Weinreb酰胺的制备及应用研究进展
有机合成中碳链上增加一个碳原子的方法

有机合成中碳链上增加⼀个碳原⼦的⽅法⼀、以甲醛或甲醛等价物为底物进⾏反应增加碳链1、羟醛缩合反应(Aldol condensation)醛酮在碱性条件下得到烯醇盐和另⼀个羰基化合物缩合得到β-羟基醛酮的反应。
当利⽤甲醛作为底物时则底物增加⼀个碳。
Evans羟醛缩合反应,Abiko-Masamune羟醛缩合反应,Mukaiyama羟醛缩合反应2、Arens-van Dorp反应烷氧基⼄炔在强碱条件下对醛酮加成得到烷氧基炔甲醇的反应。
3、Stobbe condensation丁⼆酸⼆⼄酯及其衍⽣物和羰基化合物在碱性条件下进⾏缩合的反应。
4、Knoevenagel缩合反应羰基化合物和活泼亚甲基化合物在胺催化下缩合的反应。
5、Stetter反应醛和α,β-不饱和酮在噻唑盐的催化下反应制备1,4-⼆羰基化合物的反应。
噻唑盐是氰离⼦的安全替代试剂。
此反应也被称为 Michael-Stetter反应,机理和安息⾹缩合类似。
此反应直接利⽤甲醛作为底物的报道较少,但是有⽂献报道利⽤糖作为甲醛替代物进⾏反应可以得到多⼀个碳的1,4-⼆羰基化合物。
【J. Am. Chem. Soc. 2013, 135, 8113–8116】6、Barbier反应在有机⾦属试剂存在下,羰基化合物可以迅速与其反应,这类反应被称为Barbier反应。
7、Grignard反应(格⽒反应)格⽒反应有多多种⽅式增加碳链,可以考虑以甲醛为底物和格⽒试剂进⾏反应增加⼀个碳链得到醇,也可以以⼆氧化碳为底物进⾏加成得到羧酸,或者直接利⽤甲基格⽒试剂对其他亲电试剂进⾏延长碳链。
8、Kagan-Molander偶联反应9、贝蒂反应(Betti Reaction)酚与芳⾹醛和伯胺作⽤得到 α-氨基苯甲酚类。
这个反应可以视为苯酚的Mannich反应。
10、Mannich反应1903年,B. Tollens和von Marle发现苯⼄酮和甲醛,氯化铵反应可以⽣成三级胺。
Weinreb酰胺的合成方法进展

Weinreb酰胺的合成方法进展易亮;齐永菲【摘要】Weinreb酰胺是合成一些结构有意义或有生物活性的手性化合物的重要中间体,它可与有机金属试剂反应生成酮,又可被二异丁基铝氢(DIBAL-H),氢化铝锂(LiAlH4)等还原成醛,现已被普遍应用于全合成化学、药物化学以及生物有机化学等领域。
因此,研究Weinreb酰胺的合成具有重大意义。
本文综述了以羧酸、羧酸衍生物等为原料制备Weinreb酰胺的方法并对制备Weinreb酰胺的方法进行了展望。
【期刊名称】《黑龙江科技信息》【年(卷),期】2015(000)013【总页数】2页(P37-37,38)【关键词】Weinreb酰胺;合成;研究进展【作者】易亮;齐永菲【作者单位】哈尔滨理工大学,黑龙江哈尔滨 150000;哈尔滨理工大学,黑龙江哈尔滨 150000【正文语种】中文酰基化试剂[N-甲基-N-甲氧基酰胺(Weinreb酰胺[1])]1是由Weinreb和Nahm 于1981年发现的一类重要的化学合成中间体。
Weinreb酰胺类化合物作为重要的化工原料和药物中间体,其应用已遍及化工、医药、农药、天然产物、材料等方面的合成,这种酰胺的优势就在于其与过量的金属有机试剂反应,只生成酮,而不会继续生成醇,其反应过程见scheme1。
由scheme1可见在反应过程中生成了稳定的金属螯合物2,该螯合物不会离解产生羰基化合物,过量的金属有机试剂也不能使其进一步发生反应,只能通过酸解生成相对应的酮。
Weinreb酰胺同时也容易被金属氢化物还原生成醛,其反应过程见scheme2。
值得一提的是金属有机试剂或金属氢化物与具有光学活性的Weinreb酰胺反应时,Weinreb酰胺的构型可保持不变。
本文就近年来Weinreb酰胺的合成研究进展进行综述。
直接从羧酸出发与N-甲基-N-甲氧基胺一步合成Weinreb酰胺是较理想的制备方法,但是该反应中羧基酰胺化反应的活性弱,很难与N-甲基-N-甲氧基胺直接缩合,羧基要先活化后才能与N-甲基-N-甲氧基胺反应生成Weinreb酰胺。
金属催化条件下酰胺类化合物的合成研究

金属催化条件下酰胺类化合物的合成研究中文摘要酰胺键在生命体构建过程中所扮演着极为重要的角色。
例如,蛋白质(包括酶)中的肽键就是酰胺键。
同时,酰胺键也广泛存在于很多天然产物和现代医药分子中。
因此,很多生物学家和化学家一直将酰胺键的构建放在首要位置。
尽管酰胺键的构建方法有很多种,但是其中的大部分还是涉及到偶联剂的使用,这就增加了合成的成本。
因此,两者之间的矛盾促使我们继续探究催化条件下合成酰胺键的方法。
本文以金属催化条件下,合成酰胺类化合物这个问题为中心,分别合成了α-苯磺酰胺基酮和含异噁唑啉环的酰胺。
与此同时,对以上两种产物的生成机理加以研究。
具体内容如下:一:异噁唑啉环在有机合成以及药物研究中意义重大,含异噁唑啉环的酰胺类化合物为医药研究提供了更多的选择。
在室温下,β,γ-不饱和酮肟在碘苯二乙酸(PIDA)和三氟甲烷磺酸锌(Zn(OTf)2)共同作用下,发生σC-C键裂解,得到氧化腈和互补的含烯键的碳正离子中间体。
后者与体系中的腈反应,得到N-烯丙基酰胺。
接下来二者发生分子间的1,3-偶极环加成反应,得到了含异噁唑啉环的酰胺。
二:鉴于氮自由基难以生成,且与炔键的加成比较困难,我们设想以N-氟代双苯磺酰亚胺(NFSI)为氮自由基前体,与芳基丙炔酸反应,能否合成双苯磺酰基取代的炔烃。
实验结果表明,生成了α-苯磺酰胺基酮。
反应的机理可能为:在一价铜盐和银盐及配体存在下,N-氟代双苯磺酰胺(NFSI)生成磺酰胺自由基,该自由基区域选择性地加到炔银中间体中距离芳环比较远的一端,得到高活性的烯基自由基。
该中间体紧接着发生1,4-芳基迁移伴并伴随脱二氧化硫。
然后,发生氧化/水的亲核进攻/半频哪醇重排,最终生成α-苯磺酰胺基酮。
关键词:金属,催化,含异噁唑啉环的酰胺,α-苯磺酰胺基酮Metal-Catalyzed Synthesis of AmidesAbstractUndoubtedly, amide bond is essential to sustain life. For Example, it is the most basic covalent bond in peptides(e.g. enzymes). Meanwhile, amide bond can be seen in a variety of natural products and modern pharmaceutical molecules of interest. So, numerous biologists and chemists have given their priority to the construction of amide bond. However, despite the abundance of the building methods, most of them involve the use of stoichiometric amount of coupling reagents, which increases the expense accordingly. Hence, this contradiction motivates us to continue the exploration of developing novel metal-catalyzed methods for achieving amide bonds. This paper mainly centers on the preparation of α-benzenesulfonamido ketones and amides containing isoxazoline. The details are as follows:1. Isoxazolines have been reported to be of synthetic and pharmaceutical importance, and amides containing isoxazolines provide more posibility for medical research. With the synergistic effect of (Diacetoxyiodo)benzene (PIDA) and Zinc trifluoromethanesulfonate, the σcarbon-carbon bond of β, γ-unsaturated ketoximes cleavaged to give intermediate nitrile oxides. The counterpart so-obtained reacts with nitriles, and elaborated N-allylamides. This is followed by intermolecular 1,3-dipolar cyclization of nitrile oxides and N-allylamides, infrequently affording the amides containing isoxazoline.2. In view of the fact that N-centered radical is difficultly available and is reluctant to react with carbon-carbon triple bond, we envisioned that maybe N-Fluorobenzenesulfonimide (NFSI) can be utilized as precusor of N-centered radical and the latter then reacted with arylpropiolic acid to deliver benzenesulfonimide-functionalized alkynes. Happily, we obatined α-benzenesulfonamido ketones. The poposed mechanism is as follows: NFSI is activated by cuprous salt, generating nitrogen-centered radical which regioselectively added to the triple bond of alkyne silver intermediate, distant from the aryl group. Subsequent 1, 4-aryl migration motivates the loss of sulfur dioxide. Then, a oxidation/nucliphilic attack of water/semi-pinacol rearrangement sequence finally furnishes α-benzenesulfonamido ketones.Keywords: metal-catalyzed,amides containing isoxazoline, α-benzenesulfonamido ketones目录中文摘要 (I)Abstract (II)第一章酰胺键的应用与合成概述 (1)1.1 前言 (1)1.2 传统合成酰胺键的方法 (2)1.2.1 偶联剂作用下羧酸和胺的反应 (2)1.2.2 Beckmann重排 (3)1.2.3 Ritter反应 (7)1.2.4 Ugi多组分反应 (9)1.2.5 腈的水解 (11)1.3 较新颖的合成酰胺的方法 (13)1.3.1有机化合物或过渡金属催化羧酸和胺直接生成酰胺 (13)1.3.2羧酸替代物和胺的反应 (16)1.3.3胺替代物和羧酸的反应 (24)1.3.4其他类型反应 (25)第二章由β,γ-不饱和酮肟合成含异噁唑啉环的酰胺 (28)2.1 异噁唑啉类化合物的用途 (28)2.2 异噁唑啉类化合物的合成方法 (28)2.3 工作背景及研究目的 (32)2.4 实验结果和机理研究 (33)2.5 实验部分 (40)2.5.1 实验仪器 (40)2.5.2 试剂和溶剂 (40)2.5.3 底物β,γ-不饱和酮肟的制备 (40)2.6 部分底物谱图和产物谱图数据 (41)2.6.1 1l的谱图数据 (41)2.6.2 产物的谱图数据 (42)第三章α-磺酰胺取代的酮的合成研究 (50)3.1 α-磺酰胺取代的酮的合成方法 (50)3.2 研究背景和研究目标 (54)3.3 实验结果和讨论 (55)3.4 反应机理研究 (58)3.4.1 自由基捕截实验 (58)3.4.2 对照实验 (58)3.4.3 反应机理总结 (58)3.5 实验部分 (59)3.5.1实验仪器 (59)3.5.2实验步骤 (59)3.6 产物谱图数据 (61)参考文献 (68)在学期间的研究成果 (80)致谢 (81)第一章酰胺键的应用与合成概述1.1 前言据报道,截至2006年,酰胺键在2/3的候选药物中被发现[1]。
Weinreb酰胺的制备及应用研究进展

学年论文题目: Weinreb酰胺的制备及应用研究进展学院:化学化工学院专业: 11级化学(师范)指导教师:学生姓名学号:2014年 5月 30日目录摘要------------------------------------------------------------------------------第3页关键字---------------------------------------------------------------------------第3页1.Weinreb酰胺简介------------------------------------------------------第3页2.Weinreb酰胺的合成方法:-------------------------------------------第4页2.1有机锌试剂制备weinreb酰胺的方法------------------------第4页2.2以羧酸为原料的合成法-----------------------------------------第5页2.3以羧酸酯为原料的合成法----------------------------------------第6页2.4以酰氯为原料的合成法-------------------------------------------第6页2.5以酰胺为原料的合成法-------------------------------------------第7页3. weinreb酰胺的应用进展----------------------------------------------第7页3.1用weinreb酰胺合成酮---------------------------------------------第7页3.2weinreb酰胺还原反应--------------------------------------------第7页3.3weinreb酰胺水解反应--------------------------------------------第8页4.总结:-------------------------------------------------------------------------第8页参考文献:---------------------------------------------------------------------第8页Weinreb酰胺的制备及应用研究进展摘要:Weinreb酰胺是一类十分重要的酰基化试剂,在许多天然产物的合成中有着的广泛的应用,其合成的方法有很多种,在此介绍羧酸、羧酸酯、酰氯、酰胺为原料和用有机锌试剂制备weinreb酰胺的方法。
β位二取代的α,β-不饱和羰基化物的一步合成

翻译文献:One-Pot Synthesis of Pf-Disubstituted a,「-UnsaturatedCarbonylCompoundsMasaharu Sugiura,* Yasuhiko Ashikari, and Makoto NakajimaP位二取代的a, 0-不饱和羰基化物的一锅法合成摘要:TiCl4催化酮的羟醛缩合反应从而一锅合成P,P-二取代的a, P-不饱和携基化合物,其中酮为羟醛的受体,且在消除阶段会有钛氧基团从钛-羟醛配合物上离去。
在消除阶段使用添加剂(如二甲基甲酰胺、四甲基乙二胺和毗啶)是很重要的。
正文:p,P-二取代的a,P-不饱和携基化合物是本身就是有用的化合物,并且可作为在携基的P位上可以构建四取代或三取代的手性碳原子中心原料。
各种各样的天然产物可以通过具有这种官能团的化合物来合成。
我们也报道了路易斯碱催化的不对称共轭的P,P-二取代a,P-不饱和三氯烯酮。
酮的Horner-Wadsworth-Emmons组合反应和后续经Weinreb酰胺作用的转化为烯酮是广泛用于制备环P,P-二取代的链状烯酮。
酮的亚磺酰化/脱亚磺酰化,有机金属试剂经加成为P-氨基烯酮,P-烷硫基烯酮或P-烷氧基烯酮,有机金属试剂的共轭加成,三级炔丙醇或其乙酸酯,三烯丙基醇的氧化重排都被利用了。
最近,Donohoe和其同事报道了一个基于乙烯Weinreb酰胺的Mizoroki Heck 反应,该方法具有很有效的立体选择性。
然而,这些先例都需要经过几个反应步骤。
醇加成到的单酮上后脱水(羟醛缩合)可为合成P,P-二取代的a,P-不饱和携基化合物提供一种简单的方法,而且能较容易获得原料;然而,这反应还尚未进行了系统的研究,因为作为亲电试剂(醛醇受体)的酮的反应活性相对较低,反应可逆性强,而且容易生成不必要的自身羟醛缩合产物或交叉羟醛缩合产物。
在很少的例子中,Tanabe和他的同事报道的非常有用的非对映选择性TiCl4 / Bu3Nn催化两酮之间或苯基酯/苯基硫酯和酮之间的羟醛缩合反应。
weinreb酰胺的制备

weinreb酰胺的制备
Weinreb酰胺是一种重要的羰基合成试剂,可以用于合成酮和醛化合物。
下面是Weinreb酰胺的制备方法:
1. 材料:
- N,N-二甲基甲酰胺(DMF)
- 三氯甲烷(CHCl3)
- 碳酸二甲胺(DMA)
- 甲酸
- 二甲基氨基乙基氯化铜(CuCl2·2DMF)
2. 实验步骤:
a. 准备一个干净的干燥的反应瓶,用氮气干燥瓶内空气。
b. 向瓶中加入DMF(1.2当量),然后加入三氯甲烷(2.2当量)。
c. 向瓶中加入碳酸二甲胺(1当量)。
d. 将甲酸(1当量)添加到瓶中。
e. 加入二甲基氨基乙基氯化铜(0.1当量)。
f. 将反应瓶密封,并在室温下搅拌反应约24小时。
g. 完成反应后,用水稀释反应混合物,并用氯化钠饱和。
h. 用冷水洗涤有机相,然后使用氯化钠饱和水溶液洗涤,最后用氯化钠饱和溶液洗涤。
i. 使用旋转蒸发仪将有机溶剂蒸发掉,得到Weinreb酰胺产物。
j. 需要根据具体的实验需求进行进一步纯化和抽提等操作。
请注意,这只是Weinreb酰胺的一种制备方法,实际操作中可
能还会有其他变体的方法。
此外,在操作化学试剂时,请严格遵循操作规程和实验室安全指南。
非经典 Wittig 反应的最新进展

非经典 Wittig 反应的最新进展荣红英;黄文华【摘要】综述了非经典 Wittig 反应的最新进展,包括酯、酰胺、酰亚胺、酸酐、唑酮等非醛酮类羰基化合物的 Wittig 反应。
通过改变磷叶立德的结构或设计成分子内 Wittig 反应,可合成各种杂环化合物和药物前体。
%Recent progress of non-classical Wittig reaction was reviewed in this paper,including Wittig reac-tion of some non-aldehyde and non-ketone carbonyl compounds such as ester,amide,imide,anhydride,and ox-azolone.Through modifying the structure of phosphorus ylide or designing an intramolecular reaction,a variety of heterocyclic compounds and drug precursors could be synthesized.【期刊名称】《化学与生物工程》【年(卷),期】2015(000)010【总页数】7页(P1-7)【关键词】Wittig反应;酯;酰胺;酰亚胺;酸酐;唑酮【作者】荣红英;黄文华【作者单位】天津大学化学系,天津 300072;天津大学化学系,天津 300072【正文语种】中文【中图分类】TQ203.9;O621.3Wittig反应[1]是有机合成中生成碳碳双键最常用和最可靠的反应之一,最经典的形式是磷叶立德与醛或酮反应生成烯烃(图1)。
磷叶立德又称Wittig试剂,分为稳定(R 1和R2至少有一个为吸电子基)、半稳定(R1或R2为芳基或烯基)和不稳定(R1和R2为烷基或氢)的磷叶立德,反应活性依次升高。
weinreb酰胺与格式试剂反应机理

Weinreb酰胺与格氏试剂反应的机理如下:
1. 格氏试剂的形成:卤代烷(如卤代烃)与金属(如镁)在无水乙醚或四氢呋喃等有机溶剂中反应生成格氏试剂。
这个步骤通常需要在惰性气体(如氮气)下进行,以避免水和氧气的干扰。
2. 格氏试剂的亲核加成:生成的格氏试剂作为亲核试剂与酰胺中的酰基发生亲核加成反应。
格氏试剂中的金属负离子攻击酰基的羰基碳,形成一个暂时的中间体。
3. 中间体的形成:格氏试剂的亲核攻击导致一个负电荷在羰基碳上形成,同时酰胺中的氨基或胺基中的氢离子被金属负离子的氢替换。
这形成了一个中间体,其中羰基碳与金属负离子和新形成的氨基或胺基结合。
4. 中间体的消除:中间体中的负电荷通过质子化来中和。
这可以通过加入水或酸来实现,从而形成相应的酸性介质。
以上机理仅供参考,可以查阅相关文献资料获取更多信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。