使偏差超值校正也简单,所以在同轴度测量中以

测量径向偏差和角向偏差为主,角向偏差是指联轴器两端面与平行端面的角度偏差,角向偏差可用机泵轴心的不平行度来表示,定义为在轴向的一米的距离上的与基准轴中心线的偏差值。由于习惯上把联轴器的角向偏差称为机泵同轴度中的轴向偏差,所以此本文也依照习惯在接下来叙述中把联轴器的角向偏差称为“轴向偏差”,联轴器的轴向偏差用联轴器的间距来表示。 二. 机泵同轴度测量的误差原因分析 状元水厂以前测同轴度的方法是习惯上用一只百分表对联轴器的径向和轴向进行测量,往往在同一时间里多次测量的值都存在较大的偏差,而且数值有时为正偏差有时为负偏差,即使后来用激光校正仪来测,在同一时间里多次测量的值都存在偏差,因测量值不准,就无法校正机泵的同轴度。经过分析发现:我厂的机泵联轴器是膜片式联轴器,在测量中时将联轴器转动180°时,水泵或电机有轴向窜动现象出现,每次测量时其轴向窜动量都是不同的,窜动量从几丝到几十丝的之间变化,所以机泵同轴度测量的误差主要是机泵的轴向窜动造成的,轴向窜动对径向偏差的测量影响微小,对轴向偏差的测量影响很大,为了消除轴向窜动对轴向偏差测量的误差,准确地测量出轴向偏差值,通过在CAD图形上进行模拟分析,发现如在测量轴向偏差是用两只相隔180°的百分表同时测量,就可以消除掉轴向窜动引起的测量误差,如下的图1就是模拟轴向窜动时测量轴向偏差的分析图形。 图1 三. 机泵同轴度的测量只要是测量径向偏差和轴向偏差,径向偏差和轴向偏差说明如下:

相关文档
最新文档