同济大学数值分析matlab编程
matlab程序设计与应用

matlab程序设计与应用Matlab是一款高效能的编程语言,具有高品质的计算和分析功能,近十多年来被广泛应用在工程计算、科学研究、商业分析、金融模拟和教育工作等多个领域。
它拥有一系列强大的算法编写功能,可以实现非线性矩阵求解、信号处理、图像处理、生物医学信号处理等功能。
本文将介绍Matlab程序设计与应用,以及它在工程计算、科学研究、商业分析等领域的应用和示例。
一、Matlab程序设计Matlab是一种操作方便的高级编程语言,立足于原始编码,它建立在C及FORTRAN之上,而且它的高级结构使得设计程序不必写成复杂的程序框架,而可以把主要精力放在要实现的功能上。
Matlab在程序设计方面支持面向对象编程(Object-oriented programming,OOP)方式,可以实现结构化的程序设计,把大量的程序按照模块和函数来管理,方便调用和重用,并可以利用Matlab的类和类的方法来实现程序的重用和拓展。
二、Matlab在工程计算领域的应用Matlab在工程计算领域的应用如下:(1)Matlab可以用于科学计算,如:数值分析、科学计算、多元函数拟合、图像处理以及信号处理等。
(2)Matlab可以用于设计和调试电子电路,如:数字电路、模拟电路、射频电路、功率电路以及控制电路等。
(3)Matlab可以用于控制系统分析,如:数模转换、频响函数以及过程控制等。
(4)Matlab可以用于机械结构设计,如:机械结构分析、运动学以及动力学等。
三、Matlab在科学研究和商业分析领域的应用Matlab在科学研究和商业分析领域的应用如下:(1)Matlab可以用于统计学研究,如:概率统计、偏差分析、多元分析以及非参数分析等。
(2)Matlab可以用于数据挖掘,如:决策树分类、聚类分析以及因子分析等。
(3)Matlab可以用于仿真研究,如:求解方程、模拟实验以及模型预测等。
(4)Matlab可以用于商业分析,如:市场调研、销售预测以及风险评估等。
matlab有限元刚度矩阵编程

一、概述有限元方法是工程学和科学领域中常用的数值分析工具,用于求解复杂的结构力学问题。
在有限元分析中,刚度矩阵是一个重要的概念,它描述了结构的刚度性质,并可以用于求解结构的位移、应力和应变分布。
MATLAB是一款功能强大的数学软件,它提供了丰富的工具和函数,可以用于编程求解有限元刚度矩阵。
本文将介绍如何使用MATLAB编程求解有限元刚度矩阵,并给出详细的步骤和代码示例。
二、有限元刚度矩阵的理论基础有限元分析的基本思想是将一个复杂的结构分解成许多小的单元,每个单元都可以用简单的数学方程描述。
在有限元分析中,每个单元都有一个刚度矩阵,它描述了单元的刚度性质。
结构的总刚度矩阵可以通过合并所有单元的刚度矩阵得到。
总刚度矩阵可以用于求解结构的位移、应力和应变分布,是有限元分析的核心之一。
三、MATLAB编程求解有限元刚度矩阵的步骤在MATLAB中,可以通过以下步骤编程求解有限元刚度矩阵:1. 定义结构的几何形状和材料性质,确定结构的边界条件和加载条件。
2. 将结构分解成有限元单元,根据单元的几何形状和材料性质建立单元的刚度矩阵。
3. 合并所有单元的刚度矩阵,得到结构的总刚度矩阵。
4. 根据边界条件和加载条件,求解结构的位移。
5. 根据结构的总刚度矩阵和位移,计算结构的应力和应变分布。
四、MATLAB编程求解有限元刚度矩阵的代码示例以下是一个简单的MATLAB代码示例,用于求解一维弹簧元的刚度矩阵:```MATLAB定义弹簧元的长度和弹性模量L = 1;E = 1;计算弹簧元的刚度矩阵k = E * A / L;K = [k, -k; -k, k];```以上代码示例中,我们首先定义了弹簧元的长度L和弹性模量E,然后通过公式计算了弹簧元的刚度矩阵K。
这是一个简单的一维情况,实际工程中可能涉及到更复杂的二维、三维情况,但基本的求解步骤是相似的。
五、总结MATLAB是一个强大的数学软件,可以用于编程求解有限元刚度矩阵。
数学软件matlab的介绍与使用方法

天津大学机械工程学院力学系
3.绘图功能与计算结果的可视化
具有高层绘图功能——两维、三维绘图 两维、 • 具有高层绘图功能 两维
• 具有底层绘图功能 具有底层绘图功能——句柄绘图 句柄绘图 • 使用 使用plot函数可随时将计算结果可视化 函数可随时将计算结果可视化
天津大学机械工程学院力学系
天津大学机械工程学院力学系
天津大学机械工程学院力学系
2012-4-8
30
MATLAB 7用户界面 用户界面
MATLAB 7的路径搜索
(1)MATLAB 7的当前目录
在命令窗口中输入cd命令,并按Enter键确 认,即显示有当前MATLAB 7工作所在目录 。
>> cd C:\MATLAB701\work >>
2012-4-8
MATLAB 7用户界面 用户界面
(4)当前路径窗口
在默认设置下,当前路 径窗口自动显示于 MATLAB界面左侧,用 户也可以选择Desktop| Current Directory命令 调出或隐藏该命令窗口 。 当前路径窗口显示着当 前用户工作所在的路径
天津大学机械工程学院力学系
2012-4-8
科学计算工具软件
第一讲 简介、 第一讲 MATLAB 7简介、基本使用方法和 简介 基本使用方法和 数值向量及 数值向量及数组
天津大学机械工程学院
科学计算工具软件
天津大学机械工程学院力学系
4M之间的侧重 之间的侧重
在国际上30几个数学类科技应用软件中 在国际上 几个数学类科技应用软件中 : MATLAB在数值计算方面独占鳌头 在数值计算方面独占鳌头 Mathematica和Maple则分居符号计算软 和 则分居符号计算软 件的前两名 Mathcad因其提供计算、图形、文字处 因其提供计算、 因其提供计算 图形、 理的统一环境而深受中学生欢迎
Matlab语言的学习总结

Matlab语言的学习总结内容提要Matlab是美国MathWorks公司于1984年正式推出的一套高性能的数值计算和可视化软件,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便且界面友好的用户环境。
在此环境下,对所要解决的许多问题,用户只需简单地列出数学表达式,其结果便会以数值和图形方式显示出来;对于大型问题,只需建立相应的数学模型,同样可以得到快速准确的解答。
Matlab以其强大灵活的分析平台,多种兼容的数据类型,简化处理数据的函数,快速而又精确的数据分析函数以及丰富的图形和自动文档生成能力赢得了越来越多的用户的青睐,尤其是在校大学生的追捧,目前广泛工程运算,控制系统设计图形处理等领域。
本文将通过简介Matlab强大的数值计算功能与数据可视化功能,阐述本人在使用Matlab进行程序设计中的几则经验,并谈谈学习Matlab的一些体会。
关键词Matlab、数值计算、符号计算、可视化1.Matlab语言及发展Matlab是MATrix LABoratory(“矩阵实验室”)的缩写,是美国MathWorks公司开发的集数值计算、符号计算和图形可视化三大基本功能于一体的,功能强大、操作简单的语言,是国际公认的优秀数学应用软件之一。
20世纪80年代初期,Cleve Moler与John Little等利用C语言开发了新一代的Matlab语言,此时的Matlab语言已同时具备了数值计算功能和简单的图形处理功能。
1984年,Cleve Moler与John Little等正式成立了Mathworks公司,把Matlab语言推向市场,并开始了对Matlab工具箱等的开发设计。
现在,Matlab已经发展成为适合多学科的大型软件,在世界各高校,Matlab已经成为线性代数、数值分析、数理统计、优化方法、自动控制、数字信号处理、动态系统仿真等高级课程的基本教学工具。
特别是最近几年,Matlab在我国大学生数学建模竞赛中的应用,为参赛者在有限的时间内准确、有效的解决问题提供了有力的保证。
matlab编程实例100例(精编文档).doc

【最新整理,下载后即可编辑】1-32是:图形应用篇33-66是:界面设计篇67-84是:图形处理篇85-100是:数值分析篇实例1:三角函数曲线(1)function shili01h0=figure('toolbar','none',...'position',[198****0300],...'name','实例01');h1=axes('parent',h0,...'visible','off');x=-pi:0.05:pi;y=sin(x);plot(x,y);xlabel('自变量X');ylabel('函数值Y');title('SIN( )函数曲线');grid on实例2:三角函数曲线(2)function shili02h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例02');x=-pi:0.05:pi;y=sin(x)+cos(x);plot(x,y,'-*r','linewidth',1);grid onxlabel('自变量X');ylabel('函数值Y');title('三角函数');实例3:图形的叠加function shili03h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例03');x=-pi:0.05:pi;y1=sin(x);y2=cos(x);plot(x,y1,...'-*r',...x,y2,...'--og');grid onxlabel('自变量X');ylabel('函数值Y');title('三角函数');实例4:双y轴图形的绘制function shili04h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例04');x=0:900;a=1000;b=0.005;y1=2*x;y2=cos(b*x);[haxes,hline1,hline2]=plotyy(x,y1,x,y2,'semilogy','plot'); axes(haxes(1))ylabel('semilog plot');axes(haxes(2))ylabel('linear plot');实例5:单个轴窗口显示多个图形function shili05h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例05');t=0:pi/10:2*pi;[x,y]=meshgrid(t);subplot(2,2,1)plot(sin(t),cos(t))axis equalsubplot(2,2,2)z=sin(x)-cos(y);plot(t,z)axis([0 2*pi -2 2])subplot(2,2,3)h=sin(x)+cos(y);plot(t,h)axis([0 2*pi -2 2])subplot(2,2,4)g=(sin(x).^2)-(cos(y).^2);plot(t,g)axis([0 2*pi -1 1])实例6:图形标注function shili06h0=figure('toolbar','none',...'position',[200 150 450 400],...'name','实例06');t=0:pi/10:2*pi;h=plot(t,sin(t));xlabel('t=0到2\pi','fontsize',16);ylabel('sin(t)','fontsize',16);title('\it{从0to2\pi 的正弦曲线}','fontsize',16) x=get(h,'xdata');y=get(h,'ydata');imin=find(min(y)==y);imax=find(max(y)==y);text(x(imin),y(imin),...['\leftarrow最小值=',num2str(y(imin))],...'fontsize',16)text(x(imax),y(imax),...['\leftarrow最大值=',num2str(y(imax))],...'fontsize',16)实例7:条形图形function shili07h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例07');tiao1=[562 548 224 545 41 445 745 512];tiao2=[47 48 57 58 54 52 65 48];t=0:7;bar(t,tiao1)xlabel('X轴');ylabel('TIAO1值');h1=gca;h2=axes('position',get(h1,'position'));plot(t,tiao2,'linewidth',3)set(h2,'yaxislocation','right','color','none','xticklabel',[]) 实例8:区域图形function shili08h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例08');x=91:95;profits1=[88 75 84 93 77];profits2=[51 64 54 56 68];profits3=[42 54 34 25 24];profits4=[26 38 18 15 4];area(x,profits1,'facecolor',[0.5 0.9 0.6],...'edgecolor','b',...'linewidth',3)hold onarea(x,profits2,'facecolor',[0.9 0.85 0.7],...'edgecolor','y',...'linewidth',3)hold onarea(x,profits3,'facecolor',[0.3 0.6 0.7],...'edgecolor','r',...'linewidth',3)hold onarea(x,profits4,'facecolor',[0.6 0.5 0.9],...'edgecolor','m',...'linewidth',3)hold offset(gca,'xtick',[91:95])set(gca,'layer','top')gtext('\leftarrow第一季度销量') gtext('\leftarrow第二季度销量') gtext('\leftarrow第三季度销量') gtext('\leftarrow第四季度销量') xlabel('年','fontsize',16);ylabel('销售量','fontsize',16);实例9:饼图的绘制function shili09h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例09');t=[54 21 35;68 54 35;45 25 12;48 68 45;68 54 69];x=sum(t);h=pie(x);textobjs=findobj(h,'type','text');str1=get(textobjs,{'string'});val1=get(textobjs,{'extent'});oldext=cat(1,val1{:});names={'商品一:';'商品二:';'商品三:'};str2=strcat(names,str1);set(textobjs,{'string'},str2)val2=get(textobjs,{'extent'});newext=cat(1,val2{:});offset=sign(oldext(:,1)).*(newext(:,3)-oldext(:,3))/2; pos=get(textobjs,{'position'});textpos=cat(1,pos{:});textpos(:,1)=textpos(:,1)+offset;set(textobjs,{'position'},num2cell(textpos,[3,2]))实例10:阶梯图function shili10h0=figure('toolbar','none',...'position',[200 150 450 400],...'name','实例10');a=0.01;b=0.5;t=0:10;f=exp(-a*t).*sin(b*t);stairs(t,f)hold onplot(t,f,':*')hold offglabel='函数e^{-(\alpha*t)}sin\beta*t的阶梯图'; gtext(glabel,'fontsize',16)xlabel('t=0:10','fontsize',16)axis([0 10 -1.2 1.2])实例11:枝干图function shili11h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例11');x=0:pi/20:2*pi;y1=sin(x);y2=cos(x);h1=stem(x,y1+y2);hold onh2=plot(x,y1,'^r',x,y2,'*g');hold offh3=[h1(1);h2];legend(h3,'y1+y2','y1=sin(x)','y2=cos(x)') xlabel('自变量X');ylabel('函数值Y');title('正弦函数与余弦函数的线性组合'); 实例12:罗盘图function shili12h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例12');winddirection=[54 24 65 84256 12 235 62125 324 34 254];windpower=[2 5 5 36 8 12 76 14 10 8];rdirection=winddirection*pi/180;[x,y]=pol2cart(rdirection,windpower); compass(x,y);desc={'风向和风力','北京气象台','10月1日0:00到','10月1日12:00'};gtext(desc)实例13:轮廓图function shili13h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例13');[th,r]=meshgrid((0:10:360)*pi/180,0:0.05:1); [x,y]=pol2cart(th,r);z=x+i*y;f=(z.^4-1).^(0.25);contour(x,y,abs(f),20)axis equalxlabel('实部','fontsize',16);ylabel('虚部','fontsize',16);h=polar([0 2*pi],[0 1]);delete(h)hold oncontour(x,y,abs(f),20)实例14:交互式图形function shili14h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例14');axis([0 10 0 10]);hold onx=[];y=[];n=0;disp('单击鼠标左键点取需要的点'); disp('单击鼠标右键点取最后一个点'); but=1;while but==1[xi,yi,but]=ginput(1);plot(xi,yi,'bo')n=n+1;disp('单击鼠标左键点取下一个点');x(n,1)=xi;y(n,1)=yi;endt=1:n;ts=1:0.1:n;xs=spline(t,x,ts);ys=spline(t,y,ts);plot(xs,ys,'r-');hold off实例14:交互式图形function shili14h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例14');axis([0 10 0 10]);hold onx=[];y=[];n=0;disp('单击鼠标左键点取需要的点'); disp('单击鼠标右键点取最后一个点'); but=1;while but==1[xi,yi,but]=ginput(1);plot(xi,yi,'bo')n=n+1;disp('单击鼠标左键点取下一个点');x(n,1)=xi;y(n,1)=yi;endt=1:n;ts=1:0.1:n;xs=spline(t,x,ts);ys=spline(t,y,ts);plot(xs,ys,'r-');hold off实例15:变换的傅立叶函数曲线function shili15h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例15');axis equalm=moviein(20,gcf);set(gca,'nextplot','replacechildren')h=uicontrol('style','slider','position',...[100 10 500 20],'min',1,'max',20)for j=1:20plot(fft(eye(j+16)))set(h,'value',j)m(:,j)=getframe(gcf);endclf;axes('position',[0 0 1 1]);movie(m,30)实例16:劳伦兹非线形方程的无序活动function shili15h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例15');axis equalm=moviein(20,gcf);set(gca,'nextplot','replacechildren')h=uicontrol('style','slider','position',...[100 10 500 20],'min',1,'max',20)for j=1:20plot(fft(eye(j+16)))set(h,'value',j)m(:,j)=getframe(gcf);endclf;axes('position',[0 0 1 1]);movie(m,30)实例17:填充图function shili17h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例17');t=(1:2:15)*pi/8;x=sin(t);y=cos(t);fill(x,y,'r')axis square offtext(0,0,'STOP',...'color',[1 1 1],...'fontsize',50,...'horizontalalignment','center') 例18:条形图和阶梯形图function shili18h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例18');subplot(2,2,1)x=-3:0.2:3;y=exp(-x.*x);bar(x,y)title('2-D Bar Chart')subplot(2,2,2)x=-3:0.2:3;y=exp(-x.*x);bar3(x,y,'r')title('3-D Bar Chart')subplot(2,2,3)x=-3:0.2:3;y=exp(-x.*x);stairs(x,y)title('Stair Chart')subplot(2,2,4)x=-3:0.2:3;y=exp(-x.*x);barh(x,y)title('Horizontal Bar Chart')实例19:三维曲线图function shili19h0=figure('toolbar','none',...'position',[200 150 450 400],...'name','实例19');subplot(2,1,1)x=linspace(0,2*pi);y1=sin(x);y2=cos(x);y3=sin(x)+cos(x);z1=zeros(size(x));z2=0.5*z1;z3=z1;plot3(x,y1,z1,x,y2,z2,x,y3,z3)grid onxlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:3-D Plot')subplot(2,1,2)x=linspace(0,2*pi);y1=sin(x);y2=cos(x);y3=sin(x)+cos(x);z1=zeros(size(x));z2=0.5*z1;z3=z1;plot3(x,z1,y1,x,z2,y2,x,z3,y3)grid onxlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:3-D Plot')实例20:图形的隐藏属性function shili20h0=figure('toolbar','none',...'position',[200 150 450 300],...'name','实例20');subplot(1,2,1)[x,y,z]=sphere(10);mesh(x,y,z)axis offtitle('Figure1:Opaque')hidden onsubplot(1,2,2)[x,y,z]=sphere(10);mesh(x,y,z)axis offtitle('Figure2:Transparent') hidden off实例21PEAKS函数曲线function shili21h0=figure('toolbar','none',...'position',[200 100 450 450],...'name','实例21');[x,y,z]=peaks(30);subplot(2,1,1)x=x(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(x>-0.6&x<0.5);z(i,j)=nan*z(i,j);surfc(x,y,z)xlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:surfc函数形成的曲面') subplot(2,1,2)x=x(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(x>-0.6&x<0.5);z(i,j)=nan*z(i,j);surfl(x,y,z)xlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:surfl函数形成的曲面') 实例22:片状图function shili22h0=figure('toolbar','none',...'position',[200 150 550 350],...'name','实例22');subplot(1,2,1)x=rand(1,20);y=rand(1,20);z=peaks(x,y*pi);t=delaunay(x,y);trimesh(t,x,y,z)hidden offtitle('Figure1:Triangular Surface Plot'); subplot(1,2,2)x=rand(1,20);y=rand(1,20);z=peaks(x,y*pi);t=delaunay(x,y);trisurf(t,x,y,z)title('Figure1:Triangular Surface Plot'); 实例23:视角的调整function shili23h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例23');x=-5:0.5:5;[x,y]=meshgrid(x);r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;subplot(2,2,1)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure1')view(-37.5,30)subplot(2,2,2)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure2')view(-37.5+90,30) subplot(2,2,3)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure3')view(-37.5,60)subplot(2,2,4)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure4')view(180,0)实例24:向量场的绘制function shili24h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例24');subplot(2,2,1)z=peaks;ribbon(z)title('Figure1')subplot(2,2,2)[x,y,z]=peaks(15);[dx,dy]=gradient(z,0.5,0.5); contour(x,y,z,10)hold onquiver(x,y,dx,dy)hold offtitle('Figure2')subplot(2,2,3)[x,y,z]=peaks(15);[nx,ny,nz]=surfnorm(x,y,z);surf(x,y,z)hold onquiver3(x,y,z,nx,ny,nz)hold offtitle('Figure3')subplot(2,2,4)x=rand(3,5);y=rand(3,5);z=rand(3,5);c=rand(3,5);fill3(x,y,z,c)grid ontitle('Figure4')实例25:灯光定位function shili25h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例25');vert=[1 1 1;1 2 1;2 2 1;2 1 1;1 1 2;12 2;2 2 2;2 1 2];fac=[1 2 3 4;2 6 7 3;4 3 7 8;15 8 4;1 2 6 5;5 6 7 8];grid offsphere(36)h=findobj('type','surface');set(h,'facelighting','phong',...'facecolor',...'interp',...'edgecolor',[0.4 0.4 0.4],...'backfacelighting',...'lit')hold onpatch('faces',fac,'vertices',vert,...'facecolor','y');light('position',[1 3 2]);light('position',[-3 -1 3]);material shinyaxis vis3d offhold off实例26:柱状图function shili26h0=figure('toolbar','none',...'position',[200 50 450 450],...'name','实例26'); subplot(2,1,1)x=[5 2 18 7 39 8 65 5 54 3 2];bar(x)xlabel('X轴');ylabel('Y轴');title('第一子图');subplot(2,1,2)y=[5 2 18 7 39 8 65 5 54 3 2];barh(y)xlabel('X轴');ylabel('Y轴');title('第二子图');实例27:设置照明方式function shili27h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例27');subplot(2,2,1)sphereshading flatcamlight leftcamlight rightlighting flatcolorbaraxis offtitle('Figure1')subplot(2,2,2)sphereshading flatcamlight leftcamlight rightlighting gouraudcolorbaraxis offtitle('Figure2')subplot(2,2,3)sphereshading interpcamlight rightcamlight leftlighting phongaxis offtitle('Figure3')subplot(2,2,4)sphereshading flatcamlight leftcamlight rightlighting nonecolorbaraxis offtitle('Figure4')实例28:羽状图function shili28h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例28');subplot(2,1,1)alpha=90:-10:0;r=ones(size(alpha));m=alpha*pi/180;n=r*10;[u,v]=pol2cart(m,n);feather(u,v)title('羽状图')axis([0 20 0 10])subplot(2,1,2)t=0:0.5:10;y=exp(-x*t);feather(y)title('复数矩阵的羽状图')实例29:立体透视(1)function shili29h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例29');[x,y,z]=meshgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=x.*exp(-x.^2-y.^2-z.^2);grid onfor i=-2:0.5:2;h1=surf(linspace(-2,2,20),...linspace(-2,2,20),...zeros(20)+i);rotate(h1,[1 -1 1],30)dx=get(h1,'xdata');dy=get(h1,'ydata');dz=get(h1,'zdata');delete(h1)slice(x,y,z,v,[-2 2],2,-2)hold onslice(x,y,z,v,dx,dy,dz)hold offaxis tightview(-5,10)drawnowend实例30:立体透视(2)function shili30h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例30');[x,y,z]=meshgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=x.*exp(-x.^2-y.^2-z.^2); [dx,dy,dz]=cylinder;slice(x,y,z,v,[-2 2],2,-2)for i=-2:0.2:2h=surface(dx+i,dy,dz);rotate(h,[1 0 0],90)xp=get(h,'xdata');yp=get(h,'ydata');zp=get(h,'zdata');delete(h)hold onhs=slice(x,y,z,v,xp,yp,zp);axis tightxlim([-3 3])view(-10,35)drawnowdelete(hs)hold offend实例31:表面图形function shili31h0=figure('toolbar','none',...'position',[200 150 550 250],...'name','实例31');subplot(1,2,1)x=rand(100,1)*16-8;y=rand(100,1)*16-8;r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;xlin=linspace(min(x),max(x),33); ylin=linspace(min(y),max(y),33); [X,Y]=meshgrid(xlin,ylin);Z=griddata(x,y,z,X,Y,'cubic'); mesh(X,Y,Z)axis tighthold onplot3(x,y,z,'.','Markersize',20) subplot(1,2,2)k=5;n=2^k-1;theta=pi*(-n:2:n)/n;phi=(pi/2)*(-n:2:n)'/n;X=cos(phi)*cos(theta);Y=cos(phi)*sin(theta);Z=sin(phi)*ones(size(theta)); colormap([0 0 0;1 1 1])C=hadamard(2^k);surf(X,Y,Z,C)axis square实例32:沿曲线移动的小球h0=figure('toolbar','none',...'position',[198****8468],...'name','实例32');h1=axes('parent',h0,...'position',[0.15 0.45 0.7 0.5],...'visible','on');t=0:pi/24:4*pi;y=sin(t);plot(t,y,'b')n=length(t);h=line('color',[0 0.5 0.5],...'linestyle','.',...'markersize',25,...'erasemode','xor');k1=uicontrol('parent',h0,...'style','pushbutton',...'position',[80 100 50 30],...'string','开始',...'callback',[...'i=1;',...'k=1;,',...'m=0;,',...'while 1,',...'if k==0,',...'break,',...'end,',...'if k~=0,',...'set(h,''xdata'',t(i),''ydata'',y(i)),',...'drawnow;,',...'i=i+1;,',...'if i>n,',...'m=m+1;,',...'i=1;,',...'end,',...'end,',...'end']);k2=uicontrol('parent',h0,...'style','pushbutton',...'position',[180 100 50 30],...'string','停止',...'callback',[...'k=0;,',...'set(e1,''string'',m),',...'p=get(h,''xdata'');,',...'q=get(h,''ydata'');,',...'set(e2,''string'',p);,',...'set(e3,''string'',q)']); k3=uicontrol('parent',h0,...'style','pushbutton',...'position',[280 100 50 30],...'string','关闭',...'callback','close');e1=uicontrol('parent',h0,...'style','edit',...'position',[60 30 60 20]);t1=uicontrol('parent',h0,...'style','text',...'string','循环次数',...'position',[60 50 60 20]);e2=uicontrol('parent',h0,...'style','edit',...'position',[180 30 50 20]);t2=uicontrol('parent',h0,...'style','text',...'string','终点的X坐标值',...'position',[155 50 100 20]);e3=uicontrol('parent',h0,...'style','edit',...'position',[300 30 50 20]);t3=uicontrol('parent',h0,...'style','text',...'string','终点的Y坐标值',...'position',[275 50 100 20]);实例33:曲线转换按钮h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例33');x=0:0.5:2*pi;y=sin(x);h=plot(x,y);grid onhuidiao=[...'if i==1,',...'i=0;,',...'y=cos(x);,',...'delete(h),',...'set(hm,''string'',''正弦函数''),',...'h=plot(x,y);,',...'grid on,',...'else if i==0,',...'i=1;,',...'y=sin(x);,',...'set(hm,''string'',''余弦函数''),',...'delete(h),',...'h=plot(x,y);,',...'grid on,',...'end,',...'end'];hm=uicontrol(gcf,'style','pushbutton',...'string','余弦函数',...'callback',huidiao);i=1;set(hm,'position',[250 20 60 20]);set(gca,'position',[0.2 0.2 0.6 0.6])title('按钮的使用')hold on实例34:栅格控制按钮h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例34');x=0:0.5:2*pi;y=sin(x);plot(x,y)huidiao1=[...'set(h_toggle2,''value'',0),',...'grid on,',...];huidiao2=[...'set(h_toggle1,''value'',0),',...'grid off,',...];h_toggle1=uicontrol(gcf,'style','togglebutton',...'string','grid on',...'value',0,...'position',[20 45 50 20],...'callback',huidiao1);h_toggle2=uicontrol(gcf,'style','togglebutton',...'string','grid off',...'value',0,...'position',[20 20 50 20],...'callback',huidiao2);set(gca,'position',[0.2 0.2 0.6 0.6])title('开关按钮的使用')实例35:编辑框的使用h0=figure('toolbar','none',...'position',[200 150 350 250],...'name','实例35');f='Please input the letter';huidiao1=[...'g=upper(f);,',...'set(h2_edit,''string'',g),',...];huidiao2=[...'g=lower(f);,',...'set(h2_edit,''string'',g),',...];h1_edit=uicontrol(gcf,'style','edit',...'position',[100 200 100 50],...'HorizontalAlignment','left',...'string','Please input the letter',...'callback','f=get(h1_edit,''string'');',...'background','w',...'max',5,...'min',1);h2_edit=uicontrol(gcf,'style','edit',...'HorizontalAlignment','left',...'position',[100 100 100 50],...'background','w',...'max',5,...'min',1);h1_button=uicontrol(gcf,'style','pushbutton',...'string','小写变大写',...'position',[100 45 100 20],...'callback',huidiao1);h2_button=uicontrol(gcf,'style','pushbutton',...'string','大写变小写',...'position',[100 20 100 20],...'callback',huidiao2);实例36:弹出式菜单h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例36');x=0:0.5:2*pi;y=sin(x);h=plot(x,y);grid onhm=uicontrol(gcf,'style','popupmenu',...'string',...'sin(x)|cos(x)|sin(x)+cos(x)|exp(-sin(x))',...'position',[250 20 50 20]);set(hm,'value',1)huidiao=[...'v=get(hm,''value'');,',...'switch v,',...'case 1,',...'delete(h),',...'y=sin(x);,',...'h=plot(x,y);,',...'grid on,',...'case 2,',...'delete(h),',...'y=cos(x);,',...'h=plot(x,y);,',...'grid on,',...'case 3,',...'delete(h),',...'y=sin(x)+cos(x);,',...'h=plot(x,y);,',...'grid on,',...'case 4,',...'delete(h),',...'y=exp(-sin(x));,',...'h=plot(x,y);,',...'grid on,',...'end'];set(hm,'callback',huidiao)set(gca,'position',[0.2 0.2 0.6 0.6]) title('弹出式菜单的使用')实例37:滑标的使用h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例37');[x,y]=meshgrid(-8:0.5:8);r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;h0=mesh(x,y,z);h1=axes('position',...[0.2 0.2 0.5 0.5],...'visible','off');htext=uicontrol(gcf,...'units','points',...'position',[20 30 45 15],...'string','brightness',...'style','text');hslider=uicontrol(gcf,...'units','points',...'position',[10 10 300 15],...'min',-1,...'max',1,...'style','slider',...'callback',...'brighten(get(hslider,''value''))'); 实例38:多选菜单h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例38');[x,y]=meshgrid(-8:0.5:8);r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;h0=mesh(x,y,z);hlist=uicontrol(gcf,'style','listbox',...'string','default|spring|summer|autumn|winter',...'max',5,...'min',1,...'position',[20 20 80 100],...'callback',[...'k=get(hlist,''value'');,',...'switch k,',...'case 1,',...'colormap default,',...'case 2,',...'colormap spring,',...'case 3,',...'colormap summer,',...'case 4,',...'colormap autumn,',...'case 5,',...'colormap winter,',...'end']);实例39:菜单控制的使用h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例39');x=0:0.5:2*pi;y=cos(x);h=plot(x,y);grid onset(gcf,'toolbar','none')hm=uimenu('label','example');huidiao1=[...'set(hm_gridon,''checked'',''on''),',...'set(hm_gridoff,''checked'',''off''),',...'grid on'];huidiao2=[...'set(hm_gridoff,''checked'',''on''),',...'set(hm_gridon,''checked'',''off''),',...'grid off'];hm_gridon=uimenu(hm,'label','grid on',...'checked','on',...'callback',huidiao1);hm_gridoff=uimenu(hm,'label','grid off',...'checked','off',...'callback',huidiao2);实例40:UIMENU菜单的应用h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例40');h1=uimenu(gcf,'label','函数');h11=uimenu(h1,'label','轮廓图',...'callback',[...'set(h31,''checked'',''on''),',...'set(h32,''checked'',''off''),',...'[x,y,z]=peaks;,',...'contour3(x,y,z,30)']);h12=uimenu(h1,'label','高斯分布',...'callback',[...'set(h31,''checked'',''on''),',...'set(h32,''checked'',''off''),',...'mesh(peaks);,',...'axis tight']);。
matlab有限元切线刚度矩阵编程

题目:使用MATLAB编程实现有限元切线刚度矩阵计算一、引言有限元法是一种用于求解复杂工程问题的数值分析方法,它将连续介质划分为许多小的单元,通过对每个单元进行离散化处理,再用数学方法对这些单元进行组装,最终得到整个结构的解。
在有限元方法中,刚度矩阵是求解结构问题的关键步骤之一,而有限元切线刚度矩阵的计算则是其中的重要内容之一。
本文将介绍如何使用MATLAB编程实现有限元切线刚度矩阵的计算。
二、有限元切线刚度矩阵的基本概念1. 切线刚度矩阵在有限元方法中,切线刚度矩阵是描述结构对外部载荷作用下的应变-应力关系的重要矩阵。
它描述了结构在外部载荷下的变形行为,是求解结构变形和应力的重要工具。
2. 切线刚度矩阵的计算切线刚度矩阵的计算是通过对单元的局部坐标系进行刚度矩阵的求解,并进行坐标变换得到全局坐标系下的切线刚度矩阵。
在实际计算中,需要考虑单元的几何形状、材料性质等因素,以及在单元上施加的外部载荷。
三、MATLAB编程实现有限元切线刚度矩阵的基本步骤1. 单元刚度矩阵的计算我们需要编写MATLAB函数来实现对单元刚度矩阵的计算。
这个函数需要考虑单元的几何形状、材料性质等因素,以及在单元上施加的外部载荷。
通常情况下,我们可以利用数值积分的方法来进行刚度矩阵的计算。
2. 坐标变换矩阵的计算在得到单元刚度矩阵之后,我们需要计算坐标变换矩阵,将单元刚度矩阵从局部坐标系变换到全局坐标系。
这也需要编写一个MATLAB函数来实现坐标变换矩阵的计算。
3. 矩阵组装我们需要将所有单元的切线刚度矩阵组装成整体刚度矩阵。
这通常需要考虑到单元之间的连接关系,以及边界条件等因素。
在MATLAB中,我们可以利用矩阵的组合和相加等运算来实现整体刚度矩阵的计算。
四、编程实例这里我们以一个简单的弹簧-弹簧系统为例,介绍如何使用MATLAB编程实现有限元切线刚度矩阵的计算。
我们需要定义系统的几何形状、材料性质等参数,然后编写MATLAB函数来进行刚度矩阵的计算,坐标变换矩阵的计算,以及矩阵的组装,最终得到整体刚度矩阵,并求解系统的变形和应力。
matlab课件
11
MATLAB语言
函数文件和命令文件的区别
函数文件可以传递参数,而命令文件不具备这种功能; 命令文件中的变量都是全局变量,文件执行完后,还是 有效变量,仍然保存在工作区间中;而函数文件中的变 量都是局部变量,只在本函数文件中才有效,当函数文 件执行完成后,这些变量将被清除。
12
MATLAB语言
18
MATLAB语言
3.3.1顺序结构
程序模块1 程序模块1 模块 程序模块2 程序模块2
• MATLAB中实现顺序结构的方法非常简单:
–只需将程序语句顺序排列即可
19
MATLAB语言
3.3.2 选择结构
成立 程序模块1 程序模块 不成立 程序模块2 程序模块
条件
• 在MATLAB中,选择结构 由两种语句结构实现:
MATLAB语言
•
•
Matlab课程共 36学时其中18学时实验18学 时理论 MATLAB将矩阵运算、数值分析、图形处理、 编程技术结合在一起,为用户提供了一个强有 力的科学及工程问题的分析计算和程序设计工 具,它还提供了专业水平的符号计算、文字处 理、可视化建模仿真和实时控制等功能,是具 有全部语言功能和特征的新一代软件开发平台。
15
MATLAB语言
菜单操作。 MATLAB主窗口的File菜单中 主窗口的File (1) 菜单操作。从MATLAB主窗口的File菜单中 选择New菜单项,再选择M file命令, 选择New菜单项,再选择M-file命令,屏幕上将 New菜单项 命令 出现MATLAB 文本编辑器窗口。 出现MATLAB 文本编辑器窗口。 命令操作。 MATLAB命令窗口输入命令 (2) 命令操作。在MATLAB命令窗口输入命令 edit,启动MATLAB文本编辑器后,输入m MATLAB文本编辑器后 edit,启动MATLAB文本编辑器后,输入m文件的 内容并存盘。 内容并存盘。 命令按钮操作。单击MATLAB MATLAB主窗口工具栏 (3) 命令按钮操作。单击MATLAB主窗口工具栏 上的New M-File命令按钮 启动MATLAB 命令按钮, MATLAB文本编辑 上的New M-File命令按钮,启动MATLAB文本编辑 器后,输入m文件的内容并存盘。 器后,输入m文件的内容并存盘。
matlab 程序设计
【例5.8】用try... catch... end结构来进行矩阵相乘运算. 例
% EX0508 try结构 n=4; a=magic(n); m=3; b=eye(3); try c=a*b catch c=a(1:m,1:m)*b end lasterr
5.2.6 流程控制语句
break, continue, return, pause, keyboard, input 1. break命令 命令 break命令可以使包含break的最内层的for或while 语句强制终止,立即跳出该结构,执行end后面的命令, break命令一般和if结构结合使用.
5.2.4 switch…case开关结构
语法: switch 开关表达式 case 表达式 表达式1 语句段1 语句段 case表达式2 case表达式2 表达式 语句段2 语句段 ... otherwise 语句段n 语句段 end
说明: (1) 将开关表达式依次与case后面的表达式进行比较,如 果表达式1不满足,则与下一个表达式2比较,如果都不 满足则执行otherwise后面的语句段n;一旦开关表达式 与某个表达式相等,则执行其后面的语句段. (2) 开关表达式只能是标量或字符串. (3) case后面的表达式可以是标量,字符串或元胞数组, 如果是元胞数组则将开关表达式与元胞数组的所有元素 进行比较,只要某个元素与开关表达式相等,就执行其 后的语句段.
(2) 将函数文件保存为"Ex0502.m". (3) 在MATLAB命令窗口输入以下命令,则会出现f的计算值 注意: 注意:M脚本文件和M函数文件的文件名及函数名的命名规 和绘制的曲线:f=Ex0502(0.3) 则与MATLAB变量的命名规则相同.
Matlab在数值分析教学中的应用
开 发 的 一 款 以 数 值 计 算 为 主 要 特 色 的 数 学 工具软 件 , 数值 计算领 域独领 风骚 。 在 其所 带 强 大 的 符 号 运 算 功 能 , 乎 包 括 高 几 等数学所涉及的运算 , 求极限 、 数 、 如 导 微 分、 分、 积 函数 的 级 数 展 开 、 常 微 分 方 程 解 等 等 , 且 样 条 工具 箱 中 的 命 令 调 用 格 式 并 极 为 简 单 方便 , 工 科 学 生 来 说 , 握 起 对 掌
2 1 N0. 1 0 0 0
Chla n Edu aton n va i n c i 1no t o He al r d
科 教 研 究
Ma 在数值分析教学中的州学 院数 学系 江苏泰 州 2 5 0 ) 2 3 0 摘 要: 针对 目 前数值分析课程教 学改革 发展 的需要 , 结合数值分析课程和M t 语言的特 点,  ̄M t b ahb 利 J al 实现数值分析 中算法井直观展 a 示算法的实现过 程, 详细讨论 了 alb 用于数值分析的教 学模式 , 出将M ta 应用于数值 分析教 学与实验中的构想 与改革模式 。 Mt 应 a 提 a lb 关键词 : ta 数值分析 教学 Malb 中图分类号 : 4 . 02 5 文献标 识 码 : A 文章编 号 :6 3 7 52 1 ) a- 0 2 0 17 —9 9 (0 00 () O 7 - 2 Z
2
I 为 差 度 标 。 就 所 的 l 作 误 量 的 准这 是 谓 a l
]
>>x= 0 5 . 1 5 2 0 2. .】 f . 1 0 . . 5 3 0 ; >>y [ .52.5 3 8 4 8 .0 8 6】 = 1 7 4 .1 .0 80 . O > a p lf( , ,) > = oy t y 2 i x
MATLAB3深圳大学科学及工程计算数值分析课件
▪ 用户向封装对话框输入 Slope和 Intercept 的值。封装将这 些封装参数映射给底层模块。
15
3.5.1 用封装的办法创建模块(续)
2。产生封装提示对话框 ▪ 要产生这个系统的封装,先选取子系统模块,然后从 Edit 菜单中选取 Mask Subsystem 命令。 ▪ 封装提示对话框开始时大都显示 Mask Editor 对话框的 Initialization 选项卡。 ▪ 把 Slope 和 Intercept 定义为 Edit 控件。 3。产生封装模块描述和帮助文本 ▪ 在 Documentation 选项卡中可以定义模块的封装类型、模 块描述和帮助文本。
• 系统( System):即指被研究系统的 SIMULINK 方框图; • 信宿( Sink):可以是示波器、图形记录仪等。 ▪ 对于具体的 SIMULINK 模型而,不一定完全地包含这三大 组件。例如:研究初始条件对系统影响就不必包含信源组件。
4
3.2 模型的创建和模型文件(续1)
3.2.2 SIMULINK 模型的创建 ▪ 创建模型文件; ▪ 选择对象; ▪ 模块的操作; ▪ 连线的操作; ▪ 对模型的注释; ▪ 创建子系统; ▪ 仿真的配置 ; ▪ 保存模型; ▪ 仿真和结果分析。
(3)双击空子系统模块Subsystem ,打开其结构模型窗。
(4)从SIMULINK库中拷贝In输入口模块、Out输出口模块、Enable使能 模块到子系统的结构模型窗;把In 模块的输出直接送到Out模块的输入端; Enable模块无须进行任何连接,且本例采用它的缺省设置;便实现了题目 所需使能子系统。
(2)编写绘制传统状态轨迹(State trajectory)的M文件 M3_ ex 3_4 _4.m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 MATLAB 编程题库 1.下面的数据表近似地满足函数21cxbaxy,请适当变换成为线性最小二乘问题,
编程求最好的系数cba,,,并在同一个图上画出所有数据和函数图像.
625.0718.0801.0823.0802.0687.0606.0356.0995.0628.0544.0008.0213.0362.0586.0931.0iiyx
解: >> x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; >> y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; >> A=[x ones(8,1) -x.^2.*y]; >> z=A\y; >> a=z(1); b=z(2); c=z(3); >>xh=[-1:0.1:1]'; >>yh=(a.*xh+b)./(1+c.*xh.^2); >>plot(x,y,'r+',xh,yh,'b*') 2.若在Matlab工作目录下已经有如下两个函数文件,写一个割线法程序,求出这
两个函数精度为1010的近似根,并写出调用方式: 文件一 文件二 function v = f(x) v = x .* log(x) - 1; function z = g(y) z = y.^5 + y - 1; 解: >> edit gexianfa.m function [x iter]=gexianfa(f,x0,x1,tol) iter=0;x=x1; while(abs(feval(f,x))>tol) iter=iter+1; x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0)); x0=x1;x1=x; end >> edit f.m function v=f(x) v=x.*log(x)-1;
>> edit g.m function z=g(y) z=y.^5+y-1; >> [x1 iter1]=gexianfa('f',1,3,1e-10) x1 = 1.7632 iter1 = 6 2
>> [x2 iter2]=gexianfa('g',0,1,1e-10) x2 = 0.7549 iter2 = 8 3.使用GS迭代求解下述线性代数方程组:
123123123
521242103103xxxxxxxxxì++=-ïïïï-++=í
ïïï-+=
ïî
解: >> edit gsdiedai.m function [x iter]=gsdiedai(A,x0,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); iter=0; x=x0; while((norm(b-A*x)./norm(b))>tol) iter=iter+1; x0=x; x=(D-L)\(U*x0+b); end >> A=[5 2 1;-1 4 2;1 -3 10]; >> b=[-12 10 3]'; >>tol=1e-4; >>x0=[0 0 0]'; >> [x iter]=gsdiedai(A,x0,b,tol); >>x x = -3.0910 1.2372 0.9802 >>iter iter = 6 4.用四阶Range-kutta方法求解下述常微分方程初值问题(取步长h=0.01)
,(1)2xdyyexydxyìïï=++ï
íïï=ïî
解: >> edit ksf2.m function v=ksf2(x,y) 3
v=y+exp(x)+x.*y; >> a=1;b=2;h=0.01; >> n=(b-a)./h; >> x=[1:0.01:2]; >>y(1)=2; >>for i=2:(n+1) k1=h*ksf2(x(i-1),y(i-1)); k2=h*ksf2(x(i-1)+0.5*h,y(i-1)+0.5*k1); k3=h*ksf2(x(i-1)+0.5*h,y(i-1)+0.5*k2); k4=h*ksf2(x(i-1)+h,y(i-1)+k3); y(i)=y(i-1)+(k1+2*k2+2*k3+k4)./6; end >>y 调用函数方法 >> edit Rangekutta.m function [x y]=Rangekutta(f,a,b,h,y0) x=[a:h:b]; n=(b-a)/h; y(1)=y0; for i=2:(n+1) k1=h*(feval(f,x(i-1),y(i-1))); k2=h*(feval(f,x(i-1)+0.5*h,y(i-1)+0.5*k1)); k3=h*(feval(f,x(i-1)+0.5*h,y(i-1)+0.5*k2)); k4=h*(feval(f,x(i-1)+h,y(i-1)+k3)); y(i)=y(i-1)+(k1+2*k2+2*k3+k4)./6; end >> [x y]=Rangekutta('ksf2',1,2,0.01,2); >>y 5.取0.2h,请编写Matlab程序,分别用欧拉方法、改进欧拉方法在12x上求解初值问题。
3,(1)0.4dyyxdxxyìïï=-
ï
íïï=ïî
解: >> edit Euler.m function [x y]=Euler(f,a,b,h,y0) x=[a:h:b]; n=(b-a)./h; y(1)=y0; for i=2:(n+1) y(i)=y(i-1)+h*feval(f,x(i-1),y(i-1)); end >> edit gaijinEuler.m 4
function[x y]=gaijinEuler(f,a,b,h,y0) x=[a:h:b]; n=(b-a)./h; y(1)=y0; for i=2:(n+1) y1=y(i-1)+h*feval(f,x(i-1),y(i-1)); y2=y(i-1)+h*feval(f,x(i),y1); y(i)=(y1+y2)./2; end >> edit ksf3.m function v=ksf3(x,y) v=x.^3-y./x; >>[x y]=Euler('ksf3',1,2,0.2,0.4) x = 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000 y = 0.4000 0.5200 0.7789 1.2165 1.8836 2.8407 >> [x y]=gaijinEuler('ksf3',1,2,0.2,0.4) x = 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000 y = 0.4000 0.5895 0.9278 1.4615 2.2464 3.3466 6.请编写复合梯形积分公式的Matlab程序,计算下面积分的近似值,区间等分20n。
编写辛普森积分公式的Matlab程序,计算下面积分的近似值,区间等分10n。
120
11dxx+ò、11sinxdxx-ò
解: >> edit tixingjifen.m function s=tixingjifen(f,a,b,n) x=linspace(a,b,(n+1)); y=zeros(1,length(x)); y=feval(f,x) h=(b-a)./n; s=0.5*h*(y(1)+2*sum(y(2:n))+y(n+1)); end >> edit simpson.m function I=simpson(f,a,b,n) h=(b-a)/n; x=linspace(a,b,2*n+1); y=feval(f,x); I=(h/6)*(y(1)+2*sum(y(3:2:2*n-1))+4*sum(y(2:2:2*n))+y(2*n+1)); >> edit ksf4.m 5
function v=ksf4(x) v=1./(x.^2+1); >>tixingjifen('ksf4',0,1,20) ans = 0.7853 >>simpson('ksf4',0,1,10) ans = 0.7854 >> edit ksf5.m function v=ksf5(x) if(x==0) v=1; else v=sin(x)./x; end (第二个函数„ksf5‟调用求积函数时,总显示有错误:“NaN”,还没调试好。见谅!)
7.用Jacobi迭代方法对下面方程组求解,取初始向量(0)(3,2,1)Tx。
123
244233334422xxx
解: >>edit Jacobi.m function[x iter]=Jacobi(A,x0,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); x=x0; iter=0; while(norm(A*x-b)/norm(b)>tol) iter=iter+1; x0=x; x=D\((L+U)*x0+b); end
>> A=[2 4 -4;3 3 3;4 4 2]; >> b=[2 -3 -2]'; >>x0=[3 2 -1]'; >> [x,iter]=Jacobi(A,x0,b,1e-4) x = 1 -1 -1