gh-bladed参数翻译

合集下载

基于SACS-Bladed的海上风电机组基础结构疲劳分析方法研究

基于SACS-Bladed的海上风电机组基础结构疲劳分析方法研究

基于SACS-Bladed的海上风电机组基础结构疲劳分析方法研究吴永祥;罗翔【期刊名称】《风能》【年(卷),期】2016(000)002【总页数】4页(P106-109)【作者】吴永祥;罗翔【作者单位】龙源北京风电工程设计咨询有限公司;龙源北京风电工程设计咨询有限公司【正文语种】中文海上风电机组基础与陆上风电机组基础受力情况不同,除了承受风载荷、上部风电机组运行载荷以外,还承受波浪、海流等载荷,因此进行多工况下风电机组基础的疲劳分析是工程设计过程中的难点。

海上风电机组基础属于海洋结构工程范畴,但因为风电机组塔筒结构兼具高耸结构的特性,动力特性明显,易发生疲劳损伤,同时风电机组支撑结构又具有自身受力特点,因此对海上风电机组基础结构分析需要考虑:土壤+波浪+支撑结构+塔筒+机舱叶片的整体结构分析模式。

本文以某四桩导管架海上风电机组基础支撑结构为例,通过海洋工程设计软件SACS以及风电机组载荷计算软件Bladed联合进行疲劳计算分析。

分析过程全面考虑了海上风电机组的疲劳载荷,包括波流载荷和风电机组载荷时程曲线,参考选取API、DNV等规范建议的S-N曲线,基于Miner疲劳累积损伤理论进行结构管节点疲劳寿命计算,计算效率高、分析精确,为海上风电机组基础在风波流耦合条件下的结构疲劳分析提供一定的方法和思路。

海洋平台结构一般采用谱疲劳分析方法:该方法认为波浪载荷是造成海洋平台结构疲劳的主要原因,通过波浪的概率分布来计算结构的疲劳寿命,称为谱疲劳分析方法。

陆上风电机组结构的疲劳分析,一般采用风电机组等效疲劳载荷来进行结构的疲劳计算。

而对于海上风电机组基础来说,同时要承受波浪载荷和风电机组载荷的耦合作用。

现有的欧洲、国内的工程实践以及研究表明,疲劳分析是海上风电机组基础结构的设计难点,疲劳工况也是风电机组支撑结构分析的控制工况。

现有的一些分析方法是将风电机组疲劳损伤和波浪疲劳损伤进行简单叠加,而国外的研究表明,此种做法过于保守,实际上应该考虑风电机组载荷和波浪载荷的耦合效应。

gl培训

gl培训

加勒德哈森(北京)技术服务有限公司Garrad Hassan (Beijing) Technology and Service Corp. Ltd地址:中国北京朝阳区朝外大街20号联合大厦18层1807房间 邮编:100020Room 1807, Union Plaza, No. 20 ChaoWai Street, Beijing 100020, P.R. China电话/Tel: +86(0)10 65887055 传真/Fax: +86(0)10 65882909Bladed 4.0及风机载荷计算培训邀请Bladed 4.0 & Wind Turbine Load Calculation Invitation时间时间::2010年10月12日地点地点::北京北京尊敬的同行朋友:Dear Sir or Madam:GL 集团旗下Garrad Hassan 公司将于2010年10月12日在北京举办为期一天的软件Bladed 4.0及风机载荷计算的公开培训。

在此我们诚挚邀您出席。

如有意向请于9月25日前提交附件回执。

GL Garrad Hassan is pleased to offer an one day training course on Bladed 4.0 and wind turbine design load calculations on October 12, 2010 in Beijing. We would like to invite you to apply to attend this training course. Please complete the attached application form and return it to us by September 25.本次培训将介绍Bladed 软件最新版本4.0的新特性,着重介绍新开发的电气模块,该模块旨在保证所设计的风力发电机组满足来自电网日益严格的要求。

基于叶素动量理论的潮流能发电机组叶片设计方法

基于叶素动量理论的潮流能发电机组叶片设计方法

基于叶素动量理论的潮流能发电机组叶片设计方法作者:张萧孙石李瑞涛付大伟赵占聪来源:《中国新技术新产品》2017年第12期摘要:近年来,海洋能因其分布范围广、储量大及能量密度高而被认为是最具开发潜力的可再生能源。

与其他海洋能源相比,潮流能具有着很强的规律性和可预见性;从发电技术层面及能量转化层面综合考虑,海洋潮流能发电是最易实现的海洋能发电技术。

潮流能机组的叶片的水动力外形的设计的优劣直接影响能量转换的效率,叶片水动力设计是提高能量转换利用效率最现实有效的办法,本文提出的一种基于叶素动量理论(BEM)的潮流能发电机组的叶片设计方法,并基于BEM设计方法对潮流能叶片水动力外形进行设计,以供相关研发人员参考。

关键词:潮流能发电;叶素-动量理论(BEM);叶片设计中图分类号:TK73 文献标识码:A水平轴潮流能发电机与现在应用较为普遍的水平轴风力发电机工作原理相似,都是流体流经叶轮在叶片处产生切向力从而带动叶轮旋转,其中潮流能发电机是通过叶轮将海水中动能转化为旋转机械能,再带动发电机发电的装置。

从能量转化角度看包括一次能量转换单元、机械能传递单元及发电单元。

叶轮是一次能量转换单元时的核心部分,叶片水动外形设计直接影响潮流能转化效率,其设计原则是使叶素具有最大的功率利用系数。

1.潮流能叶片设计叶素动量理论风力机气动理论是在机翼气动理论基础上发展而来的,对于水平轴潮流能发电和水平轴风力发电,二者之间的雷诺数基本相同,固可采用现有的水平轴风力发电空气动力学理论进行水平轴潮流能发电的设计。

1.1 叶素-动量理论(BEM)为了进一步确定叶素几何参数、气流速度和叶素气动载荷间的关系,需要采用素理论和动量理论的结合的叶素-动量理论(BEM),得出轴向诱导系数a和径向诱导系数a′的方程组,通过迭代求解可计算出风轮旋转面中的轴向诱导系数a和径向诱导系数a′1.2 基于叶素-动量理论(BEM)潮流能叶片设计步骤根据BEM理论在进行叶轮叶片设计时,要使叶片的捕能系数CP尽可能大,在设计时,还需要确定叶轮叶片数目N、叶片半径R、以及合适的翼型。

水平轴风电机组轮毂疲劳损伤计算方法

水平轴风电机组轮毂疲劳损伤计算方法

水平轴风电机组轮毂疲劳损伤计算方法吴树梁;于良峰;李钢强【摘要】结合有限单元法和雨流计数法,利用名义应力法开发了一种用于水平轴风电机组轮毂疲劳损伤计算的方法.以某2.0MW水平轴风电机组轮毂为算例,分析了轮毂疲劳载荷产生的原因,在计算风电机组轮毂时序疲劳载荷的基础上,通过使用有限元分析选取轮毂疲劳热点,对轮毂疲劳应力进行雨流计数统计,结合轮毂结构S-N 曲线计算了轮毂在20年运行寿命期内的疲劳损伤.计算结果表明:本文方法简便可靠,能够较准确预测风力机轮毂在运行寿命期内的疲劳损伤.【期刊名称】《风机技术》【年(卷),期】2012(000)003【总页数】5页(P62-66)【关键词】风力发电机组;有限元法;雨流计数法;名义应力法;疲劳损伤【作者】吴树梁;于良峰;李钢强【作者单位】济南轨道交通装备有限责任公司;济南轨道交通装备有限责任公司;济南轨道交通装备有限责任公司【正文语种】中文【中图分类】TK830 引言风力机可靠性研究从大范围来看可以分为两个主要内容[1],一个是在极限载荷下的可靠性评估分析,另一个是疲劳载荷下的可靠性评估分析。

对风力机结构进行疲劳分析可以预测结构在20年寿命期内容易出现疲劳损伤的部位,有效指导零部件设计。

典型的风力发电机组在风场中运行容易受到疲劳载荷的严重影响[2],一台600kW的风电机组风轮在20年寿命中会旋转2×108次,每旋转一周都会在低速轴和叶片上产生周期性变化的重力,以及由风剪切、偏航误差、主轴倾斜、塔影和湍流等效应导致的循环变化的叶片旋转平面外载荷。

许多风力发电机组部件的设计都取决于疲劳载荷而不是极限载荷,风力机轮毂处于风轮中心,其受力情况非常复杂,承受较大的多轴交变载荷,疲劳破坏是轮毂的主要失效形式,研究轮毂的疲劳特性在风力机设计过程中具有重要意义。

国内外对风力机疲劳方面的研究取得了较多的成果。

Herbert等对风力机材料疲劳特性进行了概括性研究[3];Gunner对影响风力机疲劳特性的风场湍流强度进行了深入研究[4];刘胜祥等在研究海上风力机塔架载荷数值分析的基础上,对塔架疲劳寿命进行了分析[5];邹磊等利用ANSYS的Fatigue模块对低风速风力机轮毂进行了疲劳寿命计算[6]。

【资料】风光互补发电简介汇编

【资料】风光互补发电简介汇编

主要部件
2、 GHREPOWER 300W风光互补路灯控制器
1)先进ZYK-Ⅱ型控制器特点: 的两段式充电方式,浮充采用PWM波控制,提高了充电效率。 2)根据蓄电池的温度特性,动态调整浮充电压,延长蓄电池使 用寿命。 3)采用智能温控系统,使得控制器能在-40℃环境中启动工作 ,适应恶劣气候。 4)具有蓄电池和太阳能板防反接保护。 5)具有蓄电池意外开路保护功能,防止输入电压过高,损坏控 制器和负载。 6)具有风速检测和保护功能,防止台风等恶劣气候对系统的损 害。 7)采用防水防尘设计,外形美观,适合外挂工作,安装方便。 8)配有无线接口,用户可选配发射控制模块,进行无线遥控。
以上;二是自主研制的并网逆变器技术水平先进,部分指标达到国际
领先水平,确保发电站可靠高效运行;三是采用了风光合一的调度与
控制系统,实现了柔性并网发电,减少对电网的冲击。 这标志着
兵器装备集团成功进入风力发电新能源领域,并同时拥有了太阳能、
风能两大绿色能源产业,为两大绿色能源产业找到了一个结合点,对
兵器装备集团进入国内外风光合一发电市场打下了坚实基础。
技术优势
风光互补发电系统由太阳能光电板、小型风力 发电机组、系统控制器、蓄电池组和逆变器等 几部分组成,发电系统各部分容量的合理配置 对保证发电系统的可靠性非常重要。由于太阳 能与风能的互补性强,风光互补发电系统在资 源上弥补了风电和光电独立系统在资源上的缺 陷。同时,风电和光电系统在蓄电池组和逆变 环节是可以通用的,所以风光互补发电系统的 造价可以降低,系统成本趋于合理。
技术原理
风光互补是一套发电应用系统,该系统是利用太阳能电池 方阵、风力发电机(将交流电转化为直流电)将发出的电 能存储到蓄电池组中,当用户需要用电时,逆变器将蓄电 池组中储存的直流电转变为交流电,通过输电线路送到用 户负载处。是风力发电机和太阳电池方阵两种发电设备共 同发电。 风光互补发电站

SACS海上风力涡轮发电机分析-BentleySystems

SACS海上风力涡轮发电机分析-BentleySystems

产品数据表Bentley SACS
海上风机基础设计分析
软件提供一整套功能,用于设计和分析承受波
浪、风力和机械载荷的海上风机基础结构。

此分析方
法能够预测基础支撑结构以及非线性桩基的疲劳和极
SELECT CONNECT services,这是一种基于
Bentley 应用程序用户提供全面的学习、移动
可帮助用户通过 CONNECT Advisor
(一种提供个性化的上下文学习方式的全新应用程序内服务)来掌
个人移动服务可无限制访问 Bentley 应
用程序,确保用户可以随时随地访问正确的项目信息。

ProjectWise®
着色的应力云图
在分析过程中,程序能够自动在相应时间点创
建等效静态载荷—包含惯性力载荷以及水动力/
空气动力载荷。

另一方面,对于半耦合分析,假定风载引起的机械载荷与波浪风力
环境载荷是相互独立的。

© 2018 Bentley Systems, Incorporated. Bentley 、“B ”Bentley 徽标、ProjectWise, ProjectWise Connection Services Incorporated 或其直接或间接全资子公司的注册或未注册商标或服务标志。

其他品牌和产品名称均为其各自所有者的商标。

雨流计数法,用于预测时间历程分析产生的应力循环。

等效载荷在风电机组疲劳分析中的应用讨论

等效载荷在风电机组疲劳分析中的应用讨论作者:宁红超王小虎来源:《风能》2015年第06期据统计机械零件破坏的80%以上为疲劳破坏,特别是大型、复杂机械结构疲劳问题更为突出。

风电机组是具有高动态载荷的动力系统,所承受的载荷主要是随时间变化的动态随机载荷,结构件都会因此而产生动应力,引起疲劳损伤。

根据行业标准要求,风电机组的设计寿命至少为20年,因此在设计时需要重点考虑其疲劳强度,以确保整机结构的安全可靠性。

由于疲劳载荷具有时变性、随机性等特点,直接通过实践序列评估结构疲劳特性比较困难,因此简化的载荷在疲劳寿命评估中被广泛应用。

在风电机组设计领域,通常用等效疲劳载荷(Equivalent Fatigue Loads)来衡量疲劳载荷大小和进行结构件疲劳强度评估。

但由十算法本身的局限性,等效载荷并不能完全反应疲劳载荷各项特性对结构强度的影响,在强度评估过程中需谨慎使用。

等效疲劳载荷及疲劳损伤计算一、等效疲劳载荷载荷分为静载荷和动载荷两大类,动载荷中的周期载荷、非周期载荷可统称为疲劳载荷。

风电机组在运行中的疲劳载荷可以通过GH Bladed软件进行模拟仿真,以载荷一时间历程形式输出。

但是由于随机载荷的不确定性,这种载荷谱难以直接应用,通常会对其进行统计处理。

常用的等效载荷计算方法主要有均方根(RMS)等效和基于paris公式(RMP)等效等。

作为在风电机组设计行业被应用最为广泛的商业仿真软件,GH Bladed中也提供对疲劳载荷进行等效处理的功能模块。

通过雨流计数方法对随机的载荷一时间序列进行循环计数,得到载荷均值、幅值相对循环次数的二维分布,如表l。

在雨流计数结果基础上,指定一个或多个S-N曲线斜率m和频率f(对定速风电机组来说通常为1P),可以得到一组固定频率f下的正弦波曲线。

在应力之间没有相互干涉的超载迟滞效应假设下,可以认为这组正弦波曲线能够产生与原始载荷相同效果的疲劳损伤。

等效载荷计算公式如下:其中,ni表示在载荷幅值为SRi情况下的循环次数,T为原始时间序列的持续时间。

沈工大1.5MW载荷计算报告

1.5MW双馈变速恒频风力发电机组载荷计算报告沈阳工业大学风能技术研究所2008年3月15日目录1、概述 (3)2、坐标系的说明 (3)3、输出载荷 (4)4、机组原始参数 (5)5、计算参数 (5)6、计算工况 (6)7、极端载荷 (7)8、疲劳载荷 (34)8.1叶片、塔架、主轴承的等效载荷、 (34)8.2 雨流循环计数图 (48)9、机组模态 (68)1、概述根据机组的原始参数,通过Blade工具软件,根据IEC标准二类机组安全条件计算出机组各工况载荷。

2、坐标系的说明在计算过程中用到的坐标系有叶片坐标系、轮毂坐标系、机舱坐标系、塔架坐标系。

如下图所示,图1 叶片坐标系图2 轮毂坐标系图3 机舱坐标系图4 塔架坐标系3、输出载荷根据设计需要输出如下载荷:1)叶片根部载荷;2)轮毂中心载荷;3)塔架项部载荷;4)塔架根部载荷;5)偏航轴承载荷。

4、机组原始参数本计算报告所需机组参数来源于《1.5MW双馈变速恒频风力发电机组设计》文件。

5、计算参数额定功率 1500 kW 轮毂高额定风速 12.5 m/s 安全等级 ⅡA轮毂高 65 m 极端平均风速(10 min)V50(50年一遇) 42.5 m/s V1(1年一遇) 31.88 m/s 极端风速( 3s)Ve50(50年一遇) 59.5 m/s Ve1(1年一遇) 44.63 m/s 运行风速范围 3.5~25 m/s 风场年平均风速 8.5 m/s 威布尔形状因子 2风剪切指数 0.2风速垂直倾斜度 8 deg 停机桨距角 90 deg 风轮不平衡质量叶片1 0 kg叶片2 40 kg叶片3 40 kg 风轮叶片气动不平衡叶片1 0 deg叶片2 0.3 deg叶片3 -0.3 deg 结构阻尼叶片 0.7 %塔架 0.5 %变桨速率 ±10 deg/s 正常机械刹车风轮转速 2 rpm 紧急刹车风轮转速 24 rpm 紧急停机发电机功率 1650 kW6、计算工况载荷工况载荷因子DCL1.1初始风速为额定风速和切出风速,正常湍流风速模型(NTM)下功率输1.35出,偏航误差±10°。

CHERRY GH-780 产品说明书

Pneumatic Power RiveterGH-780MAINTENANCE MANUAL1224 East Warner Ave, Santa Ana, CA 92705 Tel: 1-714-545-5511 Fax: 1-714-850-6093 THE GH-780 POWER RIVETERTABLE OF CONTENTSDescription (3)Specifications for GH-780 (3)Safety Warnings (3)How to use the GH-780 (4)Maintenance and Repair (4)Trouble Shooting (4)Overhaul (4)Air Valve (4)Housing (5)H703 & H743A Pulling Heads (5)Cross Sectional Drawing of GH-780 Power Riveter (6)Parts List for the GH-780 Power Riveter (7)Exploded View of GH-780 (7)Limited Warranty...............................................Back Cover2DESCRIPTIONThe Cherry® GH-780 is a pneumatic tool designed specifically for the most efficient installation of Commercial fasteners. It weighs only 3 pounds and can be operated in any position with one hand.SPECIFICATIONS FOR GH-780Cherry® Aerospace’s policy is one of continuous development. Specifications shown in this document maybe subject to change which may be introduced after publication. For the latest information always consultCherry® Aerospace.AIR PRESSURE 90 PSI (6,2 bar) Min./120 PSI (8,3 bar) Max. STROKE 1.125" (28,6 mm) PULLING FORCE 1100 lbs. (4,95 kN) @ 90 PSI (6,2 bar) CYCLE TIME Approximately One Second WEIGHT* 2.9 Pounds (1,32 kg) NOISE LEVEL 65 Db (A) VIBRATION Less than 2,5 m/s2 AIR CONSUMPTION 0.10 SCF/cycle (2,83 L/cycle) *without pulling headSAFETY WARNINGS• Operating this tool with a damaged or missing stem deflec-tor, or using the deflector as a handle, may result in severe personal injury. The pin deflector should be rotated until the aperture is facing away from the operator and other persons working in the vicinity.• Approved eye protection should be worn when operating, repairing, or overhauling this tool.• Do not use beyond the design intent.• Do not use substitute components for repair.• Any modification to the tool, pulling heads, accessories or any component supplied by Cherry® Aerospace, or their representatives, shall be the customer's entire responsibility. Cherry® Aerospace will be pleased to advise on any proposed modification.• The tool must be maintained in a safe working condition at all times and examined at regular intervals for damage.• Before disassembling the tool for repair, refer to the mainte-nance instructions. All repairs shall be undertaken only by personnel trained in Cherry® Aerospace installation tools. Contact Cherry® Aerospace with your training requirement.• Always disconnect the air line from the tool inlet beforeattempting to service, adjust, fit or remove any accessory.• Do not operate the tool when it is directed at any person.• Ensure that the vent holes do not become blocked orcovered and that all hoses are always in good condition.• Operating air pressure should not exceed 120 psi (7,6 bar) • Do not operate the tool without pulling head in place.• Do not operate the tool unless the nose plate (4) is fullysecured by the retaining ring (3).• All retaining rings, screwed end caps, air fittings, hoses,hose fittings, trigger valves and pulling heads should beattached securely and examined at the end of each working shift.• Do not pull fasteners in the air.• The precautions to be used when using this tool must beexplained by the customer to all operators. Any questionregarding the correct operation of the tool and operator safety should be directed to Cherry® Aerospace.• Do not pound on the rear of the tool head to force fasteners into holes as this will damage the tool.3HOW TO USE THE GH-780Attach the proper pulling head securely to the GH780 (see Pulling Heads, page 5). Insert the rivet stem into the pulling head until the head of the rivet is in contact with the pulling head sleeve. This will ensure full engagement between the jaws and the rivet stem and will prevent slippage. Insert the rivet into the application and pull the trigger to acti-vate the tool. Upon release of the trigger, the stem will release to the rear of the tool. Ensure that the pin deflector (12) is in place. To prevent FOD (foreign object debris), use a mandrel catcher bag (13). (Must be ordered separately).MAINTENANCE AND REPAIRThe GH-780 has been manufactured to give maximum service with minimum care. In order that this may be accomplished, the following recommendations should be followed.1. Keep excessive moisture and dirt out of air supply to prevent wear.2. Do not pound on the rear of the tool head to forcerivets into holes, as this will damage the tool.3. Make sure the pulling head is correctly and securelyattached.TROUBLESHOOTING1. Air line pressure should be maintained at 90 to 120psi atthe riveter. The air line should be equipped with a filter to keep excessive moisture and dirt out of the air supply. This will prevent clogging of the ports in the air valve spool and sleeve.2. All pulling head parts should be firmly attached. Looseparts will affect the performance of the tool.3. If riveter cycles slowly, the cause is usually insufficient airpressure. Check it with the pressure gauge. It must be 90 to 120 psi. If air pressure is sufficient, the tool should be cleaned out to remove any dirt which may be blocking the air passages. Another cause of slow cycling could be lack of lubricant on the O-rings. See the overhaul section.4. Air exhaust is from the bottom of the handle. If air escapesfrom the front or rear of the tool, the O-rings are either worn or damaged and should be replaced.5. If the tool appears to have excessive recoil motion, the airpressure is probably too high. Check with a pressuregauge, and if it is over 120 psi, it should be reduced. Toomuch air pressure can adversely affect the O-rings. OVERHAULThe disassembly and re-assembly procedures can be accom-plished by utilizing the following instructions and the drawings on pages 6 and 7. Use extreme care during disassembly and re-assembly not to mar, nick or burr any smoothAIR VALVE• To disassemble, first disconnect tool from its air source.• Remove the trigger (14) and retaining ring (16). Next, remove Level-seal plug (19). The valve spool can then be pushed out, from front to rear. The valve sleeve is pressed into the housing and should not be removed. If ports in the sleeve appear to be clogged, dip the handle in a solvent and blow air into it to free any accumulation of oil and dirt.• Re-assembly of the air valve begins with new O-rings (17) on the valve spool (18). Lubricate with a clear grease such as Parker O-Lube, then insert into the handle of housing6. If the tool does not set rivets correctly, the trouble maybe in the pulling head rather than the riveter. It may bedue to worn jaws or a weak jaw spring. See the pullinghead section.Virtually all the moving parts in this tool ride on O-rings. This means no metal to metal wear. By the use of close tolerances and low micro-inch surfaces against which the O-rings seal, a long life can be expected before any overhaul becomes nec-essary. At that time, a complete overhaul can be achieved by the use of Service Kits G780KS, which contains a complete set of O-rings.surface that comes in contact with O-rings. Before installing O-rings, be sure to apply an O-ring lubricant such as Parker O-Lube to the surface.from the rear. Use care not to damage O-rings by keepingthem centered. Push in as far as possible until the smalldiameter of the valve spool comes out of the front.• Next, using Teflon tape or pipe joint compound on threads,insert a Level-seal plug (19) and tighten firmly. The retainingring (16) is put into the groove of the small diameter of thevalve spool (18) and then the trigger (14) is put on the smalldiameter of the valve spool and tightened with an allenwrench on the set screw (15).4HOUSING• Disconnect riveter from the air line and remove the pulling head before attempting disassembly of housing. If piston rod (1) turns with pulling head, hold it by applying open-end wrench to flats on end of rod.• Remove retaining ring (3) using narrow bladed screwdriver. Rubber deflector (12) should also be removed.• Insert a steel bar approximately 1/2" diameter by about four inches long through the rear opening until it is solidly against the end of the drawbolt (9). Strike the end of the steel bar with a hammer, using sufficient force to drive the entire nose plate/piston assembly out of the housing.• Check rubber cushion (10) and replace if it is flattened thin-ner than the recess in the piston. Examine all O-rings for wear or damage and replace where necessary. O-rings (5, 8 & 6-rear) are easily replaced, but to replace the O-ring (6-front) in the nose plate (4), further disassembly of the nose plate/piston assembly is necessary. Insert a 5/16" hexkey into the end of the drawbolt (9) and then place the key securely in a vise.• Apply an open-end wrench to the flat of the piston rod (1) and exert enough force to break the Loctite 271 seal between the piston rod (1) and the drawbolt (9). With the piston rod removed from the nose plate (4), the O-ring (6-front) may be removed. When re-assembling this unit, be sure to apply Loctite 271 to the threads on the drawbolt (9) and tighten securely.• Re-assembly begins with inserting the two O-rings (6), fol-lowed by the O-ring (8) on the piston and the O-ring (5) on the nose plate. All O-rings must be lubricated with a clear grease such as Parker O-Lube. Exercise care when installing nose plate/piston assembly back into housing, being certain to press evenly to avoid pinching the O-rings. Push the nose plate in until it bottoms on the casting ridge, exposing the groove to permit insertion of retaining ring (3).H703 & H743A PULLING HEADS51. Connect the tool to its air supply and without depressingthe trigger, place jaw spring (9) over tube (10) as shown and insert as far as possible into the head position. 2. Place jaws (2) into collet (6). Screw this assembly ontothe head piston, making sure the tapered end of the jaw follower (3) is properly aligned in bevel in the back end of the jaws (2). 3. Thread nosepiece (1) completely into sleeve (4) andplace this assembly over the collet and jaw assembly. Screw the sleeve (4) into the end of the head body while depressing the trigger, and tighten snugly. 4. Tighten jam-nut (11) securely.5. These pulling heads will give long life if properly main-tained. This includes keeping the head clean and dry, and all the parts securely tightened. The only lubrication required is a little grease such as Lubriplate 630-A inside the cone of the collet to assure a sliding action against the back of the jaws.6. In case of damage or wear to pulling head parts,dismantle and replace with parts selected from the listbelow.6PARTS LIST FOR THE GH-780 POWER RIVETERITEM PARTNO. NO. DESCRIPTION QTY 780C1 Sub-Assembly, Riveter1 670B31 Rod, Piston 12 670B32 Sleeve 13 P-1290 Ring, Retaining 14 670B2 Plate, Nose 15 P-507 O-Ring (3.879, 3.739, .070) 16 P-508 O-Ring (.755, .549, .103) 27 670B3 Piston 18 P-534 O-Ring (4.012, 3.734, .139) 19 670A33 Drawbolt 110 670A21 Cushion 1ITEM PARTNO. NO. DESCRIPTION QTY 780C1 Sub-Assembly, Riveter11 670C4 Housing 112 530A16 Deflector 113 *670A20 Mandrel Catcher Bag 114 670A7 Trigger 115 P-510 Screw, Soc Hd Set, 8-32 x 3/16 116 P-295 Ring, Retaining 117 620A79 Spool, Valve 118 P-293 O-Ring (.316, .176, .070) 319 P-698 Plug, Pipe 120 *P-948 Hose 1*Furnished only on special orderEXPLODED VIEW OF GH-78071224 East Warner Ave, Santa Ana, CA 92705 Tel: 1-714-545-5511 Fax: 1-714-850-6093 © 2008 Cherry AerospaceSupplier’s Federal Identification Code: 11815 TM-GH-780Rev.: BDate: 20 Nov 08 DCR#08-1560LOCTITE ® is a registered trademark of Henkel CorporationDEXRON ®is a registered trademark of GM corporation. PARKER ® is a trademark of Parker Hannifin CorporationLUBRRIPLATE ® is a trademark of Fiske Brothers Refining Co.。

SACS在海上风机基础设计中的应用


25 |
© 2011 Bentley Systems, Incorporated
装船分析
Step 1 • Jacket skidded on to barge
Step 2 • Jacket secured with tie-downs (tie-downs contain no load)
1 |
© 2011 Bentley Systems, Incorporated
SACS 在海上风机基础设计中的应用
© 2011 Bentley Systems, Incorporated
定义:风机塔筒以下基础结构部分(包含桩基或系泊系统),通
常与塔筒底部使用法兰连接。 作用:支撑塔筒、风电机组以及电缆管等附属结构,保证整体结 构的强度与稳定性要求。 重要性:由于海洋环境条件的复杂性,海上风机基础约占整个风
电场成本的20%-30%。
2 |
© 2011 Bentley Systems, Incorporated
海上风机基础介绍
海上风机基础类型
海上风机基础的类型主要由风电场址的水深、地质等环境条件确定, 经济性以及稳定性是最重要的考量因素。风机基础类型可以分为固定 式(重力式、单桩、多角架、导管架)和浮动式( Semi、TLP、Spar 等)两个大类。
12 |
基础结构在位设计工况
静态极端风暴载荷工况
杆件强度、节点冲剪、桩强度以及桩基抗拉抗拔性能 地震工况 杆件单元、节点强度,桩基校核 疲劳设计工况 管节点疲劳寿命 整机模态 整机第一阶频率要求 其他工况 冰载荷、涡激振动等
© 2011 Bentley Systems, Incorporated
© 2011 Bentley Systems, Incorporated
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 序号 系统名 参数 说明 数据 单位 系统名 参数 说明 1 Rotor Rotor diameter 70.6 [m] 风轮 风轮直径 Number of blades 3 [-] 叶片数目 Hub height 64.8 [m] 轮毂中心高 Tower height 63 [m]63 塔高

Blade set angle the angle between the rotor plane and a reference line from which the blade twist and pitch are measured 3.7 [deg] 叶片安装角 桨叶和变距之间的参考线相对于风轴回转平面的角 Cone angle the angle between the blade axis and the rotor plane 0 [deg] 叶片回转锥角 叶片回转锥角 Tilt angle the angle between the shaft and the horizontal (normally positive) 4 [deg] 仰角 主轴和水平面的夹角 Overhang the horizontal distance between the rotor centre and the tower centreline 3668 [m] 风轮中心到塔心的距离 凤轮回转中心和塔筒中心线的水平距离 Lateral offset the horizontal offset between the shaft and tower axes 0 [m] 侧偏移(主轴到塔心) 主轴和塔轴的水平偏差

Rotational sense the turbine may rotate clockwise or anti-clockwise when viewed from upwind 顺时针 [-] 风轮自转方向(顺时针/逆时针) 当从上风向向风机看时,风机顺时针或逆时针转

2 Hub Hub mass mass without blades 8920 [kg] 轮毂 轮毂质量 不含桨叶 Hub mass centre the distance from the intersection of the shaft and blade axes to the centre of mass of the hub, in a direction measured away from the tower 0.05 [m] 轮毂重心 从主轴和叶片轴的交点到轮毂质量中心的距离

Hub inertia(around x-axis hub coordinate system) 9730 [kgm2] 轮毂转动惯量 (x轴) Hub inertia(around y-axis hub coordinate system) 10760 [kgm2] 轮毂转动惯量 (y轴) 序号 系统名 参数 说明 单位 系统名 参数 说明 Hub inertia(around z-axis 10760 [kgm2] 轮毂转动惯量 2

hub coordinate system) (z轴) Root length radius of the blade flange 0.95 [m] 叶根半径 叶根法兰半径 Spinner diameter 2.692 [m] 回转直径(球径) 回转直径(球径) 3 tower Geometry at some stations 塔架 在一些截面的几何尺寸

Height [m] 高 Mass per unit length [kg/m] 单位长度质量 Diameter [m] 直径 Bending stiffness or [Nm] 抗弯刚度 Wall thickness [mm] 壁厚 Material density 7800 [kg/m] 密度 Material young’s modulus 2.06e11 [N/m] 杨氏模量 Tower eigenfrequency 1st bending downwind 0.412 [Hz] 塔架一阶频率(弯曲下风向纵向)

Tower eigenfrequency 1st bending lateral 0.41 [Hz] 塔架一阶频率(横向) Aerodynamic drag coefficient [-] 空气动力拖动系数 Hydrodynamic drag coefficient (offshore only) [-] 流体动力拖动系数 (海上适用)

Hydrodynamic inertia coefficient (offshore only) [-] 流体动力惯量系数 (海上适用) Mean water depth (offshore only) [m] 理论平均水深 (海上适用) 序号 系统名 参数 说明 单位 系统名 参数 说明 4 Tower Translational stiffness horizontal [N/m] 基础 平移刚度 水平 3

foundation Foundation mass [kg] 基础质量 Rotational stiffness around horizonal axis [Nm/rad] 回转刚度 绕水平轴 Rotational inertia of foundation around horizonal axis [kgm2] 基础转动惯量 绕水平轴

5 Nacelle Nacelle width without rotor and hub 3.5 [m] 机舱宽 不含风轮和轮毂 Nacelle length 8.44 [m] 机舱长 Nacelle height 3.4 [m] 机舱高 Location of front of nacelle measured from tower axis 2.57 [m] 机舱前端到塔中心的距离

Nacelle drag coefficient [-] 机舱拖动系数 Mass of nacelle 50000 [kg] 机舱质量 Position of centre of mass of nacelle to side of tower axis [m] 机舱重心到塔轴线的侧向距离

Height of centre of mass relative to tower top [m] 质量中心相对于塔顶的高度 Position of centre of mass in front of tower axis 1.1 [m] 从塔轴线到机舱质量中心的前向距离

Inertia about tower axis 217775 [kgm2] 塔架轴线惯量 Nacelle inertia (around x-axis tower coordinate system) [kgm2] 机舱惯量(x轴)

序号 系统名 参数 说明 单位 系统名 参数 说明 Nacelle inertia (around y-axis tower coordinate system) [kgm2] 机舱惯量(y轴) 4

6 Power train Gearbox ratio 90 [-] 动力系 增速比 Generator rotational inertia [kgm2] 电机转动惯量 Brake position at high speed or low speed shaft 高速轴 [-] 闸位置 在高速轴或低速轴(1234) Low speed shaft (LSS) rotational stiffness [Nm/rad] 低速轴转动刚度

LSS rotational damping [Nms/rad] 低速轴阻尼 High speed shaft (HSS) rotational stiffness [Nm/rad] 高速轴转动刚度

HSS rotational damping [Nms/rad] 高速轴阻尼 Mechanical drive train losses constant or speed-load-dependent look-up-table 095 [kNm] 机械传动损失

Pallet mount rotational stiffness abount rotor axis in case of flexible drive train pallet (see picture) [Nm/rad] 底盘相对于风轮轴的旋转刚度 例如柔性驱动拖底盘(见图) Pallet mount rotational damping arount rotor axis [Nms/rad] 底盘相对于风轮轴旋转阻尼 Moment of inertia of drive train pallets + components [kgm] 底盘及其部件的惯性矩

gearbox mount rotational stiffness arount rotor axis in case of flexible gearbox mount (see picture) [Nm/rad] 增速箱相对于风轮轴的转动刚度 gearbox mount rotational damping arount rotor axis [Nms/rad] 增速箱相对于风轮轴的转动阻尼 序号 系统名 参数 说明 单位 系统名 参数 说明 Moment of inertia of gearbox [kgm2] 增速箱转动惯量

7 Generator Power electomics time constant for variable speed generator: first order lag from demanded torque to actual generator torque [s] 电功率时间常数 对于变速发电机

相关文档
最新文档