高等代数--第六章 线性空间

第二章 赋范线性空间-黎永锦

第2章 赋范线性空间 虽然不允许我们看透自然界本质的秘密, 从而认识现象的真实原因,但仍可能 发生这样的情形:一定的虚构假设 足以解释许多现象. Eurler L . (欧拉) (1707-1783,瑞士数学家) Schmidt E .在1908 年讨论由复数列组成的空间}||: ){(1 2∞<∑∞ =i i i z z 时引入记号 ||||z 来表示2 11 )(∑∞ =i i i z z ,||||z 后来就称为z 的范数.赋范空间的公理出现在Riesz F .在 1918 年关于],[b a C 上关于紧算子的工作中,但赋范空间的定义是在 1920到1922年间由 Banach S .(1892—1945)、Hahn H .(1879—1934)、Helly E .(1884—1943)和 Wiener N .(1894—1964)给出的,其中以Banach S .的工作最具影响. 2.1赋范空间的基本概念 线性空间是Peano Giuseppe 在1888年出版的书Geometrical Calculus 中引进的.Banach S .在1922年的工作主要是建立具有范数的完备空间,以后为了纪念他称之为 Banach 空间.他定义的空间满足三组公理,第一组公理定义了线性空间,第二组定义了范数, 第三组给出了空间的完备性. 定义 2.1.1 设K 是实数域R 或复数域C ,X 是数域K 上的线性空间,若||||?是X 到R 的映射,且满足下列条件: (1) 0||||≥x 且0||||=x 当且仅当0=x ; (2) ||||||||||x x λλ=,对任意X x ∈和任意K ∈λ ;

空间分析复习重点

空间分析的概念空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。 空间数据的类型空间点数据、空间线数据、空间面数据、地统计数据 属性数据的类型名义量、次序量、间隔量、比率量 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。 空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP:随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。生态谬误在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式) 空间数据的性质空间数据与一般的属性数据相比具有特殊的性质如空间相关性,空间异质性,以及有尺度变化等引起的MAUP效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。 空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。 空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。 ESDA是在一组数据中寻求重要信息的过程,利用EDA技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。 常见EDA方法:直方图、茎叶图、箱线图、散点图、平行坐标图 主题地图的数据分类问题等间隔分类;分位数分类:自然分割分类。 空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。 茎叶图:单变量、小数据集数据分布的图示方法。 优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。 茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列;③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。 箱线图&五数总结 箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1 3密度估计是一个随机变量概率密度函数的非参数方法。 应用不同带宽生成的100个服从正态分布随机数的核密度估计。 空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。 空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布

第六章线性空间练习题参考答案

第六章 线性空间练习题参考答案 一、填空题 1.已知0000,,00V a b c a b c R c b ?????? ? =+∈?? ??? ?+???? 是33R ?的一个子空间,则维(V ) = 3 , V 的一组基是000000000100,100,010*********?????? ? ? ? ? ? ? ? ? ??????? . 2.在P 4中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的取值范围是3k ≠(以1234,,,αααα为行或者列构成的行列式不为零). 3.已知a 是数域P 中的一个固定的数,而1{(,,,),1,2, ,}n i W a x x x P i n =∈= 是P n+1的一个子空间,则a = 0 ,而维(W)=n 4.维数公式为12dim dim V V +=1212dim()dim()V V V V ++. 5.设123,,εεε是线性空间V 的一组基,112233x x x αεεε=++,则由基 123,,εεε到基231,,εεε的过渡矩阵T =001100010?? ? ? ???,而α在基321,,εεε下的坐标是 321(,,)x x x 由基123,,εεε到基233112,,εεεεεε+++的过渡矩阵为T =011101110?? ? ? ??? . 6.数域P 上n 级对称矩阵全体构成数域P 上 (1) 2 n n +维线性空间,数域P 上n 级反对称矩阵全体构成数域P 上 (1) 2 n n -维线性空间,数域P 上n 级上

第六章 线性空间

第六章 线性空间测验 一、填空题 1、已知是的一个子空间,则dim= , 的一组基是 ___________ _. 2、在中,若线性无关,则的取值范围是____________. 3、已知是数域P中的一个固定的数,而 是的一个子空间,则=__________,而维()=__________. 4、设是数域P上的维列向量空间,记 则1、2都是的子空间,且1+2=____________,=____________. 5、设是线性空间V的一组基,,则由基到基的过渡矩阵T =__________,而在基下的坐标是__________. 6、在中, 在基的坐标是________________. 7、令,,,,则是的一组基,判定是否在中,若在,求在基下的坐标____________. 8、已知,则dim=_____,的一组基_______________. 二、判断题 1、 设,则是的子空间. 2、已知为上的线性空间,则维()=2. 3、设,是的解空间,1是的解空间,2是的解空间,则. 4、设线性空间的子空间中每个向量可由中的线性无关的向量组线性表出,则维()=. 5、设是线性空间的子空间,如果但则必有 三、计算题 1、设,,其中 ,,;, 求与的基和维数。 2、在线性空间中,求由基到基的过渡矩阵, 在基下的坐标,其中 四、证明题 1、前4个埃尔米特多项式为1, ,和,这些多项式是在研究数学物理中的某种重要的微分方程时产生的.证明这前4个埃尔米特多项式构成的一组基. 2、在中,令 证明: (1) 都是的子空间;(2) 3、为定义在实数域上的函数构成的线性空间,令

证明:1、2皆为的子空间,且

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

空间计量经济学模型归纳

空间计量经济学模型 空间相关性是指 () ,i j y f y i j =≠即i y 与j y 相关 模型可表示为() (),1i j j i i y f y x i j βε=++≠ 其中,()f g 为线性函数,(1)式的具体形式为 () ()2,0,2i ij j i i i i j y a y x N βεεδ≠=++∑: 如果只考虑应变量空间相关性,则(2)式变为(3)式 ()()21 ,0,,1,2...3n i ij j i i i y W y N i n ρεεδ==+=∑: 式中 1 n ij j i W y =∑为空间滞后算子,ij W 为维空间权重矩阵n n W ?中的元素,ρ为待估的空间自相 关系数。0ρ≠,存在空间效应 (3)式的矩阵形式为() ()21, 0,4u n y Wy N I ρεδ?=: (4)式称为一阶空间自回归模型,记为FAR 模型 当在模型中引入一系列解释变量X 时,形式如下 () ()2,0,5n y Wy X N I ρβεεδ=++: (5)式称为空间自回归模型,记为SAR 模型 当个体间的空间效应体现在模型扰动项时有 () ()21,,0,6u n y X u u Wu N I βλεδ?=+=: (6)式成为空间误差模型,记为SEM 模型 当应变量与扰动项均存在空间相关时有 () ()2121,,0,7u n y W y X u u W u N I ρβλεεδ?=++=+: (7)式称为一般空间模型,记为SAC 模型 当0X =且20W =时,SAC →FAR ;当20W =时,SAC →SAR 当10W =时,SAC →SEM

第六章线性空间自测练习

第六章 线性空间—自测练习 一.判断题 1.两个线性子空间的和(交)仍是子空间。 2.两个线性子空间的并仍是子空间。 维线性空间中任意n 个线性无关的向量可以作为此空间的一组基。 4.线性空间中两组基之间的过渡阵是可逆的。 5.两个线性子空间的和的维数等于两个子空间的维数之和。 6.同构映射的逆映射仍是同构映射。 7.两个同构映射的乘积仍是同构映射。 8.同构的线性空间有相同的维数。 ? 9.数域P 上任意两个n 维线性空间都同构。 10.每个n 维线性空间都可以表示成n 个一维子空间的和。 二.计算与证明 1. 求[]n P t 的子空间1011{()|(1)0,()[]}n n n W f t a a t a t f f t P t --==++=∈……+的基与维 数。 2. 求22P ?中由矩阵12113A ??= ?-??,21020A ??= ???,33113A ??= ???,41133A ??= ?-??生成的子空间的基与维数。 3.设4P 的两个子空间112(,)W L αα=,其中1(1,1,0,1)α=-,2(1,0,2,3)α=,21234124{(,,,)|20}W x x x x x x x =+-=。求12W W +与12W W 的基与维数。 4.P 为数域,22P ?中1,,x x V x y z P y z ?-???=∈?? ?????,2,,a b V a b c P a c ????=∈?? ?-???? 1)证明:12,V V 均为22P ?的子空间。 2)求12V V +和1 2V V 的维数和一组基。 5. P 为数域,3P 中{}1(,,),,,V a b c a b c a b c P ===∈,{}2(0,,),V x y x y P =∈ {

空间复用MIMO系统的信号均衡

第十一章 空间复用MIMO 系统的信号均衡 11.1 线性均衡 如图11所示为一个R T N N ?的MIMO 系统,H 为信道矩阵,ji h (1,2,...;1,2...R T j N i N = =)为第i 根发射天线到第j 根接受天线的增益, i h 为H 的第i 行。12x [,,,]T T N x x x = 为空间复用后的发射信号,12y [,,,]R T N y y y = 为对应的接收信号,其中i x ,i y 分别为第i 根发射天线和第i 根接受天线的发射或接受信号。i z 为第i 根接受天线处方差2 z σ的高斯白噪声, 12z [,,...,]R T N z z z =。则: 1122y Hx+z z T T N N h x h x h x = =+++ (11.1) 图11.1 空间复用MIMO 系统模型 MIMO 系统中每个接收天线上收到的都是各个发送天线上发送的信号的叠加,线性均衡即通过接收信号y 与加权矩阵W 的相乘来减小甚至消除其他天线对目标天线信号的干扰。即: 12x [,,,]Wy T T N x x x == , (11.2) 可见每个符号的判决都是通过接收信号的线性组合得到的,故称为线性均衡,它包括破零算 法(ZF )和最小均方二乘算法(MMSE )。 11.1.1 ZF 均衡 ZF 均衡的的加权矩阵为: 1W (H H)H H H ZF -= (11.3) 则接收信号y 均衡得到的对应发射信号为: 1x W y x (H H)H z x z ZF ZF H H ZF -==+=+ (11.4) 其中1 z W z (H H)H z H H ZF ZF -== 。由于误码率与z ZF 的功率紧密相关,由9.1章可知后验噪

空间分析复习重点

空间分析的概念 空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。 空间数据的类型 空间点数据、空间线数据、空间面数据、地统计数据 属性数据的类型 名义量、次序量、间隔量、比率量 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。 空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP :随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小 、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。 生态谬误 在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式) 空间数据的性质 空间数据与一般的属性数据相比具有特殊的性质 如空间相关性,空间异质性,以及有尺度变化等引起的MAUP 效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。 空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。 空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。 ESDA 是在一组数据中寻求重要信息的过程,利用EDA 技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。 常见EDA 方法:直方图、茎叶图、箱线图、散点图、平行坐标图 主题地图的数据分类问题 等间隔分类;分位数分类:自然分割分类。 空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。 茎叶图:单变量、小数据集数据分布的图示方法。 优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。 茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列; ③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。 箱线图&五数总结 箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1 3密度估计是一个随机变量概率密度函数的非参数方法。 应用不同带宽生成的100个服从正态分布随机数的核密度估计。 空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。 空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布 2)均匀分布:个体间保持一定的距离,每一个点尽量地远离其周围的邻近点。在单位(样方)中个体出现与不出现的概率完全或几乎相等。 11?()n i i x x f x K nh h =-??= ???∑

3.1 赋范线性空间和Banach空间

第3章 赋范线性空间 3.1 赋范线性空间和Banach 空间 3.1.1 赋范线性空间 定义3.1.1 (范数,赋范线性空间) 设X 为是实(或:复)数域F 的线性空间,若对x X ?∈,存在一个实数x 于之对应,且满足下列条件: (1) 0≥x ; 且0=x ?=0x ; (非负性 (non-negativity)) (2) αα=x x ,α∈F ; (正齐(次)性 (positive homogeneity)) (3) +≤+x y x y ,,X ∈x y ; (三角不等式(triangle inequality)) 则称x 为x 的范数(norm),称(,)X ? (或:X )为赋范线性空间(normed linear space), 简称赋范空间(normed space). 例3.1.1 空间[,]C a b 是闭区间[,]a b 上的连续函数全体所成的线性空间。对[,]f C a b ?∈,规定 [,] max ()t a b f f t ∈=, (3.1.1) 易证f 是f 的范数,则[,]C a b 按上述范数成为赋范线性空间。 例 3.1.2 设[,]a b L 是闭区间[,]a b 上的Lebesgue 可积函数全体所成的线性空间。对 [,]f a b ?∈L ,规定 ()d b a f f t t =?, (3.1.2) 若将在[,]a b 上满足()()f t g t ?=的两个函数,f g 视为同一个函数,即将在[,]a b 上满足 ()0f t ? =的函数f 视为恒等于零的函数,即0f =,则在[,]a b L 上,f 是f 的范数,从而 [,]a b L 按上述范数成为赋范线性空间。 例 3.1.3 在n 维实向量空间n R 或n 维复向量空间(称为酉空间)n C 中,对 12(,,,)n n x x x x ?=∈R (或n C ),令 12 21n i i x x =??= ??? ∑, (3.1.3)

(完整版)b第六章_线性空间测试题

高等代数第六章——线性空间测试题 一、填空题 (1) 已知R 3的两组基Ⅰ)1,0,0(),0,1,0(),0,0,1(321===ααα; Ⅱ)0,1,1(),1,1,0(),1,0,1(321===βββ 那么由Ⅱ到Ⅰ的过渡矩阵为 。 (2)在22?P 中,已知???? ??=11111A ,???? ??=01112A ,???? ??=00113A ,??? ? ??=00014A 是22?P 的基,那么,??? ? ??=4321A 在该基下的坐标为 。 (3)设1W 是方程组04321=+++x x x x 解空间,2W 是方程组???=+-+=-++0 043214321x x x x x x x x 那么1W ∩2W 是方程组 的解空间。 (4)设()()()()()()3,2,1,1,1,0,1,0,1,0,1,121L W L W == ()=+21dim W W 。 (5)设1W 、2W 都是V 的子空间,且1W +2W 为直和,那么()=?21dim W W 。 二、判断题: (1)一个线性方程组的全体解向量必做成一个线性空间。( ) (2)实数域R 上的全体n 几级可逆矩阵做成n n P ?的子空间。( ) (3)齐次线性方程组的解空间的维数等于自由未知数的个数。( ) (4)线性空间V 中任意两个子空间的并集仍是V 的子空间。( ) (5)在子空间的和1W +2W 中,如果),(0221121w w ∈∈+=αααα,且这种表示形式唯一,那么1W +2W 为直和。( ) 三、在22?P 中,,1111??? ? ??=a G ,111,11132???? ??=???? ??=a G a G ???? ??=a G 1114

空间统计学

Statistics for spatial data; Noel A.C. Cressie, Wiley& Sons,1991 空间统计学 0 引言 0.1定义 空间统计学由于许多学科的需求发展迅速。 空间统计学涉及的领域:生物学、空间经济学、遥感科学、图像处理、环境与地球科学( 大地测量、地球物理、空间物理、大气科学等等)、生态学、地理学、流行病学、农业经济学、林学及其它学科 空间过程或随机场定义: {}(),Z s s =∈Z S (1) 式中S 是空间位置s 的集合,可以是预先确定的,也可以随机的,2d d ?=S R 是二维欧 氏空间;()Z s 取值于状态空E 。 空时过程:如考虑时间,则 {} (,),,(,)d Z s t s s t + =∈∈?Z S R R 式中S 是空间位置s 的集合,可以是预先确定的,也可以随机的;t + ∈R ;()Z s 取值于状态空E 。 注意:上述为标量值过程,但也可扩展为向量过程。 0.2 空间数据类型 0.2.1 连续型地学统计数据(Geostatistical data ) 此时, 2d d ?=S R 是连续欧氏子空间,即连续点的集合,随机场{} (),Z s s ∈S 在实值空间E 上的n 个固定位置n s s s ,,,21 取值。如图为连续型空间数据

(a )降雨量分布图;(b) 土壤孔穴分布图。(符号大小正比于属性变量值) Geostatistical (spatial) data is usually processed by the geostatistical method that has been set out in considerable detail since Krige published his important paper. In summary, this method consists of an exploratory spatial data analysis, positing a model of (non-stationary) mean plus ( intrinsically stationary) error, non-parametrically estimating variogram or covariogram, fitting a valid model to the estimate, and kriging ( predicting )unobserved parts from the available data. This last step yields not only a predictor, but a mean squared prediction error. 0.2.2 离散型格网数据(Lattice data ) 此时, 2d d ?=S R 是固定的离散空间点,非随机点集合,随机场{}(),Z s s ∈S 在 2d d ?=S R 的空间点采样。空间点可以是给定邻接图关系、表示成网状的地理区域, 如图2-a 。()Z s 是在s 观测的某种感兴趣的值状态空间可以是、也可以不是实值的,比如GDP 、工业产值、农业产值、房产价格;在遥感图像分析领域,空间点就是规则的像元(pixel)集合图2-b 。 Goals for these types of data includes constructing and analyzing explicative models, quantifying spatial correlations, classification, segmentation, prediction and image restoration

空间计量经济学

? 陈强,《高级计量经济学及Stata应用》课件,第二版,2014年,高等教育出版社。 第29章 空间计量经济学 29.1 地理学第一定律 许多经济数据都涉及一定的空间位置。比如,研究全国各省的GDP、投资、贸易、R&D等数据。 此前各章很少关注各省经济之间的互动,通常假设各省的变量相互独立。 但各省经济有着广泛的联系,而且越近的省份联系越密切。 1

根据Tobler (1970),“所有事物都与其他事物相关联,但较近的事物比较远的事物更关联”(Everything is related to everything else, but near things are more related than distant things)。 这被称为“地理学第一定律”(First Law of Geography)。 各省之间的距离信息并不难获得,比如是否相邻,直线距离或运输距离。 将各省的变量数据,再加上各省的位置信息(或相互距离),即可得到“空间数据”(spatial data或areal data)。 研究如何处理空间数据的计量经济学分支,称为“空间计量经济学”(spatial econometrics)。 2

空间计量经济学的最大特色在于充分考虑横截面单位之间的空间依赖性(spatial dependence)。 空间效应(spatial effects)包括空间依赖性与“空间异质性”(spatial heterogeneity)。 由于标准的计量经济学也考虑横截面单位之间的异质性(比如异方差),故空间计量经济学的关注重点为空间依赖性。 空间计量经济学诞生于1970年代。近年来,空间计量经济学蓬勃发展并进入主流,可归功于两方面。 首先,由于GIS(地理信息系统)的发展,空间数据或包含地理信息的数据(geo-referenced data)日益增多。 3

空间统计笔记系列(1-5)

空间统计笔记之一(基础知识) 前段时间在学习空间统计相关的知识,于是把ArcGIS里Spatial Statistics工具箱里的工具好好研究了一遍,同时也整理了一些笔记上传分享。这一篇先聊一些基础概念,工具介绍篇随后上传。 空间统计研究起步于上个世纪70年代,空间统计其核心就是认识与地理位置相关的数据间的空间依赖、空间关联等关系,通过空间位置建立数据间的统计关系。空间统计学依赖于tablor 地理学第一定律,即空间上越临近的事物拥有越强的相似程度;和空间异质性,即空间位置差异造成的行为不确定现象。例如要度量犯罪率与教育程度的关系,不同地区(文教区、贫困区)可能不一样。 利用GIS进行空间统计分析最早可追溯到1854年的伦敦大霍乱(黑死病)。当时盛行的理论是“空气传染”,而不是现在的病菌传染。John Snow 医生开始也相信空气传染学说,但证据使他不得不转向病菌学说。他通过观察霍乱病例在空间上分布的特征,找到了其空间上聚集的地方,进一步找到了致病的水井。利用空间统计可帮助我们发现、判断并证实事物在空间上分布的规律和特征,从而对研究进行辅助决策。 几个空间统计基本概念 ?自相关指数 Moran指数和Geary系数是两个用来度量空间自相关的全局指标。Moran指数反映的是空间邻接或空间邻近的区域单元属性值的相似程度,Geary 系数与Moran指数存在负相关关系。 Moran指数I的取值一般在[-1,1]之间,小于0表示负相关,等于0表示不相关,大于0表示正相关; Geary系数C的取值一般在[0,2]之间,大于1表示负相关,等于1表示不相关,而小于1表示正相关; ?回归分析 回归分析(regression analysis)是确定两个或多个变量间相互依赖的定量关系的一种统计分析方法。按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。 ?欧几里得距离&曼哈顿距离

(完整版)第六章线性空间练习题参考答案

第六章线性空间练习题参考答案 一、填空题 0 0 0 1.已知V a b c 0 a,b,c R 是R1 2 的一个子空间,则维(V) 3 3 0 c b 0 0 0 0 0 0 0 0 0 0 3V 的一组基是 1 0 0 , 1 0 0 , 0 1 0 . 0 0 0 0 1 0 0 1 0 在P4中,若 1 (1, 2,0,1), 1,1), 4 (0,1, k,1)线性无 2 (1,1,1, 1), 3 (1, k, 关,则k的取值范围是k 3(以1, 2, 3, 4为行或者列构成的行列式不为零) 3?已知a是数域P中的一个固定的数,而W {(a,x1,L ,x n) x i P,i 1,2,L ,n} 是P n+1的一个子空间,贝U a = 0 ,而维(W)=巴 4. 维数公式为dimV i dimV2 dim(V i V2) dim(V i I V2). 5?设1, 2, 3是线性空间V的一组基,X i 1 X2 2 X3 3,则由基1, 2, 3 0 0 1 到基2, 3, 1的过渡矩阵T = 1 0 0,而在基3, 2, 1下的坐标是 0 1 0 0 1 1 (X3,X2,X1)由基1, 2, 3到基2 3, 3 1, 1 2的过渡矩阵为T二10 1. 阵全体构成数域P上凹卫维线性空间,数域P上n级对交矩阵全体构成数域 1 1 0 6 ?数域P上n级对称矩阵全体构成数域P上如B维线性空间,数域P上 2 n级反对称矩阵全体构成数域P上晋维线性空间,数域P上n级上三角矩

2 P上n维线性空间,数域P上n级数量矩阵全体构成数域P上_1_维线性空间. 二、判断题 1?设V P n n,则W {A A P nn,A 0}是V的子空间. 错?行列式为零的两个方阵的和的行列式未必为零,因此W中矩阵关于矩阵的加法运算不封闭,不能成为子空间.) 2. 已知V {(a bi,c di) a, b, c, d R}为R上的线性空间,且维(V)= 2. 错.是子空间,但是是4维的,其基为(1,0),( i,0),(0,1),(0, i). A 3. 设A,B P n n,V是X 0的解空间,V1是AX = 0的解空间,V2是 B (A + B)X = 0 的解空间,则V V1 I V2 . 正确? Vj V2中的向量既满足AX = 0,又满足(A + B)X = 0,因此也满足 A BX = 0,即满足X 0,即为V中的向量.反之,V中的向量既在V中,又 B 在V2中,即为yi V2中的向量.因此V V1 I V2 . 4. 设线性空间V的子空间W中每个向量可由W中的线性无关的向量组 1, 2丄,s线性表出,则维(W) = S. 正确.根据定理1. 5. 设W是线性空间V的子空间,如果, V,但W且W,则必有W. 错误.可能W.如取,为一对互为负向量,则0 W.

空间回归方法-空间统计

空间回归模型 徐成东 深圳CDC培训课程 2014‐11‐13

空间回归分析基础 –什么是回归分析 ?寻求两种或两种以上变量间相互依赖的定量关系的一种统计分 析方法。 ?热点探测回答了“Where”的问题,回归分析试图回答“Why”–回归分析目的 ?检验理论:基本目标是测量一个或多个变量的变化对另一变量 变化的影响程度 ?进行预测:基本目标是构建一个持续、准确的预测模型。 ?寻找假设:基本目标是通过回归分析来探索这些关系并解答想 要检验的假设情况。

–回归分析基本步骤 ?①从一组数据出发确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。 ?②对这些关系式的可信程度进行检验。 ?③优化回归方程。在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。 ?④利用所求的关系式对某一过程进行预测或控制。 –空间分析常见问题 –为什么要有空间回归

回归分析常见问题问题影响解决方案 遗漏了解释变量回归模型丢失关键解释变 量,其系数和相应的关联 P 值将不可信。 检查OLS 残差或对OLS 回归残差运行 热点分析,尝试找出可能的缺失变量。 非线性关系线性模型中如果解释变量 与因变量之间的关系存在 非线性关系,则所获得的 模型质量不佳。 通过创建散点图了解模型中变量之间 的关系。可通过变换变量来修复曲线 性。 数据异常值异常值可使回归关系背离 最佳拟合,从而使回归系 数发生偏差。 可通过散点图和其他图(直方图)检 验数据的极值。如果异常值存在错误, 请修正或移除异常值。如果异常值正 确,则不能将其移除。

第六章线性空间(DOC)

第六章 线性空间 向量空间又称线性空间,是线性代数中一个基本概念。在第三章中,我们把有序数组叫做向量,并介绍过向量空间的概念。在这一章中,我们要把这些概念推广,使向量及向量空间的概念更具一般性。当然,推广后的向量概念也更抽象化了. §1 线性空间的定义与性质 定义6.1 设V 是一个非空集合,P 为数域。如果对于V 中任意两个元素α,β ,总有唯一的一个元素V ∈γ 与之对应,称为元素 βα,的和,记作βαγ+=;又对于任一数∈k P ,与任一元素V ∈α,总有唯一的一个元素V ∈δ与之对应,称为α与k 的积。记作αδk =;并且这两种运算满足以下八条运算规律(设,,,V ∈γβα∈l k ,P ): αββα+=+)(i ; )())((γβαγβα++=++ii ; )(iii 集合V 中存在零元素0,使对V 中任何元素α,均有αα=+0; )(iv 对于集合V 中任何元素α,V 中均存在其负元素α-,使α+(α-)=0; αα=?1)(v ; αα)()()(kl l k vi =;

βαβαk k k vii +=+)()(; αααl k l k viii +=+))((。 那末,V 称为数域P 上的向量空间(或线性空间),V 中的元素不论其本来的性质如何,统称为向量。 简言之,凡满足八条规律的加法及乘法运算,就称为线性运算;凡定义了线性运算的集合,就称向量空间。 例6.1 数域P 上一元多项式环][x P ,按通常的多项式加法和数与多项式的乘法,构成一个数域P 上的线性空间.如果只考虑其中次数小于n 的多项式,再添上零多项式也构成数域P 上的一个线性空间,用n x P ][表示. 例6.2 实数域上全体m ?n 矩阵,对于通常定义的加法和数与矩阵的乘法,即若A =()n m ij a ?, B =() n m ij b ? ,R ∈λ, A+B =()n m ij ij b a ?+,λA =()n m ij a ?λ。 显然这个集合非空,并且在这两种运算下封闭,且满足)(~)(viii i ,因此形成实数域上的线性空间,记为n m R ? 例6.3定义在闭区间[a ,b]上的一切连续实函数,对于通常意义下的函数的加法和数与 函数的乘法构成一个线性空间,记作C [a ,b]

第六章 线性空间 习题答案

第六章 线性空间 3.检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n (1n ≥)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设A 是一个n n ?实矩阵,A 的实系数多项式()f A 的全体,对于矩阵的加法和数量乘法; 3)全体n 级实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: 1122121212(,)(,)(,)a b a b a a b b a a ⊕=+++, 2 11111(1)(,)(,)2 k k k a b ka kb a -=+ ; 6)平面上全体向量,对于通常的加法和如下定义的数量乘法: k =0 α; 7)集合与加法同6),数量乘法定义为: k = αα; 8)全体正实数+ R ,加法与数量乘法定义为: a b ab ⊕=,k k a a = . 解 1)不能构成实数域上的线性空间. 因为两个n 次多项式相加不一定是n 次多项式,所以对加法不封闭. 2)能构成实数域上的线性空间. 事实上,{()|()[]}V f f x x =∈R A 即为题目中的集合,显然,对任意的(),()f g V ∈A A ,及k ∈R ,有 ()()()f g h V +=∈A A A ,()()()kf kf V =∈A A , 其中()()()h x f x g x =+.这就说明V 对于矩阵的加法和数量乘法封闭.容易验证,这两种运算满足线性空间定义的1~8条,故V 构成实数域上的线性空间. 3)能构成实数域上的线性空间. 由于矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,故只需证明对称(反对称,上三角)矩阵对加法与数量乘法是否封闭即可.而两个对称(反对称,上三角)矩阵的和仍为对称(反对称,上三

第六章线性空间与线性变换.

第六章线性空间与线性变换 1.验证: (1)2阶矩阵的全体S i ; ⑵主对角线上的元素之和等于0的2阶矩阵的全体S 2; (3)2阶对称矩阵的全体S 「 对于矩阵的加法和乘数运算构成线性空间, 解(1)设A,B 分别为二阶矩阵,则A,B S i 显然 (A B) S i ,k A S i ,从而对于矩阵的加法和乘数运算构成线性空间. 0 0 1 是S 1的一个基. a b de A B ⑵设 c a , f d A,B S 2 (a d) c b ka kb A B S 2 kA S 2 c a a d kc ka 1 0 0 1 0 0 1 2 3 0 1 0 0 1 0 是 ?个 基. ⑶设A, B S 3 ,则 T A A,B T B (A B)T A T B T A B ,从而(A B) S 3 (kA) kA 从,故kA S 3,所以对于加法和乘数运算构成线性空 间. 2.验证:与向量(0,0,1) 不平行的全体3维数组向量,对于数组向量 的 加法和乘数运算不构成线性空间. 解 设V 与向量(0,0,1)不平行的全体三维向量,设「1 (1,1,0) r 2 ( 1,0,1),则「1,「2 V .但「1 「2 (0,0,1) V 即 V 不是线性空间. 1 0 0 1 0 0 0 0 2 1 0 3 0 1 是S 3的一个基. 1 并写出各个空间的一个基.

3 .设U 是线性空间V 的一个子空间,试证:若U 与V 的维数相等,则 U V . 证明设1 2 r 为U 的一组基,它可扩充为整个空间 V 的一个基, 由 于dim(U) dim(V)从而i 2 r 也为V 的一个基,贝卩:对于x V 可 以表示为x ki 1 k 2 2 kr r .显然,x U ,故V U ,而由 已知知U V ,有U V . 4 .设V r 是n 维线性空间V n 的一个子空间,a 1, a r 是V r 的一个基.试 证:V n 中存在元素a r 1, a n ,使印, a 2, a r 冃仆,a n 成为V n 的一个 基. 证明 设r n ,则在V n 中必存在一向量a r 1 V r ,它不能被ai ,a 2, a r 线性表示,将 a r 1 添加进来,则a i ,a 2,a 3, a r 1是线性无关的.若 r 1 n ,则命题得证,否则存在a r 2 L(a 1,a 2, ,a r 1)则 a 1,a 2, ,a r 2线性无关,依此类推,可找到n 个线性无关 的向量 a 1,a 2, ,a n ,它们是V n 的一个基. 5 .在 R 3 中求向量 (3,7,1) 在基 1 (1,3,5) , 2 (6,3,2), 3 (3,1,0/ 下的坐标. 解 1 (1,0,0), 2 (0,1,0), 3 (0O1) 1 6 3 A 3 3 1 ( T T (1 , 2 , T )(:, T 2 , ;)A 5 2 0 X 1‘ X 1 2 6 3 x 1 X 2' A 1 X 2 5 15 8 x 2 坐标变换公式: X 3‘ X 3 9 28 15 X 3 X 1' 2 6 3 3 33 X 2‘ 5 15 8 7 82 故所求为X 3' 9 28 15 1 154 ? 所求坐标为33, 82,154

高等代数北大版教案-第6章线性空间

------------------------------------------------------------------------------------------------------------第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f α→ 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义

相关文档
最新文档