专题:电梯行程问题
小六行程问题之流水扶梯问题

精锐教育学科教师辅导讲义行程之流水行船与扶梯问题-知识导航流水行船问题知识总结(1)什么是流水行船问题:在行程问题的基础上,这一讲我们将研究流水行船的问题.船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间与所行的路程,叫做流水行船问题.另外一种与流水行船问题相类似的问题是“在风中跑步或行车”的问题,其实处理方法是与流水行船完全一致的.行船问题是一类特殊的行程问题,它的特殊之处就是多了一个水流速度。
(2)流水行船中的几个物理量:船速:在静水中行船,单位时间内所走的路程叫船速;逆水速度:逆水上行的速度叫逆水速度;顺水速度:顺水下行的速度叫顺水速度;水速:船在水中不借助其他外力只借助水流力量单位时间所漂流的路程叫水流速度(简称水速)。
流水行船之基本【例1】★★甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?流水行船之追及与相遇问题:与【例1】★小刚与小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?【例2】★★甲、乙两船在静水中速度分别为每小时24千米与每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?【例3】★★某河有相距45千米的上、下两码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行.一天甲船从上游码头出发时掉下一物,此物浮于水面顺水飘下,4分钟后,与甲船相距1千米.预计乙船出发后几小时可以与此物相遇?【例4】★★有人在河中游泳逆流而上,丢失了水壶,水壶顺流而下,经30分钟才发觉此事,他立即返回寻找。
结果在离丢失地点下游6千米处找到水壶。
小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。
然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。
解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。
这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
小学奥数问题之电梯问题,学习要点以及解题技巧,解题变简单

小学奥数问题之电梯问题,学习要点以及解题技巧,解题变简单今天老师姜庄给大家带来的是奥数问题里的电梯问题的要点及解题技巧在日常生活中,我们去商场的时候,一般都会有电梯乘坐,近年来,在行测数算中常出现关于电梯的问题,在小学奥数中,电梯问题也作为一个专题来讨论研究,我们在复习中应当努力探究其奥秘。
1、自动扶梯的速度有哪两条关系式?与流水行船问题类似的有自动扶梯上行走的问题,与行船问题类似的,自动扶梯的速度有以下两条关系式:顺行速度=正常行走速度+扶梯运行速度逆行速度=正常行走速度-扶梯运行速度2、自动扶梯上的行走速度有哪两种度量?与流水行船不同的是,自动扶梯上的行走速度有两种度量,一种是'单位时间运动了多少米',一种是'单位时间走了多少级台阶',这两种速度看似形同,实则不等,拿流水行程问题作比较,'单位时间运动了多少米'对应的是流水行程问题中的'船只顺(逆)水速度',而'单位时间走了多少级台阶'对应的是'船只静水速度',一般奥数题目涉及自动扶梯的问题中更多的只出现后一种速度,即'单位时间走了多少级台阶',所以处理数量关系的时候要非常小心,理清了各种数量关系,自动扶梯上的行程问题会变得非常简单.扶梯级数大体可分为两类:1. 人沿着扶梯运动的方向行走,当然也可以不动,不管动与不动,此时扶梯都是帮助人在行走,共同走过了扶梯的总级数:(V人+V梯)*时间=扶梯级数2. 人与扶梯运动方向相反,此时人必须要走,而且速度要大于电梯的速度才能走到电梯的另一端。
这种情况人走过的级数大于电梯的总级数,电梯帮倒忙,抵消掉一部分人走的级数,(V人—V梯)*时间=扶梯总级3、电梯问题需要注意哪两点问题?电梯问题其实是复杂行程问题中的一类。
有两点需要注意,一是“总行程=电梯可见部分级数±电梯运行级数”,二是在同一个人上下往返的情况下,符合流水行程的速度关系,(注意,其总行程仍然是电梯可见部分级数±电梯运行级数)例题:例1.自动扶梯以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部,问扶梯露在外面的部分有多少级?分析:男女与电梯均同向,属于相遇类问题,设女孩速度为X,电梯速度为V,那么男孩速度为2X,根据电梯级数不变得:27+27/(2X)*V=18+18V/X解得V=2X,即V电梯=V男孩所以电梯级数=27+27=54 或18*2+18=54另外一种方法:找出时间比,联立级数的等式男女速度比=2:1男女路程比=27:18=3:2那么时间比=1.5:2设梯速度=V那么有27+1.5V=18+2V解得V=18故S=27+1.5*18=54还可以利用合速度比等于时间的反比(因为都共同走过了电梯级数,而此级数是恒定的)男女速度比=2:1男女路程比=3:2时间比=1.5:2=3:4和速度比等于时间的反比=4:3(2+2):(1+2)=4:3所以电梯速度为2份,与男孩速度一致,S=27*2=542018 新年太阳分割线例2.自动扶梯以均匀速度由下往上行驶着,已知男孩的速度是女孩的两倍,结果男孩用了24秒到达楼下,女孩用了16秒到达楼上.问:男孩乘电梯上楼需要用多少时间?(男孩不动) 解析:1.男女速度比=2:1设电梯速度为V(2-V)*24=(1+V)*16解得V=4/5那么S=6*24/5所求时间T=(6*24/5)/(4/5)=36秒1. 男女时间比=24:16=3:2 合速度比=2:3(2-V电):(1+V电)=2:3解得V电=0.8S=16*(1+0.8)所求时间T=16*1.8/0.8=36秒2018 新年太阳分割线例3. 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级?解析:就不列方程了,直接用比例法了,时间比=5:6合速度比=6:5男女速度比=20:15=4:3(4+2):(3+2)=6:5V电梯=2份,4份为20,2份就为10,V电=10电梯级数=(20+10)*5=150或(15+10)*6=1502018 新年太阳分割线例4.两个孩子逆着自动扶梯的方向行走。
小学奥数全解 之扶梯问题

扶梯问题一、扶梯问题说明扶梯问题与流水行船问题十分相像,区别只在与这里的速度并不是我们常见的“千米每小时”,或者“米每秒”,而是“每分钟走多少个台阶”,或是“每秒钟走多少个台阶”。
从而在扶梯问题中“总路程”并不是求扶梯有多少“千米”或者多少“米”,而是求扶梯的“静止时可见台阶总数”。
二、扶梯问题解题关键1、当人顺着扶梯的运动方向走台阶时,相当与流水行船中的“顺水行驶”,这里的水速就是扶梯自身的台阶运行速度。
有:人的速度+扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数2、当人沿着扶梯逆行时,有:人的速度-扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。
【例 1】小明站着不动乘电动扶梯上楼需30秒,如果在乘电动扶梯的同时小明继续向上走需12秒,那么电动扶梯不动时,小明徒步沿扶梯上楼需多少秒?【考点】行程问题之扶梯问题【难度】3星【题型】解答【解析】电梯每秒完成130,电梯加小明徒步上楼每秒完成112,小明徒步上楼每秒完成111123020-=,所以小明徒步上楼需112020÷=(秒)【答案】20秒【巩固】如果在乘电动扶梯的同时小明继续向上走需12秒到达楼上,如果在乘电动扶梯的同时小明逆着向下走需24秒到达楼下(千万别模仿!),那么电动扶梯不动时,小明徒步沿扶梯上楼需多少秒?【考点】行程问题之扶梯问题【难度】3星【题型】解答【解析】小明徒步走的速度是111()2122416+÷=,所以小明徒步上楼需111616÷=(秒).【答案】16秒【例 2】在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有级台阶.【考点】行程问题之扶梯问题【难度】3星【题型】填空【解析】小强每秒走一阶,需要20120÷=秒;每秒走2阶,需要30215÷=秒.设电梯每秒钟需要走x阶,由电梯长度可得:20(1)15(2)x x⨯+=⨯+,解得2x=.那么扶梯长度为20(12)60⨯+=(阶).本题非常类似于“牛吃草问题”,如将题目改为:“在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20秒后到达地面;如果每秒向上迈两级台阶,那么走过15秒到达地面.问:从站台到地面有多少级台阶?”采用牛吃草问题的方法,电梯20155-=秒内所走的阶数等于小强多走的阶数:21512010⨯-⨯=知识精讲【答案】60阶【巩固】 在地铁车站中,从站台到地面架设有向上的自动扶梯.小强想逆行从上到下,如果每秒向下迈两级台阶,那么他走过100级台阶后到达站台;如果每秒向下迈三级台阶,那么走过75级台阶到达站台.自动扶梯有多少级台阶?【考点】行程问题之扶梯问题 【难度】3星 【题型】解答【解析】 设50秒扶梯向上走x 级,则25秒走2x 级.由扶梯长度可得100752x x -=-. 解得50x =.扶梯长1005050-= (级)。
奥数知识点行程问题电梯行程问题

奥数知识点行程问题电梯行程问题奥数 > 奥数题库 > 奥数知识点 > 行程问题 > 电梯行程奥数知识点行程问题多人行程二次相遇多次相遇火车过桥流水行船环形跑道简单的相遇基本行程问题钟面行程走走停停接送问题发车问题电梯行程猎狗追兔平均速度数论问题几何问题计数问题应用题计算问题奥数杂题奥数天天练奥数练习题编辑推荐数学智力题 | 数学小神探 | 脑经急转弯 | 数学趣味题 | 开心谜语 |•2016-10-27?电梯问题行程问题知识点汇总•2016-10-26?小学电梯行程问题基本解题思路•2016-10-26?五年级电梯行程知识点讲解•2016-06-08?六年级数学行程问题训练:扶梯问题•2015-05-26?五年级奥数电扶梯例题讲解1•2015-05-26?五年级奥数电梯例题讲解1•2015-05-26?五年级奥数电梯例题讲解•2015-05-26?五年级奥数扶梯例题讲解•2015-05-26?五年级电梯与发车问题知识点讲解•2013-10-30?经典电梯行程问题例题解析•2011-07-22?经典电梯行程问题例题解析4•2011-07-22?经典电梯行程问题例题解析3•2011-07-22?经典电梯行程问题例题解析2 •2011-07-22?经典电梯行程问题例题解析1 •2011-07-22?电梯行程问题2•2011-07-22?电梯行程问题1•2011-07-22?电梯行程问题基本练习题•2011-07-22?电梯行程问题的基本解题思路•2011-07-22?行程自动扶梯解析(六年级奥数)•2011-07-22?行程问题之电梯行程练习9•2011-07-22?行程问题之电梯行程练习8•2011-07-22?行程问题之电梯行程练习7•2011-07-22?行程问题之电梯行程练习6•2011-07-22?行程问题之电梯行程练习5•2011-07-22?行程问题之电梯行程练习4•2011-07-22?一道学生常问的电梯问题•2011-07-22?行程问题中的电梯问题练习题•2011-07-22?行程问题之电梯行程练习3•2011-07-22?行程问题之电梯行程练习2•2011-07-22?行程问题之电梯行程练习1•2011-07-22?电梯行程问题的例题讲解•2011-07-22?什么是电梯行程问题?•2011-07-15?经典电梯行程问题例题解析四•2011-07-15?经典电梯行程问题例题解析三•2011-07-15?经典电梯行程问题例题解析二•2011-07-15?经典电梯行程问题例题解析一•2011-07-15?电梯行程问题基本练习题•2011-07-15?电梯行程问题的基本解题思路•2011-07-15?六年级行程自动扶梯解析•2011-07-15?行程问题之电梯问题经典例题透析九•2011-07-15?行程问题之电梯问题经典例题透析八•2011-07-15?行程问题之电梯问题经典例题透析七•2011-07-15?行程问题之电梯问题经典例题透析六•2011-07-15?行程问题之电梯问题经典例题透析五•2011-07-15?行程问题之电梯问题经典例题透析四•2011-07-15?行程问题之电梯行程经典例题透析三•2011-07-15?行程问题之电梯行程经典例题透析二•2011-07-15?行程问题之电梯问题经典例题透析一•2011-07-15?一道学生常问的电梯问题•2011-07-15?行程问题中的电梯问题练习题•2011-07-15?电梯行程问题的例题讲解•2011-07-15?什么是电梯行程问题?•2011-06-13?行程问题之电梯问题学习方法及精讲例题10道•2011-04-14?五年级行程问题:电梯行程•2011-03-30?六年级行程问题:电梯行程•2011-02-21?经典电梯行程问题例题解析1•2011-02-21?行程问题之电梯行程经典例题透析3•2011-02-21?行程问题之电梯行程经典例题透析2•2011-02-21?行程问题之电梯问题经典例题透析1•2010-06-29?经典电梯行程问题例题解析4•2010-06-29?经典电梯行程问题例题解析3•2010-06-29?经典电梯行程问题例题解析2•2010-06-29?经典电梯行程问题例题解析1•2010-06-29?公务员考试中的电梯行程问题2•2010-06-29?公务员考试中的电梯行程问题1•2010-06-29?电梯行程问题基本练习题•2010-06-29?电梯行程问题的基本解题思路•2010-06-02?行程自动扶梯解析(六年级奥数)•2009-12-23?行程问题之电梯行程练习9•2009-12-23?行程问题之电梯行程练习8•2009-12-23?行程问题之电梯行程练习7•2009-12-23?行程问题之电梯行程练习6•2009-12-23?行程问题之电梯行程练习5•2009-12-23?行程问题之电梯行程练习4•2009-12-23?行程问题之电梯行程经典例题透析3 •2009-12-23?行程问题之电梯行程经典例题透析2 •2009-09-22?行程问题之电梯问题经典例题透析1 •2009-09-22?一道学生常问的电梯问题•2009-09-22?行程问题中的电梯问题练习题•2009-09-21?行程问题之电梯行程练习3•2009-09-21?行程问题之电梯行程练习2•2009-09-21?行程问题之电梯行程练习1•2009-09-18?电梯行程问题的例题讲解•2009-09-18?什么是电梯行程问题?。
电梯问题解答及例题

电梯问题解答及例题电梯问题其实是复杂行程问题中的一类。
有两点需要注意,一是“总行程=电梯可见部分级数±电梯运行级数”,二是在同一个人上下往返的情况下,符合流水行程的速度关系,(注意,其总行程仍然是电梯可见部分级数±电梯运行级数)例如:商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。
如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?分析:因为男孩的速度是女孩的2倍,所以男孩走80级到达楼下与女孩走40级到达楼上所用时间相同,在这段时间中,自动扶梯向上运行了(80-40)÷2=20(级)所以扶梯可见部分有 80-20=60(级)。
例题3例题5【例1】小明站着不动乘电动扶梯上楼需30秒,如果在乘电动扶梯的同时小明继续向上走需12秒,那么电动扶梯不动时,小明徒步沿扶梯上楼需__________秒.【例2】小霞与小宝两个孩子比赛登电梯,已知他俩攀登电梯的速度分别为每秒2个台阶和每秒3个台阶,电梯运行后,他俩沿电梯运行方向的相反方向从一楼登上二楼,分别用时60秒和30秒,那么如果他们攀登静止的电梯需要用时多少秒?【例3】(奥数网精选试题)商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。
如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?【例4】(北京市迎春杯试题)小淘气乘正在下降的自动扶梯下楼,如果他一级一级的走下去,从扶梯的上端走到下端需要走36级。
如果小淘气沿原自动扶梯从下端走到上端(很危险哦,不要效仿!),需要用下楼时5倍的速度走60级才能走到上端。
请问这个自动扶梯在静止不动时有多少级?。
电梯问题——精选推荐
与流水行船问题类似的有自动扶梯上行走的问题,与行船问题类似的,自动扶梯的速度有以下两条关系式:顺行速度=正常行走速度+扶梯速度逆行速度=正常行走速度-扶梯速度与流水行船不同的是,自动扶梯上的行走速度有两种度量,一种是"单位时间运动了多少米",一种是"单位时间走了多少级台阶",这两种速度看似形同,实则不等,拿流水行程问题作比较,"单位时间运动了多少米"对应的是流水行程问题中的"船只顺(逆)水速度",而"单位时间走了多少级台阶"对应的是"船只静水速度",一般奥数题目涉及自动扶梯的问题中更多的只出现后一种速度,即"单位时间走了多少级台阶",所以处理数量关系的时候要非常小心,理清了各种数量关系,自动扶梯上的行程问题会变得非常简单.电梯类试题是行程问题中比较难的题,许多考生在考试中遇到此类试题时,通常采用“猜”的方法,或者运用方程组法的解法,其中“猜”的方法得分率比较低,而方程组的方法比较容易想到,但众所周知,方程组的方法其求解过程相当复杂,求解需要花近两分钟的时间,与国家公务员考试48秒内解答一道题的要求相去甚远,所以方程组的解法显然是一种非常不经济的方法。
其实电梯类试题在掌握住了基本公式之后,就可以用很简单的代数方法或者方程法在短时间内得出正确答案。
下文以两道试题为例介绍解答电梯试题的简单算法。
例1:商场的自动扶梯匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。
如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有()。
A.40级B.50级C.60级D.70级根据题意可知男孩逆电梯而行,电梯给男孩帮了倒忙,男孩所走的80级比电梯静止时的扶梯级数多,由于电梯帮倒忙而让男孩多走了一些冤枉路。
五年级奥数行程问题中的电梯与发车问题
第12 讲行程问题中的电梯和发车问题【知识导引】电梯问题大体上可以分 2 类:1. 人沿着扶梯运动的方向行走,当然也可以不动,不管动与不动,共同走过了扶梯的总级数:(V 人+V梯)×时间=扶梯级数2. 人与扶梯运动方向相反,此时人必须要走,而且速度要大于电梯的速度才能走到电梯的另一端。
这种情况人走过的级数大于电梯的总级数,(V 人—V梯)×时间=扶梯总级数发车问题要注意的是两车之间的距离是不变的。
可以用线等距离连一些小物体来体会进车队的等距离前进。
【例题解析】例1 商场的自动扶梯匀速由下往上运行,两个小孩在运行的扶梯上由上往下走,男孩每分钟走30 级,需 6 分钟到达楼下;女孩每分钟走25 级,需8 分钟到达楼下。
问:当该扶分析与解答】巩固练习】1. 两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走 3 级阶梯,女孩每秒可走2 级阶梯,结果从阶梯的一端到达另一端男孩走了100 秒,女孩走了300 秒。
问该扶梯共有多少级【解答】2. 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。
已知男孩每分钟走 20 级梯级,女孩每分钟走 15 级梯级,结果男孩用了 5 分钟到达楼上,女孩用了 6 分钟到达楼上。
问:该扶梯共有多少级解答】例2 甲、乙两人在匀速上升的自动扶梯从底部向顶部行走,甲每分钟走扶梯的级数是乙的 2倍;当甲走了36 级到达顶部,而乙则走了24级到顶部。
那么,自动扶梯有多少级露在外面分析与解答】【巩固练习】1.自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27 级到达扶梯的顶部,而女孩走了18级到达顶部。
问扶梯露在外面的部分有多少级【解答】2. 哥哥沿向上移动的自动扶梯从顶向下走, 共走了100 级; 此时妹妹沿向上的自动扶梯从底向上走到顶, 共走了50级。
如果哥哥单位时间内走的级数是妹妹的 2 倍。
六年级下册数学试题-奥数:行程之接送问题、发车间隔、电梯问题
第四讲 行程之接送问题、发车间隔、电梯问题行程问题中的几种数学模型,在具体情境中还可以表现为接送问题、发车间隔、电梯问题。
我们透过具体情境,发现它仍然是行程问题中基本数学模型的变型。
行程问题是研究速度、时间和路程三量之间关系的问题,它是小学数学应用题的难点,是升学试卷中常见的压轴题。
行程问题常与分数、比例等知识结合在一起,综合性强,且运用形式多变,解答时应注意以下几点:1.尽可能采用作线段图的方法,正确反映数量之间变化关系,帮助分析思考。
2.行程问题常结合分数应用题,解答时要巧妙地假设单位“l”使问题简单化,有时还可以联系整数知识,把路程理解为若干份。
3.复杂行程问题经常运用到比例知识。
速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和时间成反比。
4.碰到综合性问题可先把综合问题分解成几个单一问题,然后逐个解决。
分析:甲乙两人从出发到第一次相遇合走了一个全程,第一次相遇到第二次相遇合走了两个全程,所以第二段时间间隔是第一段时间间隔的二倍,甲第一段时间共走了30公里,所以第二段时间走了60公里,而乙第二段时间走了30+40=70公里,所以第一段时间走了35公里,A 、B 两地之间的距离为30+35=65公里,两人的速度比为6:7.教学目标想挑 战吗?甲,乙二人分别从A ,B 两地同时相向出发,往返于A ,B 之间,第一次相遇在距A 地30公里处,第二次相遇地点在距A 地40公里处。
求(1)A ,B 两地距离。
(2)甲,乙的速度比。
【例1】(奥林匹克数学竞赛试题)甲、乙二人骑车分别从A 、B 两地同时出发,相向而行,乙的速度是甲的23。
二人相遇后继续行进,甲到达B 地和乙到达A 地后都立即沿原路返回。
已知二人第二次相遇的地点相距第一次相遇的地点120千米,求A 、B 两地相距多少千米?分析:根据题意,在相同时间内,甲、乙所行的路程的比是32,就是说,如果把全程看作有5份路,那么甲行3份,乙行了2份,这样,可以画出线段图,并标出第一次相遇的地点。
小学奥数必做的道行程问题
一、行程问题:S=V×T;总结如下:当路程一定时;速度和时间成反比当速度一定时;路程和时间成正比当时间一定时;路程和速度成正比二、衍伸总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=顺水速度-逆水速度÷2船速=顺水速度-逆水速度×2两岸问题:S=3A-B;两次相遇相隔距离=2×A-B 电梯问题:S=人与电梯的合速度×时间=人与电梯的合速度×时间平均速度:V平=2V1×V2÷V1+V21、邮递员早晨7时出发送一份邮件到对面的山坳里;从邮局开始要走12千米的上坡路;8千米的下坡路..他上坡时每小时走4千米;下坡时每小时走5千米;到达目的地后停留1小时;又从原路返回;邮递员什么时候可以回到邮局解析核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡;去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时 7:00+10:00=17:002、小明从甲地到乙地;去时每小时走6千米;回时每小时走9千米;来回共用5小时..小明来回共走了多少千米解析当路程一定时;速度和时间成反比速度比=6:9=2:3时间比=3:23+2=5小时;正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米;一辆汽车原计划用6小时从A城开到B城;汽车行驶了一半路程;因故在途中停留了30分钟..如果按照原定的时间到达B城;汽车在后半段路程速度应该加快多少解析核心公式:速度=路程÷时间前半程开了3小时;因故障停留30分钟;因此接下来的路程需要2.5小时来完成V=120÷2.5=48千米/小时原V=240/6=40千米/小时所以需要加快:48-40=8千米/小时4、甲、乙两车都从A地出发经过B地驶往C地;A;B两地的距离等于B;C 两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟;但在B地停留了7分钟;甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时;甲车就超过乙车..解析11-7=4分钟甲乙车的速度比=1:0.8=5:4甲乙行的时间比=4:5=16:20所以是在乙车出发后的16+11=27分钟追上甲车5、铁路旁的一条平行小路上;有一行人与一骑车人同时向南行进..行人速度为3.6千米/小时;骑车人速度为10.8千米/小时..这时有一列火车从他们背后开过来;火车通过行人用22秒;通过骑车人用26秒..这列火车的车身总长是多少米解析S=V火车-V人×时间=V火车-V车×时间V人=3.6千米/小时=1米/秒V车=10.8千米/小时=3米/秒S=V火车-1×22=V火车-3×26S=286米或者合时间比=22:26=11:13合速度比=13:11V人:V车=1:314-1:14-3=13:11所以V火车=14米/秒S=14-1×22=286米6、小刚和小强租一条小船;向上游划去;不慎把水壶掉进江中;当他们发现并调过船头时;水壶与船已经相距2千米;假定小船的速度是每小时4千米;水流速度是每小时2千米;那么他们追上水壶需要多少时间解析我们来分析一下;全程分成两部分;第一部分是水壶掉入水中;第二部分是追水壶第一部分;水壶的速度=V水;小船的总速度则是=V船+V水那么水壶和小船的合速度就是V船;所以相距2千米的时间就是:2/4=0.5小时第二部分;水壶的速度=V水;小船的总速度则是=V船-V水那么水壶和小船的合速度还是V船;所以小船追上水壶的时间还是:2/4=0.5小时7、甲、乙两船在静水中速度分别为每小时24千米和每小时32千米;两船从某河相距336千米的两港同时出发相向而行;几小时相遇如果同向而行;甲船在前;乙船在后;几小时后乙船追上甲船解析时间=路程和÷速度和T=336÷24+32=6小时时间=路程差÷速度差T=336÷32-24=42小时8、甲、乙两港间的水路长208千米;一只船从甲港开往乙港;顺水8小时到达;从乙港返回甲港;逆水13小时到达;求船在静水中的速度和水流速度..解析流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=顺水速度-逆水速度÷2船速=顺水速度-逆水速度×2V顺=208÷8=26千米/小时V逆=208÷13=16千米/小时V船=26+16÷2=21千米/小时V水=26-16÷2=5千米/小时9、小明早上从家步行去学校;走完一半路程时;爸爸发现小明的数学书丢在家里;随即骑车去给小明送书;追上时;小明还有3/10的路程未走完;小明随即上了爸爸的车;由爸爸送往学校;这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间解析小明走1/2-3/10=2/10的路程;爸爸走了7/10的路程因此小明的速度:自行车的速度=2/10:7/10=2:7因此时间比就是7:27-2=5份;对应5分钟所以小明步行剩下的3/10需要7分钟那么小明步行全程需要:7/3/10=70/3分钟10、一只狗追赶一只野兔;狗跳5次的时间兔子能跳6次;狗跳4次的距离与兔子7次的距离相等.兔子跳出550米后狗子才开始追赶.问狗跳了多远才能追上兔子解析狗跳5次的时间=兔子跳6次的时间→狗跳20次的时间=兔子跳24次的时间狗跳4次的路程=兔子跳7次的路程→狗跳20次的路程=兔子跳35次的路程综上得到V狗:V兔=35:24当时间一定时;路程和速度成正比S狗:S兔= V狗:V兔=35:24=1750:1200因此狗只需要跑1750米即可11、主人追他的狗;狗跑三步的时间主人跑两步;但主人的一步是狗的两步.狗跑出10步后;主人开始追;主人跑出了多少步才追上狗解析主人跑2步的时间=狗跑3步的时间→主人跑2步的时间=狗跑3步的时间主人跑1步的路程=狗跑2步的路程→主人跑2步的路程=狗跑4步的路程综上得到主人跑2步可以追上狗4-3=1步现在狗比主人多跑了10步所以主人要跑20步12、某人从甲地前往乙地办事;去时有2/3的路程乘大客车;1/3的路程乘小汽车;返回时乘小汽车与大客车行的时间相同;返回比去时少用了5小时;已知大客车每小时行24千米;小汽车每小时行72千米;甲地到乙地的路程、是多少千米解析当时间一定时;路程和速度成正比返回:时间一定;路程比=速度比=24:72=1:3=3:9去时:路程比=2:1=8:4返回的时间:3/24+9/72=1/4去时的时间:8/24+4/72=7/187/18-1/4=5/36;对应5小时12对应5×12÷5/36=432千米13、某工厂每天派小汽车于上午8时准时到总工程师家接他到工厂上班;有一天早晨总工程师临时决定提前回工厂办事;匆匆从家步行出发;途中遇到接他的小汽车;立即上车到工厂;结果比平时早40分钟到达..总工程师上车时是几时几分解析A-------B----------------CAB段汽车开一个来回需要40分钟;所以AB段汽车开需要20分钟汽车是8点钟准时到A点;所以工程师上车是在8:00-0:20=7:4014、小明从家去体育馆看球赛.去时他步行5分钟后;跑步8分钟;到达体育馆..回来时;他先步行10分钟后;开始跑步;结果比去时多用了3分15秒钟回到家.他跑步的速度与步行的速度比是多少解析去时的时间:5+8=13分钟回来的时间:13+3.25=16.25分钟去时步行时间:5分钟;回来步行时间:10分钟去时跑步时间:8分钟;回来跑步时间:6.25分钟跑步与步行的时间比为8-6.25:10-5=1.75:5速度比就是5:1.75=20:715、B在A;C两地之间;甲从B地到A地去送信;出发10分钟后;乙从B 地出发去送另一封信..乙出发后10分钟;丙发现甲乙刚好把两封信拿颠倒了;于是他从B地出发骑车去追赶甲和乙;以便把信调过来.已知甲、乙的速度相等;丙的速度是甲、乙速度的3倍;丙从出发到把信调过来后返回B 地至少要用多少时间解析A-----------B------------C分成如下几个部分:先追上乙;把信取到手并返回B点..用时1:3=10:30;就是10分钟再追上甲;把信交给甲并把信取到手并返回B点..用时1:3=30:90;就是30分钟再追上乙;把信交给乙并返回B点..用时1:3=50:150;就是50分钟总共用时:10+30+50=90分钟16、甲放学回家需走10分钟;乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6;甲每分钟比乙多走12米;那么乙回家的路程是几米解析甲乙路程比1:7/6=6:7甲乙时间比10:14=5:7甲乙速度比6/5:7/7=6:5=72:60所以乙的路程=60×14=840米17、在400米环形跑道上;A、B两点相距100米如图..甲、乙两人分别从A、B两点同时出发;按逆时针方向跑步..甲每秒跑5米;乙每秒跑4米;每人每跑100米;都要停10秒钟.那么;甲追上乙需要的时间是秒..解析甲每秒跑5米;则跑100米需要100/5=20秒;连同休息的10秒;共需要30秒乙每秒跑4米;则跑100米需要100/4=25秒;连同休息的10秒;共需要35秒35秒时;乙跑100米;甲跑100+5×5=125米因此;每35秒;追上25米;所以甲追上乙需要35×4=140秒18、小明从家去学校;如果他每小时比原来多走1.5千米;他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米;那么他走这段路的时间就比原来时间多几分几之解析原时间:现时间=5:4原速度:现速度=4:5=6:7.5现速度=6-1.5=4.5原速度:现时间=6:4.5原时间:现时间=4.5:66-4.5/4.5=1/319、甲、乙两列火车的速度比是5:4.乙车先发;从B站开往A站;当走到离B站72千米的地方时;甲车从A站发车往B站;两列火车相遇的地方离A;B两站距离的比是3:4;那么A;B两站之间的距离为多少千米解析A---------N---------M-----B3 4 72千米速度比=路程比=5:4=15:12路程比=3:4=15:2020-12=8份对应72千米全程=15+20×72÷8=315千米20、已知小明与小强步行的速度比是2:3;小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米;那么小明在20分钟里比小强少走几米解析小明:小强:小刚=8:12:15=48:72:9072-48×20=480米21、甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发;开始时甲的速度为8米/秒;乙的速度为6米/秒;当甲每次追上乙以后;甲的速度每秒减少2米;乙的速度每秒减少0.5米.这样下去;直到甲发现乙第一次从后面追上自己开始;两人都把自己的速度每秒增加0.5米;直到终点.那么领先者到达终点时;另一人距离终点多少米解析第一次甲追上乙;400÷8-6=200秒;S甲=200×8=1600米;S乙=200×6=1200米第二次甲速度变成6;乙速度变成5.5;400÷6-5.5=800秒S甲=800×6+1600=6400米;S乙=800×5.5+1200=5600米第三次甲速度变成4;乙速度变成5;400÷5-4=400秒S甲=400×4+6400=8000米;S乙=400×5+5600=7600米第四次开始;甲速度变成4.5;乙速度变成5.5;400÷5.5-4.5=400秒S甲=400×4.5+8000=9800米;S乙=400×5.5+7600=9800米9800<1000;因此乙先到达终点..乙跑到终点时;甲还剩下:200×5.5-4.5÷5.5=400/11米22、一支解放军部队从驻地乘车赶往某地抗洪抢险;如果将车速比原来提高1/9;就可比预定的时间20分钟赶到;如果先按原速度行驶72千米;再将车速比原来提高1/3;就可比预定的时间提前30分钟赶到..这支解放军部队的行程是多少千米解析速度比=9:10;时间比=10:9=10/3:3速度比=3:4 ;时间比=4:3=2:1.5因此;按照原速度行驶72千米需要10/3-2=4/3小时S=72×10/3÷4/3=180千米23、甲、乙两人同时从山脚开始爬山;到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍..甲到山顶时;乙距山顶还有400米;甲回到山脚时;乙刚好下到半山腰..求从山顶到山脚的距离..解析甲到山脚时;乙到半山腰→甲走1.5个上坡;乙走1.25个上坡时间一定;路程比=速度比=1.5:1.25=6:5=2400:2000因此山的高度为:2400米24、甲、乙两车分别从A;B两地同时相向开出;四小时后两车相遇;然后各自继续行驶三小时;此时甲车距B地10千米;乙车距A地80千米.问甲车到达B地时乙车还要经过多少小时才能到达A地解析整体考虑总共行了7个小时;甲车比乙车多行80-10=70千米;因此甲车每小时比乙车多行10千米4小时乙行的路程=3小时甲行的路程+10乙=40千米/小时;甲=50千米/小时T=80/40-10/50=1.8小时25、从家里骑摩托车到火车站赶乘火车.如果每小时行30千米;那么早到15分钟;如果每小时行20千米;则迟到5分钟.如果打算提前5分钟到;那么摩托车的速度应是多少解析S=30×T-15/60=20×T+5/6015+5=20分钟速度比=30:20=3:2时间比=2:3=40:60正好需要:40+15=55分钟提前5分钟:55-5=50分钟时速=30×40÷50=24千米/小时26、同样走100米;小明要走180步;父亲要走120步.父子同时同方向从同一地点出发;如果每走一步所用的时间相同;那么父亲走出450米后往回走;还要走多少步才能遇到小明解析父亲走450米;走了450×120÷100=540步小明走540步;走了540÷180×100=300米两人相差450-300=150米150÷100/120+100/180=108步27、小明从家到学校时;前一半路程步行后一半路程乘车;从学校回家时;前1/3时间乘车;后2/3时间步行;结果去学校的时间比回家所用的时间多2小时;已知小明步行的速度为每小时5千米;乘车速度为每小时15千米;那么小明从家到学校的路程是千米解析回家乘车和步行的路程比是1/3×15:2/3×5=3:2所以回家乘车的路程是3/53/5-1/2=1/10;对应15千米/小时行驶1小时或5千米/小时行驶3小时S=15/1/10=150千米或者去时;路程比=1:1=5:5;速度比=5:15;时间比=1/5:1/15返回;时间比=2:1;速度比=5:15;路程比=2×5:1×15=2:3=4:6所以去时的时间=5/5+5/15=4/3;返回的时间=4/5+6/15=6/54/3-6/5=2/15;对应2小时全程=10×2/2/15=150千米28、A、B两地相距207千米;甲、乙两车8:00同时从A地出发到B地;速度分别为60千米/小时;54千米/小时;丙车8:30从B地出发到A地;速度为48千米/小时..丙车与甲、乙两车距离相等时是几点几分解析假设丙也是从8点出发;到达B点时正好是8:30那么丙走的路程就是:0.5×48=24千米;那么全程就变成:207+24=231千米丙车与甲、乙两车的距离;可以看成甲乙的平均速度与丙相遇V平=V甲+V乙÷2=57千米/小时T=231÷V平+V丙=231÷57+48=2.2小时=2小时=12分所以这时是:8:00+2:12=10:12分29、小明通常总是步行上学;有一天他想锻炼身体;前1/3路程快跑;速度是步行速度的4倍;后一段的路程慢跑;速度是步行速度的2倍.这样小明比平时早35分到校;小明步行上学需要多少分钟解析这天;路程比=1:2;速度比=4:2;时间比=1/4:2/2;时间=1/4+1=5/4平时;时间=3/1=33-5/4=7/4对应35分平时用时=35×3÷7/4=60分钟30、红光农场原定9时来车接601班同学去劳动;为了争取时间;8时同学们就从学校步行向农场出发;在途中遇到准时来接他们的汽车;于是乘车去农场;这样比原定时间早到12分钟..汽车每小时行48千米;同学们步行的速度是每小时几千米解析A------B--------------------C8点钟;同学们从A点出发;到B点遇到来接他们的车汽车来回AB需要12分钟;那么走一趟AB需要6分钟而人走AB需要:60-6=54分钟时间比=速度比的反比;54:6=48:48/9所以同学步行的速度是16/3千米/小时31、从甲地到乙地;如果提速20%;提前1小时到达;如果按原速先行120米;再提速25%;则提前40 分钟;问甲到乙的距离解析设原速度为x;两地相距y y/x=y/1.2x+1y/x=120/x+y-120/1.25x+2/3得x=45千米/小时y=270千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:电梯行程问题
与流水行船问题类似的有自动扶梯上行走的问题,与行船问题类似的,自动扶梯的速度有以下两条关系式:
与流水行船不同的是,自动扶梯上的行走速度有两种度量,一种是"单位时间运动了多少米",一种是"单位时间走了多少级台阶",这两种速度看似形同,实则不等,拿流水行程问题作比较,"单位时间运动了多少米"对应的是流水行程问题中的"船只顺(逆)水速度",而"单位时间走了多少级台阶"对应的是"船只静水速度",一般奥数题目涉及自动扶梯的问题中更多的只出现后一种速度,即"单位时间走了多少级台阶",所以处理数量关系的时候要非常小心,理清了各种数量关系,自动扶梯上的行程问题会变得非常简单.
例题:甲在商场中乘自动扶梯从一层到二层,并在顺扶梯运行方向向上走,同时乙站在速度相等的并排扶梯从二层到一层,当甲乙处于同一高度时,甲反身向下走,结果他走了60级到达一层,如果他到了顶端再从上行扶梯返回,则要往下走80级。
那么,自动扶梯不动时甲从下到上要走多少级?
答案:设电梯速度V,甲速度V1,电梯级数S。
因为甲乙同时出发,到达同一高度用时相同。
所以,当时的高度为(V+V1)S/(2V+V1)。
此时向下走,走下台阶用时为(V+V1)S/[(2V+V1)(V1-V)],则60=V1(V+V1)S/[(2V+V1)(V 1-V)],80=V1S/(V1-V)。
两式相除得3/4=(V+V1)/(2V+V1) V1=2*V
代入第二个式子,80=2S S=40 不动时要走40级
例题:小偷与警察相隔30秒先后逆向跑上一自动扶梯,小偷每秒可跨越3级阶梯,警察每秒可跨越4级阶梯。
已知该自动扶梯共有150级阶梯,每秒运行1.5级阶梯,问警察能否在自动扶梯上抓住小偷?答:_____。
分析:全部以地板为参照物,那么小偷速度为每秒1.5级阶梯,警察速度为每秒2.5级阶梯。
警察跑上电梯时相距小偷1.5×30=45级阶梯,警察追上小偷需要45秒,在这45秒内,小偷可以跑上1.5×45=67.5级阶梯,那么追上小偷后,小偷在第112~第113级阶梯之间,没有超过150,所以警察能在自动扶梯上抓住小偷。
例题:在商场里甲开始乘自动扶梯从一楼到二楼,并在上向上走,同时乙站在速度相等的并排扶梯从二层到一层。
当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,那么,自动扶梯不动时从下到上要走多少级?
分析:向上走速度为甲和自动扶梯的速度和,向下走速度为甲和自动扶梯的速度差。
当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,
60÷80=3/4,这说明甲乙处于同一高度时,甲的高度是两层总高度的3/4。
则甲和自动扶梯的速度和与自动扶梯的速度之比是3/4:(1-3/4)=3:1,即甲的速度与自动扶梯速度之比2:1,甲和自动扶梯的速度差与自动扶梯的速度相等。
向下走速度向上走速度的1/3,所用时间为向上走的3倍,则甲向下走的台阶数就是向上走台阶数的3倍.因此甲向上走了80÷(3+1)=20级台阶。
甲的速度与自动扶梯速度之比2:1,甲走20级台阶的同时自动扶梯向上移动了10级台阶,因此如果自动扶梯不动,甲从下到上要走20+10=30级台阶。
例题:商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。
如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?
分析:因为男孩的速度是女孩的2倍,所以男孩走80级到达楼下与女孩走40级到达楼上所用时间相同,在这段时间中,自动扶梯向上运行了(80-40)÷2=20(级)所以扶梯可见部分有80-20=60(级)。
行程自动扶梯解析
电梯行程问题的基本解题思路
电梯问题其实是复杂行程问题中的一类。
有两点需要注意,一是“总行程=电梯可见部分级数±电梯运行级数”,二是在同一个人上下往返的情况下,符合流水行程的速度关系,(注意,其总行程仍然是电梯可见部分级数±电梯运行级数)
商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。
如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?
分析:因为男孩的速度是女孩的2倍,所以男孩走80级到达楼下与女孩走40级到达楼上所用时间相同,在这段时间中,自动扶梯向上运行了(80-40)÷2=20(级)所以扶梯可见部分有?80-20=60(级)。
公务员考试中的电梯行程问题1
公务员考试中的电梯行程问题2。