数学物理方程有限差分法

合集下载

三类典型的数学物理方程

三类典型的数学物理方程
内容回顾
数学物理方程的建立过程
确定所研究的物理量 用数学中的“微元法”从所研究的系统中分割出
一小部分,再根据相应的物理规律分析邻近部分 与该部分的作用(抓主要作用),这种相互作用 在一个短的时间间隔内如何影响物理量。 把这种关系用微分方程表达出来,经过化简整理, 得到数学物理方程。
杆的纵振动方程 杆上x点在t时刻 F(x,t) 的弹性应力 x 研究对象:杆上各点的纵向位移 u(x,t)
得到
uxx u 2u u
utt a2[u 2u u ]
将上面两式代入原波动方程,得到
u 0
如何处理?
考虑采用积分的方法
先对 积分 u u d 0 f ( )
再对 积分
u f ( )d f1( ) f2 () f1(x at) f2(x at)(2)
即为齐次波动方程初值问题的通解 就某一具体问题,通过定解条件(初始条件)来 确定 f1 , f2
例:长为l 的均质细杆,侧面绝热,一端放在0°的水中,
另一端按已知规律 f (t) 变化。写出边界条件
物体边界面各点在时刻t所流过的热量已知:
u n
s
质温度已知,物体内部通过其边界S与 周围介质进行热量交换:
在S上任取一小块dS,用u1表示与物体接触处的介质温度,dQ 表示dt时间内流过dS的热量,根据牛顿冷却定律,我们有
弦的端点沿垂直于x轴的方向自由滑动,并受到一个 沿位移方向作用的已知外力,则边界条件形式为
ux (0,t) 1(t), ux (a,t) 2(t)
自由端点的情形:
1.2 初始条件与边界条件
第三类边界条件 给出所研究的物理量及其沿边界外法向导数 在边界上应满足的条件。
端点处为弹性支撑端的情形 根据Hooke 定律

有限元素法有限体积法有限差分法有限容积法的区别

有限元素法有限体积法有限差分法有限容积法的区别

1.1 概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

1.2 差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。

(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

1.3 构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

2. FEM2.1 概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

2.2 原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

非线性偏微分方程数值解法

非线性偏微分方程数值解法

非线性偏微分方程数值解法非线性偏微分方程(Nonlinear Partial Differential Equations, NPDEs)是研究物理、工程和应用数学等领域中的重要问题之一。

与线性偏微分方程不同,非线性偏微分方程的解不仅依赖于未知函数本身,还依赖于未知函数的导数、高阶导数和其他非线性项。

因此,求解非线性偏微分方程是一项困难而具有挑战性的任务。

为了解决这个问题,数学家们提出了多种数值方法和技术。

一种常用的求解非线性偏微分方程的数值方法是有限差分法(Finite Difference Method, FDM)。

有限差分法将求解区域离散化成网格,然后使用数值逼近来近似未知函数和导数。

通过将偏微分方程中的导数用离散化的差分近似表示,可以将原始的非线性偏微分方程转化为一组非线性代数方程。

然后,可以使用迭代方法(如牛顿法)求解这组方程,得到非线性偏微分方程的数值解。

除了有限差分法,其他常用的数值方法包括有限元法(Finite Element Method, FEM)、有限体积法(Finite Volume Method, FVM)和谱方法(Spectral Methods)等。

这些方法在不同的问题和领域中有着广泛的应用。

例如,有限元法在结构力学、流体力学和电磁学等领域中被广泛使用;有限体积法在计算流体动力学和多相流等问题中得到广泛应用;谱方法在流体力学、量子力学和声学等领域中得到广泛应用。

尽管非线性偏微分方程数值解法在实际应用中具有重要的地位,但由于非线性偏微分方程的复杂性,求解过程中常常会遇到一些困难。

其中之一是收敛性问题。

由于非线性偏微分方程的非线性项,往往导致数值方法的迭代过程不收敛或收敛速度很慢。

为了解决这个问题,可以采用加速技术(如牛顿—高斯—赛德尔方法)、网格重构和网格自适应等方法来改善收敛性。

另外,稳定性问题也是非线性偏微分方程数值解法中需要考虑的重要问题。

由于数值方法的离散化误差和时间步长的选择等因素,计算结果可能会产生不稳定性,例如数值震荡和破坏性的解。

有限差分法求解偏微分方程

有限差分法求解偏微分方程

有限差分法求解偏微分方程摘要:本文主要使用有限差分法求解计算力学中的系统数学模型,推导了有限差分法的理论基础,并在此基础上给出了部分有限差分法求解偏微分方程的算例验证了推导的正确性及操作可行性。

关键词:计算力学,偏微分方程,有限差分法Abstract:This dissertation mainly focuses on solving the mathematic model of computation mechanics with finite-difference method. The theoretical basis of finite-difference is derived in the second part of the dissertation, and then I use MATLAB to program the algorithms to solve some partial differential equations to confirm the correctness of the derivation and the feasibility of the method.Key words:Computation Mechanics, Partial Differential Equations, Finite-Difference Method1 引言机械系统设计常常需要从力学观点进行结构设计以及结构分析,而这些分析的前提就是建立工程问题的数学模型。

通过对机械系统应用自然的基本定律和原理得到带有相关边界条件和初始条件的微分积分方程,这些微分积分方程构成了系统的数学模型。

求解这些数学模型的方法大致分为解析法和数值法两种,而解析法的局限性众所周知,当系统的边界条件和受载情况复杂一点,往往求不出问题的解析解或近似解。

另一方面,计算机技术的发展使得计算更精确、更迅速。

数值模拟偏微分方程的三种方法:FDM、FEM及FVM

数值模拟偏微分方程的三种方法:FDM、FEM及FVM

数值模拟偏微分方程的三种方法:FDM、FEM及FVM偏微分方程数值模拟常用的方法主要有三种:有限差分方法(FDM)、有限元方法(FEM)、有限体积方法(FVM),本文将对这三种方法进行简单的介绍和比较。

有限差分方法有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛运用。

该方法包括区域剖分和差商代替导数两个过程。

具体地,首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。

其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替来进行离散,从而建立以网格节点上的值为未知量的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。

从差分的空间离散形式来考虑,有中心格式和迎风格式。

对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。

目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于结构网格,网格的步长一般根据问题模型和Courant稳定条件来决定。

请输入标题有限元方法(Finite Element Methods)的基础是变分原理和分片多项式插值。

该方法的构造过程包括以下三个步骤。

首先,利用变分原理得到偏微分方程的弱形式(利用泛函分析的知识将求解空间扩大)。

其次,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等)。

再次,在每个单元内选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。

利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。

有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。

偏微分方程数值解法

偏微分方程数值解法

偏微分方程数值解法偏微分方程(Partial Differential Equations,简称PDE)是数学中重要的研究对象,其在物理学、工程学、经济学等领域有广泛的应用。

然而,对于大多数偏微分方程而言,很难通过解析方法得到精确解,因此需要借助数值解法来求解。

本文将介绍几种常见的偏微分方程数值解法。

一、有限差分法(Finite Difference Method)有限差分法是一种常见且直观的偏微分方程数值解法。

其基本思想是将偏微分方程中的导数通过差分近似来表示,然后通过离散化的方式转化为代数方程组进行求解。

对于一维偏微分方程,可以通过将空间坐标离散化成一系列有限的格点,并使用中心差分格式来近似原方程中的导数项。

然后,将时间坐标离散化,利用差分格式逐步计算每个时间步的解。

最后,通过迭代计算所有时间步,可以得到整个时间域上的解。

对于二维或高维的偏微分方程,可以将空间坐标进行多重离散化,利用多维的中心差分格式进行近似,然后通过迭代计算得到整个空间域上的解。

二、有限元法(Finite Element Method)有限元法是另一种重要的偏微分方程数值解法。

其基本思想是将求解区域分割成有限数量的子区域(单元),然后通过求解子区域上的局部问题来逼近整个求解区域上的解。

在有限元法中,首先选择适当的形状函数,在每个单元上构建近似函数空间。

然后,通过构建变分问题,将原偏微分方程转化为一系列代数方程。

最后,通过求解这些代数方程,可以得到整个求解区域上的解。

有限元法适用于各种复杂的边界条件和几何构型,因此在实际工程问题中被广泛应用。

三、谱方法(Spectral Methods)谱方法是一种基于特定基函数(如切比雪夫多项式、勒让德多项式等)展开解的偏微分方程数值解法。

与有限差分法和有限元法不同,谱方法在整个求解区域上都具有高精度和快速收敛的特性。

在谱方法中,通过选择适当的基函数,并利用其正交性质,可以将解在整个求解区域上展开为基函数系数的线性组合。

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别

有限差分方法()是计算机数值模拟最早采用地方法,至今仍被广泛运用.该方法将求解域划分为差分网格,用有限个网格节点代替连续地求解域.有限差分法以级数展开等方法,把控制方程中地导数用网格节点上地函数值地差商代替进行离散,从而建立以网格节点上地值为未知数地代数方程组.该方法是一种直接将微分问题变为代数问题地近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟地数值方法.对于有限差分格式,从格式地精度来划分,有一阶格式、二阶格式和高阶格式.从差分地空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子地影响,差分格式还可以分为显格式、隐格式、显隐交替格式等.目前常见地差分格式,主要是上述几种形式地组合,不同地组合构成不同地差分格式.差分方法主要适用于有结构网格,网格地步长一般根据实际地形地情况和柯朗稳定条件来决定.构造差分地方法有多种形式,目前主要采用地是泰勒级数展开方法.其基本地差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度.通过对时间和空间这几种不同差分格式地组合,可以组合成不同地差分计算格式.有限元方法地基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠地单元,在每个单元内,选择一些合适地节点作为求解函数地插值点,将微分方程中地变量改写成由各变量或其导数地节点值与所选用地插值函数组成地线性表达式,借助于变分原理或加权余量法,将微分方程离散求解.采用不同地权函数和插值函数形式,便构成不同地有限元方法.有限元方法最早应用于结构力学,后来随着计算机地发展慢慢用于流体力学地数值模拟.在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接地单元,在每个单元内选择基函数,用单元基函数地线形组合来逼近单元中地真解,整个计算域上总体地基函数可以看为由每个单元基函数组成地,则整个计算域内地解可以看作是由所有单元上地近似解构成.在河道数值模拟中,常见地有限元计算方法是由变分法和加权余量法发展而来地里兹法和伽辽金法、最小二乘法等.根据所采用地权函数和插值函数地不同,有限元方法也分为多种计算格式.从权函数地选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格地形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数地精度来划分,又分为线性插值函数和高次插值函数等.不同地组合同样构成不同地有限元计算格式.对于权函数,伽辽金()法是将权函数取为逼近函数中地基函数;最小二乘法是令权函数等于余量本身,而内积地极小值则为对代求系数地平方误差最小;在配置法中,先在计算域内选取个配置点.令近似解在选定地个配置点上严格满足微分方程,即在配置点上令方程余量为.插值函数一般由不同次幂地多项式组成,但也有采用三角函数或指数函数组成地乘积表示,但最常用地多项式插值函数.有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日()多项式插值;另一种不仅要求插值多项式本身,还要求它地导数值在插值点取已知值,称为哈密特()多项式插值.单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等.常采用地无因次坐标是一种局部坐标系,它地定义取决于单元地几何形状,一维看作长度比,二维看作面积比,三维看作体积比.在二维有限元中,三角形单元应用地最早,近来四边形等参元地应用也越来越广.对于二维三角形和四边形电源单元,常采用地插值函数为有插值直角坐标系中地线性插值函数及二阶或更高阶插值函数、面积坐标系中地线性插值函数、二阶或更高阶插值函数等. 对于有限元方法,其基本思路和解题步骤可归纳为()建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价地积分表达式,这是有限元法地出发点.()区域单元剖分,根据求解区域地形状及实际问题地物理特点,将区域剖分为若干相互连接、不重叠地单元.区域单元划分是采用有限元方法地前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间地关系之外,还要表示节点地位置坐标,同时还需要列出自然边界和本质边界地节点序号和相应地边界值.()确定单元基函数,根据单元中节点数目及对近似解精度地要求,选择满足一定插值条件地插值函数作为单元基函数.有限元方法中地基函数是在单元中选取地,由于各单元具有规则地几何形状,在选取基函数时可遵循一定地法则.()单元分析:将各个单元中地求解函数用单元基函数地线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点地参数值)地代数方程组,称为单元有限元方程.()总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程.()边界条件地处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件).对于自然边界条件,一般在积分表达式中可自动得到满足.对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足. ()解有限元方程:根据边界条件修正地总体有限元方程组,是含所有待定未知量地封闭方程组,采用适当地数值计算方法求解,可求得各节点地函数值.有限体积法()又称为控制体积法.其基本思路是:将计算区域划分为一系列不重复地控制体积,并使每个网格点周围有一个控制体积;将待解地微分方程对每一个控制体积积分,便得出一组离散方程.其中地未知数是网格点上地因变量地数值.为了求出控制体积地积分,必须假定值在网格点之间地变化规律,即假设值地分段地分布地分布剖面.从积分区域地选取方法看来,有限体积法属于加权剩余法中地子区域法;从未知解地近似方法看来,有限体积法属于采用局部近似地离散方法.简言之,子区域法属于有限体积发地基本方法.有限体积法地基本思路易于理解,并能得出直接地物理解释.离散方程地物理意义,就是因变量在有限大小地控制体积中地守恒原理,如同微分方程表示因变量在无限小地控制体积中地守恒原理一样. 限体积法得出地离散方程,要求因变量地积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足.这是有限体积法吸引人地优点.有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确地积分守恒.就离散方法而言,有限体积法可视作有限单元法和有限差分法地中间物.有限单元法必须假定值在网格点之间地变化规律(既插值函数),并将其作为近似解.有限差分法只考虑网格点上地数值而不考虑值在网格点之间如何变化.有限体积法只寻求地结点值,这与有限差分法相类似;但有限体积法在寻求控制体积地积分时,必须假定值在网格点之间地分布,这又与有限单元法相类似.在有限体积法中,插值函数只用于计算控制体积地积分,得出离散方程之后,便可忘掉插值函数;如果需要地话,可以对微分方程中不同地项采取不同地插值函数.。

《油藏数值模拟》差分方程

《油藏数值模拟》差分方程

二、差商
2、二阶差商
Pi+1
=
Pi
+
ΔxP' (
xi
)+
( Δx )2 2!
P'' (
xi
)+
( Δx )3 3!
P''' (
xi
)+
( Δx )4 4!
P( 4 )(
xi
)+⋅⋅⋅
Pi−1
=
Pi
− ΔxP' (
xi
)+
( Δx )2 2!
P'' (
xi
) − ( Δx )3 3!
P''' (
xi
)+
中国石油大学(北京)油藏数值模拟研究中心
第2节 有限差分法
一、网格系统
1、全局正交网格(Globally Orthogonal Grid)
全局正交网格单元的外边界通常和坐标轴平行,而在外边界处,为 了顺应边界的复杂形状,即可以对边界形状进行微弱的扭曲,也可以用 台阶来近似。
一维网格
一维径向 网格
中国石油大学(北京)油藏数值模拟研究中心
i-1
i
i+1
x0
xi-Δx
xi
xi+Δx
xN+1 x
中国石油大学(北京)油藏数值模拟研究中心
第2节 有限差分法
二、差商
1、一阶差商
∂P
如图, 将P(x)在x点微商 ∂x xi ,表示为离散
Pi-1
Pi
Pi+1
x
i-1 i i+1
点上P(i=1,…,n)的线性函数。首先把 Pi+1 = P ( xi+1 ) 展开成x点泰勒级数:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学物理方程有限差分法 数学物理方法课程报告 题 目:声波有限差分法数值模拟 学生姓名:xxx 学 号:xxx 学 院:地球科学与技术学院 专业班级:xxxx 教 师:xxx 2016年 4月12日 声波有限差分法数值模拟 Xxx (地球科学与技术学院研15级 学号:xxx) 摘要:数值模拟就是最常用的正演模拟的方法。它通过给出的结构模型与物理参数,模拟

地震波的传播轨迹,了解其规律以及过程,然后通过计算来推断观测点的地震记录。根据求解方法,地震波方程数值解法可分为有限元法、伪谱法、有限差分法。根据本门课程的要求,并且有限差分法具有内存占用较小,精度较高等优点,本文主要采用这种方法进行模拟。 关键词:数值模拟,声波,有限差分

正文 1、 引言 在勘探过程中,数值模拟的作用很大。例如:1、采集上,可用于设计或者优化数学物理方程有限差分法 野外观测系统;2、处理上,可以通过数值模拟来检验就是否采用了正确的反演方法。将正演反演不断的逼近,从而使结果更加准确;3、解释上,还可以检测一下解释的资料就是否正确。 而有限差分法就是数值模拟最常用的方法,本文利用有限差分法,通过对声波进行正演模拟,来了解其在地下的传播规律及特点。

2、 二维各向同性介质声波方程数值模拟 使用规则网格差分对二阶方程进行求解。 具体过程:

在x方向上,关于0x对称分布的2N个网格节点的坐标分别为xqxN0,

xqxN10,……,xqx10,xqx10,……xqxN10,xqxN0。其 中,x表示节点间的最小间距;iq表示任意正整数。2N个网格节点所对应的函 数值已知,分别为xqxfN0,xqxfN10,……,xqxf10, xqxf10……,xqxfN10,xqxfN0。利用Taylor级数展开求解 xf在点0x处的一阶导数近似值。

120220220100!21!21NiNNiiiixqOxfxqNxfxqxfxqxfxqxf

120220220100!21!21NiNNiiiixqOxfxqNxfxqxfxqxfxqxf 其中,i=1,2,…,N 将上述两式相加,省略式中的误差项,得到

022044022000!21!41!21221xfxqNxfxqxfxqxqxfxfxqxfNNiiiii (1)

将相减后得到的式子整理成矩阵形式,有 数学物理方程有限差分法









xqxfxfxqxfxqxfxfxqxfxqxfxfxqxfxxfxNxfxxfqqqqqqqqqNNNNNNNNNN00020020100102022204202242224222214121222

21

!21!4

1

!21





 (2)

为了简化矩阵,可以记作 

NNNNNNqqqqqqqqqA242

224222

214121



,xqxfxfxqxfxqxfxfxqxfxqxfxfxqxfxDNN0002002010010222221

同时,构造两个简单矩阵,辅助计算

NNI111整理的, 1001

NE

假设存在1A,使得IAA1,也可得IAATT1;即TA1为TA的逆,得到 IAATT1。式子两边右乘向量E就可得

EEAATT1 (3) 由式(2)可得 DAExfT10221 (4) 同时,假设 TNTTcccCEA,,,211 (5) 将NcccC,,,21带入式(4),得

xqxfxfxqxfcxxfnnNnn000120222121 (6) 整理得 xqxfxqxfcxfcxfxnnNnn00100022 可结合式(3)与式(5),可得到矩阵计算式: 00121222214424122221NNNNNNNcccqqqqqqqqq (7) 数学物理方程有限差分法 Niicc102 当iq的值确定后,可根据式(7)来求解nc的值,从而计算出01xf的值。 利用式(7)可以求得对称任意节点间距的一阶导数差分系数。其中,当iq取值为 ),2,1(Nnn,则式(7)可表示为

00121212121222444222NNNNcccNNN (8) 此时,所求得的Nncn,,2,1就就是等节点间距的一阶导数的规则网格不同差分精度的差分系数(表1所示)。 表1 二阶导数规则网格各阶精度的差分系数 2L 0c 1c 2c 3c 4c 5c 6c

2 -2、00000 1、00000

4 -2、50000 1、33333 -8、33333E-2 6 -2、72222 1、50000 -1、50000E-1 1、11111E-2 8 -2、84722 1、60000 -2、00000E-1 2、53968E-2 -1、78571E-3 10 -2、92722 1、66667 -2、38095E-1 3、96825E-2 -4、96032E-3 3、17460E-4 12 -2、98278 1、71429 -2、67857E-1 5、29101E-2 -8、92857E-3 1、03896E-3 -6、01251E-5 二维声波方程的形式可表示为:

22222

2

21zuxutuvp

(9)

时间导数采用2阶,空间导数采用2N阶近似,即 )(2)(222ttututtutut

xnxuxnxucxucxxuxNnn

0010002

22

带入式(9)中,可得到在固定网格下,差分格式为 数学物理方程有限差分法 

NnnpNnnpznzuznzuazua

z

tv

xnxuxnxuaxuaxtvttututtu102102)(2)( (10)

3、模型测试: 震源选取: 正演模拟过程中采用雷克子波作为震源子波,雷克子波的表达式为 Source (it) =((1-2π fm (t-t0)2 )e-2π fm (t-t0)2 模型建立: 建立了一个两层介质模拟,其上层纵波速度为v=2000m/s,下层纵波速度为v=3000m/s。模型大小为200×200,空间采样间隔为dx=dz=10m。采用30Hz的雷克子波作为震源子波,震源位于模型(70,100)处,时间采样间隔为1ms。 结果分析:

it=50 it=100 it=150

it=200 it=250 it=300

it=350 it=400 数学物理方程有限差分法 图2 不同时刻波场快照 图中可以瞧出,在未遇到界面前,地震波在均匀介质中的波前面一个圆。当遇到地层界面之后,在界面处发生了反射、透射与折射现象。沿测线方向的地震记录如图2所示。记录中存在两条直线状的同相轴与两条近似双曲线的同相轴。由于直达波的时距曲线就是直线,因此两条直线同相轴对应直达波;由于反射波的时距曲线就是近似双曲线,因此近似双曲线同相轴对应的就是反射波。 参考文献 [1] 刘庆敏,高阶差分数值模拟方法研究与应用,中国石油大学(华东)硕士论文,2004年9月 [2] 孙成禹、李振春,地震波动力学基础,石油工业出版社,2011年4月 [3] 王元名,数学物理方程与特殊函数,高等教育出版社,2012年12月

相关文档
最新文档