基于IR1150的无桥Boost高功率
ir2110工作原理

IR2110工作原理
概述
IR2110是一种高性能的MOSFET和IGBT驱动器芯片,用于控制和驱动电源开关设备。
它能够提供高电流和高速度的驱动信号,在电源开关应用中具有广泛的应用。
这个芯片具有低功耗和抗电磁干扰的特性,能够提供短路保护和电源反转保护。
它的工作原理主要基于内部的PWM模块和电流放大器。
工作原理
IR2110的工作原理可以总结为以下几个步骤:
1.输入信号触发:当输入信号到达芯片时,触发电路将其转换为合适的PWM
信号。
2.驱动信号生成:基于触发信号,内部的PWM模块将其转换为完整的驱动
信号。
3.电流放大:驱动信号经过电流放大器后,能够提供足够的电流来控制
MOSFET或IGBT设备。
4.输出驱动:放大后的驱动信号将被输出到MOSFET或IGBT设备,控制
其导通和截止。
5.保护功能:IR2110还包含了短路保护和电源反转保护,确保系统的安全
运行。
应用领域
IR2110在很多领域中得到广泛应用,包括但不限于:
•功率逆变器
•电机驱动
•电源开关
•电子变压器
•光伏逆变系统
通过使用IR2110,这些应用可以实现高效、高性能的电源开关控制,提高系统的可靠性和效率。
IR选型指南

600V 应用系统,输出推/拉电流为 200/420mA
型号
电路
VCC 范围
IR2130 3-Phase Bridge Driver IR2131 3HI/3LO MOS Driver IR2132 3-Phase Bridge Driver 10-25V with UVLO IR2133 3-Phase Bridge Driver IR2135 3-Phase Bridge Driver
Ton/Toff
VIH/VIL
Vitrip+ UVCC/BS+/CCBS-
IR2136
IR21362
12-25V with UVLO
IR21363
IR21365
IR21366 IR21367
12-20V with UVLO
IR21368
10V/20V
___ __ 400ns/380ns 2.7V/1.7V 0.46V
电路
IC@25°C IC@100°C VCE(on)@25°C
Co-Pack 12A
6.8A
2.1V
Co-Pack 12A
6.8A
2.1V
Co-Pack 13A
7A
1.8V
Co-Pack 17A
9A
1.8V
Co-Pack 22A
12A
1.8V
Co-Pack 31A
15A
1.8V
Isolated TO-220 Full-Pak
Co-Pack 9A
6A
1.8V
Isolated TO-220 Full-Pak
Co-Pack 12A
Hale Waihona Puke 8A1.8VIsolated TO-220 Full-Pak
充电桩模块电路

最近这几年充电模块是热门,从最开始的7.5kW、10kW 到后面的15kW、20kW,功率等级不断的提高。
市场上的充电模块绝大部分都是三相输入,PFC 部分也基本都是采用的三相无中线VIENNA 结构的拓扑。
借这次技术分享的机会,分享一下个人对「三相VIENNA 拓扑」的理解,希望和大家一起探讨交流。
我会从以下几个方面进行说明:①主电路组成②工作原理③控制模式④控制地的选择⑤母线均压原理⑥原理仿真一、主电路的组成如图所示,是三相VIENNA PFC 拓扑的主电路,大致如下:1. 三相二极管整流桥,使用超快恢复二极管或SiC 二极管;2. 每相一个双向开关,每个双向开关由两个MOS 管组成,利用了其固有的反并联体二极管,共用驱动信号,降低了控制和驱动的难度。
相比其他组合方案,具有效率高、器件数量少的优点;3. 电流流过的半导体数量最少,以a 相为例:▪双向开关Sa 导通时,电流流过2个半导体器件,euo=0,桥臂中点被嵌位到PFC 母线电容中点;▪双向开关关断时,电流流过1个二极管,iu>0 时euo=400V,iu<0 时euo=-400V,桥臂中点被嵌位到PFC 正母线或负母线。
二、工作原理电路的工作方式靠控制Sa、Sb、Sc 的通断,来控制PFC 电感的充放电,由于PFC 的PF 值很接近1,在分析其工作原理时可以认为电感电流和输入电压同相,三相点平衡,并且各相差120度;1. 主电路的等效电路①三相三电平Boost 整流器可以被认为是三个单相倍压Boost 整流器的Y 型并联;②三个高频Boost 电感,采用CCM 模式,减少开关电流应力和EMI 噪声;③两个电解电容构成电容中点,提供了三电平运行的条件;碱桤婶潁槨輟蝇據资暂醫阚鑰银疠攙烟鈷骝祯坚锟鹾嚙鸵骤遷讦瓔棖餿嗆荆权骜荛仑潷謀蝉躒这个eun 的表达式非常重要。
2. 主电路的开关状态三相交流电压波形如下,U、V、W 各相差120度赂应囪濒织听劳辭皱韵关淵癘搀頜劝銚碜讷铹刭萬万韦撫鸽荡铟軛赡執邺贞質护馬資裣赚阑鯛三相交流电压波形通过主电路可以看出,当每相的开关Sa、Sb、Sc 导通时,U、V、W 连接到电容的中点O,电感La、Lb、Lc 通过Sa、Sb、Sc 充电,每相的开关关断时,U、V、W 连接到电容的正电平(电流为正时)后者负电平(电流为负时),电感通过D1-D6 放电,以0~30度为例,ia、ic 大于零,ib 小于零。
IR2110功能资料

IR2110功能资料驱动芯片IR2110功能简介在功率变换装置中,根据主电路的结构,起功率开关器件一般采用直接驱动和隔离驱动两种方式•美国IR 公司生产的IR2110驱动器,兼有光耦隔离和 磁隔离的优点,是中小功率变换装置中驱动器件的首选。
1. IR2110引脚功能L0 (引脚1):低端输出COM (引脚2):公共端Vcc (引脚3):低端固定电源电压Nc (引脚4):空端Vs (引脚5):高端浮置电源偏移电压VB (引脚6):高端浮置电源电压H0(引脚7):高端输出Nc (引脚8):空端VDD (引脚9):逻辑电源电压HIN (引脚10):逻辑高端输入SD (引脚11):关断LIN (引脚12):逻辑低端输入 —i..1 ■ ■ r ■ • V■魏•・ T•ht ・« 1 ■11(l)IR2110引脚管及特点简介Ivolcal ConnectionVss (引脚13):逻辑电路地电位端,其值可以为0V Nc (引脚14):空端(2)IR2110 的特点:(1) 具有独立的低端和高端输入通道。
(2)悬浮电源采用自举电路,其高端工作电压可达500Vo(3)输出的电源端(脚 3)的电压范围为10-20Vo ⑷逻辑电源的输入范W (脚9)5-15V,可方便的与TTL, CMOS 电平相匹配,而且逻辑电源地和功率电源地之间允许有V 的便移量。
(5)工作频率髙,可达SOOKHzo(6)开通、关断延迟小,分别为120ns 和94ns 。
(7)图腾柱输出峰值电流2A 。
2. IR2110内部结构IR2110的内部结构和工作原理框图如图4所示。
图中HIN 和LIN 为逆变桥中同一桥臂上下两个功率MOS 的驱动脉冲信号输入端。
SD 为保护信号输入端,当 该脚接高电平时,IR2110的输出信号全被封锁,其对应的输出端恒为低电平;而当 该脚接低电平时,IR2110的输出信号跟随HIN 和LIN 而变化,在实际电路里,该 端接用户的保护电路的输出。
IR国际整流公司大功率场效应管参数76-500V

Part Part Status Package VBRDSS (V)VGs Max (V)Circuit IRFH7184Active and Preferred PQFN 5 x 6 B/E10020Discrete IRFH7194Active and Preferred PQFN 5 x 6 B/E10020Discrete IRFH7188Active and Preferred PQFN 5 x 6 B/E10020Discrete IRFH7191Active and Preferred PQFN 5 x 6 B/E10020Discrete IRF7171M Active and Preferred DirectFET MN10020Discrete IRF100B202Active and Preferred TO-220AB10020Discrete IRF5801PBF-1Active TSOP-6 (Micro 6)20030Discrete IRF7473PBF-1Active SO-810020Discrete IRF7493PBF-1Active SO-88020Discrete IRLML0100TRPBF-1Active Micro 3/ SOT-2310016Discrete IRFH7190Active and Preferred PQFN 5 x 6 B/E10020Discrete IRFH7185Active and Preferred PQFN 5 x 6 B/E10020Discrete IRLS4030Active and Preferred D2-Pak10016Discrete IRFHM3911Active and Preferred PQFN 3.3 x 3.310020Discrete IRFS4321-7P Active and Preferred D2-Pak 7-Lead15030Discrete IRF3315S Active D2-Pak15020Discrete IRF3610S Active and Preferred D2-Pak10020Discrete IRFS4321Active and Preferred D2-Pak15030Discrete IRFS23N15D Active D2-Pak15030Discrete IRFS4510Active and Preferred D2-Pak10020Discrete IRFS4610Active D2-Pak10020Discrete IRFS52N15D Active D2-Pak15030Discrete IRFS38N20D Active D2-Pak20030Discrete IRFS4010Active and Preferred D2-Pak10020Discrete IRFS4115Active and Preferred D2-Pak15020Discrete IRF7769L1Active and Preferred DirectFET L810020Discrete IRFP4868Active and Preferred TO-247AC30020Discrete IRFP4137Active and Preferred TO-247AC30020Discrete IRFB4137Active and Preferred TO-220AB30020Discrete IRF7820Active and Preferred SO-820020Discrete IRLS4030-7P Active and Preferred D2-Pak 7-Lead10016Discrete IRFS4115-7P Active and Preferred D2-Pak 7-Lead15020Discrete IRFH7110Active and Preferred PQFN 5 x 6 B/E10020Discrete IRFR825Active and Preferred D-Pak50020Discrete IRFR812Active and Preferred D-Pak50020Discrete IRFR4510Active and Preferred D-Pak10020Discrete IRFB4510Active and Preferred TO-220AB10020Discrete IRFSL4510Active and Preferred TO-26210020Discrete IRFB812Active and Preferred TO-220AB50020Discrete IRLU120N Active I-Pak10016Discrete IRFU120N Active I-Pak10020Discrete IRLU3110Z Active and Preferred I-Pak10016Discrete IRF3710L Active TO-26210020Discrete IRFU3910Active I-Pak10020Discrete IRLU3410Active I-Pak10016Discrete IRFU4510Active and Preferred I-Pak10020Discrete IRFU220N Active I-Pak20020Discrete IRFU3710Z Active and Preferred I-Pak10020Discrete IRFU13N20D Active I-Pak20030Discrete IRFU4620Active and Preferred I-Pak20020DiscreteIRFU4615Active and Preferred I-Pak15020Discrete IRFH5220Active and Preferred PQFN 5 x 6 B/E20020Discrete IRFH5215Active and Preferred PQFN 5 x 6 B/E15020Discrete IRFH5025Active and Preferred PQFN 5 x 6 B/E25020Discrete IRFH5210Active and Preferred PQFN 5 x 6 B/E10020Discrete IRFH5010Active and Preferred PQFN 5 x 6 B/E10020Discrete IRFI4410Z Active and Preferred TO-220 FullPak (Iso)10030Discrete IRFH5110Active and Preferred PQFN 5 x 6 B/E10020Discrete IRFP150M Active and Preferred TO-247AC10020Discrete IRFP260M Active and Preferred TO-247AC20020Discrete IRFP250M Active and Preferred TO-247AC20020Discrete IRFS4227Active and Preferred D2-Pak20030Discrete IRLH5030Active and Preferred PQFN 5 x 6 B/E10016Discrete IRFH5015Active and Preferred PQFN 5 x 6 B/E15020Discrete IRF7815Active and Preferred SO-815020Discrete IRLML0100Active and Preferred Micro 3/ SOT-2310016Discrete IRF7779L2Active and Preferred DirectFET L815020Discrete IRFH5020Active and Preferred PQFN 5 x 6 B/E20020Discrete IRF7799L2Active and Preferred DirectFET L825030Discrete IRF7665S2Active and Preferred DirectFET SB10020Discrete IRFS4020Active and Preferred D2-Pak20020Discrete IRFSL4020Active and Preferred TO-26220020Discrete IRFH5053Active PQFN 5 x 6 A10020Discrete IRFP4768Active and Preferred TO-247AC25020Discrete IRLSL4030Active and Preferred TO-26210016Discrete IRLB4030Active and Preferred TO-220AB10016Discrete IRFS4620Active and Preferred D2-Pak20020Discrete IRFS5615Active and Preferred D2-Pak15020Discrete IRFR4615Active and Preferred D-Pak15020Discrete IRFR4620Active and Preferred D-Pak20020Discrete IRFS4615Active and Preferred D2-Pak15020Discrete IRFB4115Active and Preferred TO-220AB15020Discrete IRFS4310Z Active and Preferred D2-Pak10020Discrete IRLR2908Active D-Pak8016Discrete IRFSL4115Active and Preferred TO-26215020Discrete IRFS4010-7P Active and Preferred D2-Pak 7-Lead10020Discrete IRFSL4010Active and Preferred TO-26210020Discrete IRFS4127Active and Preferred D2-Pak20020Discrete IRFS4229Active and Preferred D2-Pak25030Discrete IRFP4668Active and Preferred TO-247AC20030Discrete IRFP4568Active and Preferred TO-247AC15030Discrete IRFB4615Active and Preferred TO-220AB15020Discrete IRFB5620Active and Preferred TO-220AB20020Discrete IRFB5615Active and Preferred TO-220AB15020Discrete IRFB4620Active and Preferred TO-220AB20020Discrete IRFB4127Active and Preferred TO-220AB20020Discrete IRFP4468Active and Preferred TO-247AC10020Discrete IRFR3410Active D-Pak10020Discrete IRFR540Z Active D-Pak10020Discrete IRFP4110Active and Preferred TO-247AC10020Discrete IRFP4410Z Active and Preferred TO-247AC10020DiscreteIRFP4310Z Active and Preferred TO-247AC10020Discrete IRFS4310Active D2-Pak10020Discrete IRFS4410Active D2-Pak10020Discrete IRF6655Active and Preferred DirectFET SH10020Discrete IRLR3110Z Active and Preferred D-Pak10016Discrete IRFSL4227Active TO-26220030Discrete IRFS4410Z Active and Preferred D2-Pak10020Discrete IRF6785Active and Preferred DirectFET MZ20020Discrete IRF6775M Active and Preferred DirectFET MZ15020Discrete IRFSL4310Z Active TO-26210020Discrete IRFB4310Z Active and Preferred TO-220AB10020Discrete IRFB4410Z Active and Preferred TO-220AB10020Discrete IRFSL4410Z Active TO-26210020Discrete IRF6643Active and Preferred DirectFET MZ15020Discrete IRF6641Active and Preferred DirectFET MZ20020Discrete IRF6662Active and Preferred DirectFET MZ10020Discrete IRF6668Active and Preferred DirectFET MZ8020Discrete IRF6665Active and Preferred DirectFET SH10020Discrete IRFI4321Active TO-220 FullPak (Iso)15030Discrete IRFP4321Active and Preferred TO-247AC15030Discrete IRFB4321Active and Preferred TO-220AB15030Discrete IRFSL4321Active TO-26215030Discrete IRF6646Active and Preferred DirectFET MN8020Discrete IRFP4332Active and Preferred TO-247AC25030Discrete IRFB4332Active and Preferred TO-220AB25030Discrete IRF6644Active and Preferred DirectFET MN10020Discrete IRF6645Active and Preferred DirectFET SJ10020Discrete IRFI4229Active TO-220 FullPak (Iso)25030Discrete IRFB4229Active and Preferred TO-220AB25030Discrete IRFP4229Active and Preferred TO-247AC25030Discrete IRFB4020Active and Preferred TO-220AB20020Discrete IRFB4019Active and Preferred TO-220AB15020Discrete IRF3710ZS Active D2-Pak10020Discrete IRFP4227Active and Preferred TO-247AC20030Discrete IRF7854Active and Preferred SO-88020Discrete IRF7853Active and Preferred SO-810020Discrete IRF8010S Active and Preferred D2-Pak10020Discrete IRFB4110Active and Preferred TO-220AB10020Discrete IRFB4227Active and Preferred TO-220AB20030Discrete IRFI4227Active TO-220 FullPak (Iso)20030Discrete IRF5802Active TSOP-6 (Micro 6)15030Discrete IRF5801Active TSOP-6 (Micro 6)20030Discrete IRFSL4310Active TO-26210020Discrete IRFSL38N20D Active TO-26220030Discrete IRF7493Active and Preferred SO-88020Discrete IRF7495Active and Preferred SO-810020Discrete IRFB4212Active and Preferred TO-220AB10020Discrete IRFB4310Active TO-220AB10020Discrete IRF530NS Active D2-Pak10020Discrete IRL540NS Active and Preferred D2-Pak10016Discrete IRFR9N20D Active D-Pak20030DiscreteIRF3710S Active D2-Pak10020Discrete IRL520NS Active and Preferred D2-Pak10016Discrete IRF7452Active SO-810030Discrete IRF630NS Active D2-Pak20020Discrete IRLR3410Active and Preferred D-Pak10016Discrete IRFR120N Active D-Pak10020Discrete IRFR13N15D Active D-Pak15030Discrete IRL2910S Active and Preferred D2-Pak10016Discrete IRF7451Active SO-815030Discrete IRFR13N20D Active D-Pak20030Discrete IRLR120N Active and Preferred D-Pak10016Discrete IRF640NS Active D2-Pak20020Discrete IRL530NS Active and Preferred D2-Pak10020Discrete IRF540NS Active D2-Pak10020Discrete IRF3415S Active D2-Pak15020Discrete IRFS59N10D Active D2-Pak10030Discrete IRFR3518Active D-Pak8020Discrete IRF1310NS Active D2-Pak10020Discrete IRFR220N Active D-Pak20020Discrete IRFR18N15D Active D-Pak15030Discrete IRF7490Active SO-810020Discrete IRFL4315Active SOT-22315030Discrete IRFS31N20D Active D2-Pak20030Discrete IRFR120Z Active and Preferred D-Pak10020Discrete IRFR3910Active D-Pak10020Discrete IRF520NS Active D2-Pak10020Discrete IRF540ZS Active D2-Pak10020Discrete IRFS41N15D Active D2-Pak15030Discrete IRFS23N20D Active D2-Pak20030Discrete IRF7450Active SO-820030Discrete IRF7473Active SO-810020Discrete IRF7488Active SO-88020Discrete IRFL4310Active SOT-22310020Discrete IRFS33N15D Active D2-Pak15030Discrete IRF7465Active SO-815030Discrete IRFR3710Z Active D-Pak10020Discrete IRFB4410Active TO-220AB10020Discrete IRFB4610Active and Preferred TO-220AB10020Discrete IRFBA90N20D Active Super 220 (TO-273AA)20030Discrete IRFPS3815Active Super 247 (TO-274AA)15030Discrete IRFPS3810Active Super 247 (TO-274AA)10030Discrete IRF1310N Active TO-220AB10020Discrete IRFB38N20D Active TO-220AB20030Discrete IRF520N Active TO-220AB10020Discrete IRL520N Active and Preferred TO-220AB10016Discrete IRFP140N Active TO-247AC10020Discrete IRFB61N15D Active TO-220AB15030Discrete IRFP90N20D Active TO-247AC20030Discrete IRF540ZL Active TO-26210020Discrete IRLI530N Active TO-220 FullPak (Iso)10016Discrete IRLI2910Active TO-220 FullPak (Iso)10016DiscreteIRFB33N15D Active TO-220AB15030Discrete IRFB23N20D Active TO-220AB20030Discrete IRF8010Active and Preferred TO-220AB10020Discrete IRFP3415Active TO-247AC15020Discrete IRFB42N20D Active TO-220AB20030Discrete IRFU3410Active I-Pak10020Discrete IRFB260N Active TO-220AB20020Discrete IRLI540N Active TO-220 FullPak (Iso)10016Discrete IRF3710Z Active TO-220AB10020Discrete IRF3710ZL Active TO-26210020Discrete IRL530N Active and Preferred TO-220AB10016Discrete IRFR3411Active and Preferred D-Pak10020Discrete IRFR24N15D Active D-Pak15030Discrete IRFI530N Active TO-220 FullPak (Iso)10020Discrete IRFR15N20D Active D-Pak20030Discrete IRFB59N10D Active TO-220AB10030Discrete IRF540NL Active TO-26210020Discrete IRF630N Active TO-220AB20020Discrete IRFB31N20D Active TO-220AB20030Discrete IRF640NL Active TO-26220020Discrete IRF640N Active TO-220AB20020Discrete IRFP3710Active and Preferred TO-247AC10020Discrete IRLI520N Active TO-220 FullPak (Iso)10016Discrete IRFP4710Active TO-247AC10020Discrete IRFP150N Active TO-247AC10020Discrete IRL2910Active and Preferred TO-220AB10016Discrete IRL540N Active and Preferred TO-220AB10016Discrete IRFP260N Active TO-247AC20020Discrete IRFP250N Active TO-247AC20020Discrete IRF530N Active TO-220AB10020Discrete IRF3415Active TO-220AB15020Discrete IRFB4710Active TO-220AB10020Discrete IRF3710Active TO-220AB10020Discrete IRFB41N15D Active TO-220AB15030Discrete IRFB23N15D Active TO-220AB15030Discrete IRFIB41N15D Active TO-220 FullPak (Iso)15030Discrete IRFI1310N Active TO-220 FullPak (Iso)10020Discrete IRF3315Active TO-220AB15020Discrete IRF540Z Active TO-220AB10020Discrete IRFI540N Active TO-220 FullPak (Iso)10020Discrete IRFB52N15D Active TO-220AB15030Discrete IRF540N Active TO-220AB10020Discrete IRFY240Active TO-257AA20020Discrete IRFY140Active TO-257AA10020Discrete IRFY130Active TO-257AA10020DiscreteRDS(on) Max 10V (mOhms)Qg Typ (nC)ID @ TC = 25C (A)Power Dissipation @ TC = 25C (W) 4.83612815616.4133539633105132826801046.536931048.677972212.23.926.06115.035220.0 2.57.526821045.236.01231604.387.0180370115.017.0112914.771.08635082.063.3219411.6100.010333315.071.08333090.037.023 3.813.958.06114014.090.07319032.060.06032054.060.0443204.7143.018037512.177.0993753.5200.012412532.0180.07051769.083.03834169.083.03834178.029.03.993.019037011.873.010538013.558.0581041300.022.7 6.01192200.013.3 3.67813.954.06314313.558.06214013.958.0611402200.013.3 3.67818513.3 6.93921016.7 5.8391434451402386.74020011529.39.55210522.79.55213.9544514360015 3.543186939140235259.5110782517144422624144 99.920.02058.020.027104 100.037.03214.939.055104 9.065.0100250 9.381.04347 12.448.063114 36.073.342160 40.0156.050300 75.082.030214 26.070.062330 9.044.031.033.056250 43.025.0220.0 2.511.097.067125 55.036.04338.0110.035125 62.08.314.430 105.018.018100 105.018.018100 18.024.04617.5180.093520 4.387.0180370 4.387.0180370 78.025.024144 42.026.033144 42.026.033144 78.025.024144 42.026.033144 11.077.0104380 6.0120.0127250 28.022.039120 12.177.099375 4.0150.0190380 4.7143.0180375 22.0100.072375 4872.045330 9.7161.0130520 5.9151.0171517 39.026.035144 72.525.025144 39.026.035144 72.525.025144 20.0100.076375 2.6360.0290520 39.037.031110 28.539.03591 4.5150.0180370 9.083.0972306.0120.01342807.0170.0140330 10.0120.096250 62.08.742 14.034.063140 26.070.062330 9.083.097230 100.026.01957 56.025.02889 6.0120.0127250 6.0120.0127250 9.083.097230 9.083.097230 34.539.089 59.934.089 22.022.089 15.022.05589 62.08.742 16.073.03446 15.571.078310 15.071.083330 15.071.083330 9.536.089 33.099.057360 33.099.060390 13.035.089 35.014.042 46.073.01946 46.072.046330 46.072.044310 100.018.018100 95.013.01780 18.082.059160 25.070.065330 13.427.018.028.015.081.080260 4.5150.0180370 26.070.065190 22.073.02618 1200.0 4.5 2.0 2200.0 3.90.6 2.0 7.0170.0140330 54.060.044320 15.031.022.034.072.515.01860 7.0170.0130300 90.024.717 3.8 44.049.336 3.8 380.018.09.48623.086.757 3.8 180.013.310 3.8 60.033.0300.023.39.582 105.022.71552 210.016.79.139 180.019.01486 26.093.355 3.8 90.028.0235.025.014110 185.013.31139 150.044.718150 100.022.717 3.8 44.047.333 3.8 42.0133.343 3.8 25.076.059200 29.037.038110 36.073.342 3.8 600.015.0543 125.028.018110 39.037.0185.012.082.070.031200 190.0 6.98.735 115.029.31552 200.016.79.547 26.542.03692 45.072.041200 100.057.024170 170.026.026.061.029.038.0200.017.056.060.033 3.8 280.010.018.069.056140 10.0120.096250 14.090.073190 23.0160.098650 15.0260.0105441 9.0260.0141441 36.073.342160 54.060.044320 200.016.79.748 180.013.31048 52.062.72794 32.095.060330 23.0180.094580 26.542.03692 100.022.71133 26.093.3274856.060.033 3.8 100.057.024170 15.081.080260 42.0133.343200 55.091.042.630039.037.03111040.0150.056380 44.049.32042 18.082.059160 18.082.059160 100.022.71779 44.048.032130 95.030.024140 110.029.31133 165.027.017140 25.076.059200 44.047.333140 300.023.39.582 82.070.031200 150.044.718150 150.044.718150 25.066.751180 180.013.37.727 14.0110.072190 36.073.339140 26.093.348200 44.049.336140 40.0156.049300 75.082.030214 90.024.71779 42.0133.343200 14.0110.075200 23.086.757200 45.072.041200 90.037.023 3.8 45.072.041200 36.080.02245 70.063.32194 26.542.03692 52.062.71842 32.060.060320 44.047.333140 180.040.010.277.039.316100 180.019.09.1Rth(JC) (K/W)Qual Level MSL Package Class0.8Industrial1Surface Mount without Leads 3.2Industrial1Surface Mount without Leads0.95Industrial1Surface Mount without Leads1.2Industrial1Surface Mount without Leads 1.2Industrial Surface Mount Can - DirectFET 0.68Industrial Thru-Hole62.5 (JA)Industrial1Surface Mount with Leads50 (JA)Industrial1Surface Mount with Leads50 (JA)Industrial1Surface Mount with Leads100 (JA)Surface Mount with Leads1.2Industrial1Surface Mount without Leads 0.80Industrial1Surface Mount without Leads 0.40Industrial1Surface Mount with Leads4.3Industrial1Surface Mount with Leads0.43Industrial1Surface Mount with Leads1.6Industrial1Surface Mount with Leads0.50Industrial1Surface Mount with Leads0.45Industrial1Surface Mount with Leads1.1Industrial1Surface Mount with Leads1.05Industrial1Surface Mount with Leads0.77Industrial1Surface Mount with Leads0.47Industrial1Surface Mount with Leads0.47Industrial1Surface Mount with Leads0.40Industrial1Surface Mount with Leads0.40Industrial1Surface Mount with Leads45 (JA)Industrial1Surface Mount Can - DirectFET 0.29Industrial Thru-Hole0.44Industrial Thru-Hole0.44Industrial Thru-Hole50 (JA)Industrial1Surface Mount with Leads0.40Industrial1Surface Mount with Leads0.40Industrial1Surface Mount with Leads1.2Industrial1Surface Mount without Leads 1.05Industrial1Surface Mount with Leads1.6Industrial1Surface Mount with Leads1.05Industrial1Surface Mount with Leads1.05Industrial Thru-Hole1.05Industrial Thru-Hole1.6Industrial Thru-Hole3.2Industrial Thru-Hole3.2Industrial Thru-Hole1.05Industrial Thru-Hole0.75Industrial Thru-Hole2.4Industrial Thru-Hole2.4Industrial Thru-Hole1.05Industrial Thru-Hole3.5Industrial Thru-Hole1.05Industrial Thru-Hole1.4Industrial Thru-Hole1.045Industrial Thru-Hole1.045Industrial Thru-Hole1.2Industrial1Surface Mount without Leads 1.2Industrial1Surface Mount without Leads0.50Industrial1Surface Mount without Leads1.2Industrial1Surface Mount without Leads 0.50Industrial1Surface Mount without Leads 3.2Industrial Thru-Hole1.1Industrial1Surface Mount without Leads 0.95Industrial Thru-Hole0.50Industrial Thru-Hole0.70Industrial Thru-Hole0.45Industrial1Surface Mount with Leads0.50Industrial1Surface Mount without Leads 0.50Industrial1Surface Mount without Leads 50 (JA)Industrial1Surface Mount with Leads100 (JA)Consumer1Surface Mount with Leads1.2Industrial1Surface Mount Can - DirectFET0.50Industrial1Surface Mount without Leads1.2Industrial1Surface Mount Can - DirectFET 62.5 (JA)Industrial1Surface Mount Can - DirectFET 1.43Industrial1Surface Mount with Leads1.43Industrial Thru-Hole1.6Consumer2Surface Mount without Leads 0.29Industrial Thru-Hole0.40Industrial Thru-Hole0.40Industrial Thru-Hole1.045Industrial1Surface Mount with Leads1.045Industrial1Surface Mount with Leads1.045Industrial1Surface Mount with Leads1.045Industrial1Surface Mount with Leads1.045Industrial1Surface Mount with Leads0.40Industrial Thru-Hole0.60Industrial1Surface Mount with Leads1.3Industrial1Surface Mount with Leads0.40Industrial Thru-Hole0.40Industrial1Surface Mount with Leads0.40Industrial Thru-Hole0.40Industrial1Surface Mount with Leads0.45Industrial1Surface Mount with Leads0.29Industrial Thru-Hole0.29Industrial Thru-Hole1.04Industrial Thru-Hole1.04Industrial Thru-Hole1.04Industrial Thru-Hole1.04Industrial Thru-Hole0.40Industrial Thru-Hole0.29Industrial Thru-Hole1.4Industrial1Surface Mount with Leads1.64Industrial1Surface Mount with Leads0.40Industrial Thru-Hole0.65Industrial Thru-Hole0.54Industrial Thru-Hole0.45Industrial1Surface Mount with Leads0.61Industrial1Surface Mount with Leads3.0Consumer1Surface Mount Can - DirectFET 1.05Industrial1Surface Mount with Leads0.45Industrial Thru-Hole0.65Industrial1Surface Mount with Leads1.4Consumer1Surface Mount Can - DirectFET 1.4Consumer1Surface Mount Can - DirectFET 0.60Industrial Thru-Hole0.60Industrial Thru-Hole0.65Industrial Thru-Hole0.65Industrial Thru-Hole1.4Consumer1Surface Mount Can - DirectFET 1.4Consumer1Surface Mount Can - DirectFET 1.4Consumer1Surface Mount Can - DirectFET 1.4Consumer1Surface Mount Can - DirectFET 3.0Consumer1Surface Mount Can - DirectFET2.73Industrial Thru-Hole0.49Industrial Thru-Hole0.45Industrial Thru-Hole0.45Industrial Thru-Hole1.4Consumer1Surface Mount Can - DirectFET 0.42Industrial Thru-Hole0.38Industrial Thru-Hole1.4Consumer1Surface Mount Can - DirectFET 3.0Consumer1Surface Mount Can - DirectFET2.73Industrial Thru-Hole0.45Industrial Thru-Hole0.49Industrial Thru-Hole1.43Industrial Thru-Hole1.88Consumer Thru-Hole0.92Industrial1Surface Mount with Leads0.45Industrial Thru-Hole50 (JA)Industrial1Surface Mount with Leads50 (JA)Industrial1Surface Mount with Leads0.57Industrial1Surface Mount with Leads0.40Industrial Thru-Hole0.45Industrial Thru-Hole0.45Industrial Thru-Hole62.5 (JA)Consumer1Surface Mount with Leads 62.5 (JA)Consumer1Surface Mount with Leads0.45Industrial Thru-Hole0.47Industrial Thru-Hole50 (JA)Consumer1Surface Mount with Leads50 (JA)Consumer1Surface Mount with Leads2.5Industrial Thru-Hole0.45Industrial Thru-Hole1.9Industrial1Surface Mount with Leads1.1Industrial1Surface Mount with Leads1.75Industrial1Surface Mount with Leads0.75Industrial1Surface Mount with Leads 3.1Industrial1Surface Mount with Leads 50 (JA)Consumer1Surface Mount with Leads1.83Industrial1Surface Mount with Leads2.4Industrial1Surface Mount with Leads3.2Industrial1Surface Mount with Leads 1.75Industrial1Surface Mount with Leads 0.75Industrial1Surface Mount with Leads 50 (JA)Consumer1Surface Mount with Leads 1.4Industrial1Surface Mount with Leads 3.2Industrial1Surface Mount with Leads 1.00Industrial1Surface Mount with Leads 1.9Industrial1Surface Mount with Leads 1.1Industrial1Surface Mount with Leads 0.75Industrial1Surface Mount with Leads0.50Industrial1Surface Mount with Leads1.4Industrial1Surface Mount with Leads 0.95Industrial1Surface Mount with Leads 3.5Industrial1Surface Mount with Leads 1.4Industrial1Surface Mount with Leads 50 (JA)Consumer1Surface Mount with Leads 45 (JA)Industrial1Surface Mount with Leads 0.75Industrial1Surface Mount with Leads 4.28Industrial1Surface Mount with Leads2.4Industrial1Surface Mount with Leads3.2Industrial1Surface Mount with Leads 1.64Industrial1Surface Mount with Leads 0.75Industrial1Surface Mount with Leads 0.90Industrial1Surface Mount with Leads 50 (JA)Consumer1Surface Mount with Leads 50 (JA)Consumer1Surface Mount with Leads 50 (JA)Consumer1Surface Mount with Leads 60 (JA)Industrial1Surface Mount with Leads 0.90Industrial1Surface Mount with Leads 50 (JA)Consumer1Surface Mount with Leads 1.05Industrial1Surface Mount with Leads 0.61Industrial Thru-Hole0.77Industrial Thru-Hole0.23Industrial Thru-Hole0.34Industrial Thru-Hole0.34Industrial Thru-Hole0.95Industrial Thru-Hole0.47Industrial Thru-Hole3.1Industrial Thru-Hole3.1Industrial Thru-Hole1.6Industrial Thru-Hole0.45Industrial Thru-Hole0.26Industrial Thru-Hole1.64Industrial Thru-Hole3.7Industrial Thru-Hole2.4Industrial Thru-Hole0.90Industrial Thru-Hole0.90Industrial Thru-Hole0.57Industrial Thru-Hole0.75Industrial Thru-Hole0.50Industrial Thru-Hole1.4Thru-Hole0.40Industrial Thru-Hole2.8Industrial Thru-Hole0.92Industrial Thru-Hole0.92Industrial Thru-Hole1.9Industrial Thru-Hole1.2Industrial1Surface Mount with Leads 1.1Industrial1Surface Mount with Leads 4.5Industrial Thru-Hole1.04Industrial1Surface Mount with Leads0.75Industrial Thru-Hole1.1Industrial Thru-Hole1.83Industrial Thru-Hole0.75Industrial Thru-Hole1.00Industrial Thru-Hole1.00Industrial Thru-Hole0.83Industrial Thru-Hole5.0Industrial Thru-Hole0.81Industrial Thru-Hole1.1Industrial Thru-Hole0.75Industrial Thru-Hole1.1Industrial Thru-Hole0.50Industrial Thru-Hole0.70Industrial Thru-Hole1.9Industrial Thru-Hole0.75Industrial Thru-Hole0.75Industrial Thru-Hole0.75Industrial Thru-Hole0.75Industrial Thru-Hole1.1Industrial Thru-Hole3.14Industrial Thru-Hole2.7Industrial Thru-Hole1.6Industrial Thru-Hole1.64Industrial Thru-Hole2.8Industrial Thru-Hole0.47Industrial Thru-Hole1.1Industrial Thru-Hole1.25Thru-Hole1.25Thru-Hole1.67Thru-Hole。
单周期控制三电平PFC的研究

I
单周期控制三电平 PFC 的研究
ABSTRACT
Power factor correction (PFC) technology is being widely used in on-line UPS systems nowadays. The input power factor of the UPS is of importantance, which reflect the utilization efficiency of AC power and the harmonics. Therefore, high power factor is being considered more and more important. In this paper, a one-cycle controlled (OCC) three-level Boost PFC converter used for the front end of the half-bridge inverter UPS systems is discussed. This three-level PFC topology is simple to realize, and has small THD, low switching loss and high efficiency. The one-cycle control technique is a novel pulsed nonlinear control technique, which achieves controlling of the average value of the variables to meet the control goal in one switching cycle, and provides fast dynamic response and good input-perturbation rejection. The key compenents of OCC circuit are an integrator and a comparator. Analog integrator is used for its high speed at present. At first, the basic working principle of the three-level PFC is studied, and the small signal model of the circuit is researched. The feasibility of the system is analyzed after discussing the principle of one-cycle controlled PFC converter. A prototype based on analog IC IR1150S which uses OCC technique is built and the technique of designing the converter is offered. Experimental results show that this system is simple, reliable, and it has low THD, high PF and can realize stable and balanced postive/negative DC bus voltage. With the development of digital technique, more and more control algorithms can be implemented by the digital signal processor (DSP). Principle of digital control to realize OCC is discussed in this paper. At last, a prototype based on TMS320LF2407 is built, and the hardware design and the software design are present, furthermore, the main program flow chart is given. The control technique of half-bridge UPS system based on DSP is also studied. Key Words:UPS, Power Factor Correction, Three-level, One-Cycle Control, Digital Control
单周期控制的三相无桥PFC电路的研究
单周期控制的三相无桥PFC电路的研究王君力;张安堂;倪磊;李彦斌【摘要】传统三相有源功率因数变换器具有多种电路拓扑形式和控制方法,但整流部分常采用全桥结构,导致输入电流谐波含量较大,电路整体效率不高,而且控制方法相对复杂.基于单相模块构建了一种新型的单周期控制的三相无桥功率因数校正(PFC)电路,通过自耦变压器将三相电路解耦为两相无桥Boost PFC电路并联而成.为削弱2个并联电路之间的耦合干扰,加入分离元件实现了对2个并联电路的独立控制.仿真与实验结果验证了该单周期控制的三相无桥PFC电路的正确性,实现了高功率因数,采用无桥方案也有助于提高电路的整体效率,单周期控制策略控制简单,简化了电路结构.%There are several circuit topologies and control methods for traditional three-phase APFC (active power factorcorrection)converter.However,the rectifiers often use full-bridge,which results in low efficiency of the whole circuit,high input of current harmonics and complexity of the control methods.Based on single phase module,a novel one-cycle controlled three-phase bridgeless PFC circuit is established through paralleling two-phase bridgeless Boost PFC circuits by autotransformer.In order to reduce the coupling interference between two paralleling circuits,the discrete elements are added to achieve the independent control of the two paralleling circuits.Simulation and experiment have proved the correctness of the proposed system.The new circuit can achieve high power factor,and the bridgeless scheme is helpful to raise the total efficiency of the circuit.Simple in control,the one-cycle control strategy can simplify the circuit structure.【期刊名称】《中国电力》【年(卷),期】2017(050)006【总页数】7页(P88-94)【关键词】单周期控制策略;有源功率因数校正;无桥Boost PFC;三相电路;耦合干扰【作者】王君力;张安堂;倪磊;李彦斌【作者单位】空军工程大学防空反导学院,陕西西安710051;空军工程大学防空反导学院,陕西西安710051;空军工程大学防空反导学院,陕西西安710051;空军工程大学防空反导学院,陕西西安710051【正文语种】中文【中图分类】TM464随着电力电子设备应用日益广泛,电流波形畸变对公共电网的谐波污染也日益严重,不但影响供电质量,增加损耗,甚至可能损坏某些用电设备。
功率驱动器IR2110自举电路分析及应用
功率驱动器IR2110自举电路分析及应用唐宁【摘要】对自举武功率驱动器IR2110的功能与结构进行了简单介绍,详细分析了其高边自举电路的结构原理及工作方式.对自举电容、自举二极管及功率MOS管等自举电路构成元件的选取方法与原则进行了介绍,经公式推导并结合项目经验给出了自举电容的最小值,计算了电路中高边功率MOS管的最大导通时间,并给出自举二极管的选择条件.利用IR2110搭建了一个直流电机调速驱动电路,成功实现了利用自举电路对直流电机进行调速.【期刊名称】《微处理机》【年(卷),期】2018(039)004【总页数】4页(P25-28)【关键词】IR2110驱动器;自举;耐高压;电机驱动【作者】唐宁【作者单位】中国电子科技集团公司第四十七研究所,沈阳110032【正文语种】中文【中图分类】TN471 引言IR2110功率驱动器在开关电源和电机控制调速等需要中小功率能量转换场合中使用广泛[1]。
IR2110可使电路系统体积得到有效精简、响应速度快、可耐受600V电压、驱动输出电流2A、带有欠压锁定功能并且有端口可外接过流检测电路[2]。
其承受高压的高边外围电路采用自举方式,可有效减少电源路数[3]。
但IR2110若设计疏于考虑,自举外围电路参数选取不当容易影响系统工作稳定性甚至损坏系统。
因此结合实际项目经验介绍其功能、自举电路参数选择和在电机调速系统中的应用。
2 IR2110功能介绍IR2110是一种高电压的高速大功率MOSFET和IGBT驱动器,带有独立的高边和低边输出沟道[4]。
具有专利高压集成电路和可避免闩锁CMOS技术的单片结构。
逻辑输入兼容标准的CMOS和LSTTL输出[5]。
输出驱动器具有为了最小化驱动器的交叉传导所设计的死区时间。
为了简化在高频应用中的使用方式,匹配了传输延迟。
浮动的沟道可用于驱动N沟道功率MOSFET或者IGBT,在高边结构中操作电压可达到600V。
表1所示为IR2110引脚功能表。
(完整版)电力电子技术第五版课后答案
电力电子技术第五版课后习题答案第二章 电力电子器件2-1 与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力?答:1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。
2.电力二极管在P 区和N 区之间多了一层低掺杂N 区,也称漂移区。
低掺杂N 区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N 区就可以承受很高的电压而不被击穿。
2-2. 使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电 压,并在门极施加触发电流(脉冲)。
或:uAK>0且uGK>0。
2-3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:维持晶闸 管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。
要使晶闸管由导通变为关断, 可利用外加电压和外电路的作用使流过晶闸管的电流降 到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。
2-4 图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流 最大值均为Im π4π4π25π4a)b)c)图1-43图2-27 晶闸管导电波形解:a) I d1=π21⎰ππωω4)(sin t td I m=π2m I (122+)≈0.2717 I m I 1=⎰ππωωπ42)()sin (21t d t I m =2m I π2143+≈0.4767 I m b) I d2 =π1⎰ππωω4)(sin t td I m =πm I (122+)≈0.5434 I m I 2 =⎰ππωωπ42)()sin (1t d t I m =22m I π2143+≈0.6741I m c) I d3=π21⎰20)(πωt d I m=41I m I 3 =⎰202)(21πωπt d I m =21 I m 2-5 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少?解:额定电流I T(AV) =100A 的晶闸管,允许的电流有效值I =157A ,由上题计算结果知a) I m1≈4767.0I≈329.35, I d1≈0.2717 I m1≈89.48b) I m2≈6741.0I≈232.90, I d2≈0.5434 I m2≈126.56 c) I m3=2 I = 314,I d3=41 I m3=78.52-6 GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不 能? 答:GTO 和普通晶阐管同为PNPN 结构,由P1N1P2和N1P2N2构成两个晶体管 V1、V2,分别具有共基极电流增益a1和a2,由普通晶阐管的分析可得,a1+a2=1是器件临界导通的条件。
论文反激变换器应用
(2-11)
(2-12)
I L1 =
Po U in η
(2-13)
输入电流峰值为
I L1 p =
Po U T + in S D U in ηD 2 L1
(2-14)
2.1.3 电流临界连续模式
电流临界连续模式介于电流连续模式和电流断续模式之间,电感电流波形如图
2-2(c)所示。这种模式下,输出电压和输出电流同时满足式(2-6)和(2-12)。将式(2-6)
代入式(2-12)得
I g = Io =
U inTS N1 U 2T 2 F D(1 − D) = in ON S 2 L1 N 2 2 LU 1 o
(2-15)
其中 I g 为临界连续电感电流。 对(2-15)求极值,可得当占空比 D=0.5 时,临界连续负载电流达到最大值 I g max :
I g max =
1.1.1 有损 RCD 箝位电路
RCD 箝位电路是加在变压器原边两端,而加在开关管两端的称为 RCD 缓冲,两 者可以组合使用。
T
+
D1
T
D1
N2 C
R C1
C
N1
N2
Cf
RL
+
N1 C1
S
C
f
RL
Hale Waihona Puke U inD SU in
−
−
R
D
图 1-1
RCD 箝位电路
图 1-2
RCD 缓冲电路
1
反激变换器的应用研究
本文重点研究了 RCD 箝位反激变换器稳态原理、参数设计准则及小信号特性, 其次研究了双管反激变换器稳态原理及其参数设计方法,还研究了电流控制技术。其 主要内容分为以下六章: 第一章 分析了中小功率开关电源的理想拓扑,概述了反激变换器发展与现状。 第二章 分析对比了反激变换器三种工作模式及 RCD 箝位电路的设计。 第三章 研究了双管反激变换器稳态工作原理与设计。 第四章 研究了反激变换器小信号特性。 第五章 详细论述了基于电流控制 15W 27VDC/+12V(1.0A) 、-12V(0.25A)RCD 箝位反激变换器机内稳压电源( CCM 模式、 DCM 模式)与 1080W 270VDC/180V(6A)双管反激变换器开关电源的设计过程,给出了试验 结果,并与理论分析进行了比较。 第六章 对本文的工作进行了总结,提出了进一步工作的设想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气传动2007年第37卷第9期基于IR1150的无桥Boost高功率因毅整流器的研究基于IR1150的无桥Boost高功率 因数整流器的研究
张厚升山东理工大学
摘要:传统有源功率因数校正电路中导通器件多通态损耗大,不适于中大功率场合.基于单周期控制技术的111150是一种新型的功率因数校正芯片,无需传统PFC电路所需的乘法器,不需要检侧输人电压.以IR1150为控制芯片,提出了一种无桥路高功率因数整流器,分析了其工作原理,对电磁千扰(EMI)和电流检测方案进行了分析与设计。500 W的试验样机表明,该整流器电路结构简单、可靠,而且成本低,功率因数可达0.99, 关位词:功率因数校正无桥升压单周期控制
Research on Bridgeless Boost Rectifier with Hi沙Power Factor Based on Chip IR1150
Zhang Housheng Abstract iConventional boost-type rectifier with input PFC circuit has many conduction components and bigon-stage loss, so it is unfit for middle or high power situation. IRI150 is a new power factor correction TC,which uses the one cycle control (OCC) technique. It does not need the traditional multipliers and AC inputvoltage sensing. A new bridgeless boost PFC rectifier with high power factor based on IR1150 was presented.Its fundamental principle was introduced. Electromagnetic interference (EMI) and the technology of currentsensing were analyzed and designed. Experimental results of the designed 500 W prototype show that bridge-less boost PFC rectifier based on IR1150 is simple, reliable, cost-saving. It can realize unit power factor cor-recnon. Keywords: power factor correction(PFC) bridgeless boost one-cycle control
1引言 传统的AC一DC电路采用不可控整流电路和电解电容滤波以得到波形平滑的直流电压,由于使用了非线性元件和储能元件,使得输人电流波形畸变而包含大量谐波,电网输人端功率因数低下,只有。.5-0.7左右,因而采取功率因数校正技术是必要的〔t7 然而,传统功率因数校正电路技术复杂,例如使用传统的UC3854芯片开发的PFC电路,设计步骤繁琐,所需元件多,体积大而且成本高,因此设计时其往往要在性能和成本之间进行折衷。近年来单级PFC的研究集中于如何简化传统的PFC控制电路结构,避免对轴人电压采样和使用复杂的模拟乘法器Czl。文献[3,4」中提出的单周 32期控制(one-cycle control, 000)技术很好地解决了这个问题。单周期控制的基本思想是在每一个开关周期内使受控量的平均值恰好等于或者正比于控制参考量,单周期控制技术在控制回路中不需要误差综合,它能在一个周期内自动消除稳态、瞬态误差,前一周期的误差不会带到下一周期,同时单周期控制技术还具有减小畸变和抑制电源干扰等优点。目前已有基于单周期控制的PFC芯片—IR1150问世,它不仅简便可靠,而且外围所需元件少,为PFC电路的设计提供了一种优秀的解决方案Isl。本文基于单周期控制芯片IR1150,设计了一种无桥Boost功率因数变换器,通过单周期控制技术来实现自身的AC-DC功能,同时尽可能不对电网产生污染,大大简化了电路的设计和缩小了装置体积,为电源PFC级提供
万方数据塞于1R1150的无桥Boost高功率因毅整流器的研宪电气传动2007年第37容第9期了简便、灵活、高密度的解决方案。Z总体方案 图1给出了基于单周期控制芯片IR115。的无桥Boost电路拓扑,主电路采用无桥变换器,它省掉了变换器愉人端的常规桥式整流电路,这样可以减少开关损耗‘进一步提高效率,而且不存在由于导通损耗而降低效率的问题.且设计比较简单,需要的元件数量较少。该拓扑结构以电感电
流和输出电容电压为开关变量对电路闭环控制实现PFC功能。基于单周期控制技术的IR115。芯片使用输出电压和电感器中的电流峰值来计算前后衔接的每个周期的占空比,而且占空比控制着升压电路输人和输出之间的关系,电感器中的电流峰值可以自动地跟随输人电压的波形,这样就实现了功率因数校正的功能。由于所有必要的信息都是从电感器中的电流峰值和电压输出那里得到的,因此不需要检测翰人电压[.]。
‘肠自日丫‘人曰几几n州丫离日十叽!
自口 凡
!上T 肠
D,压D.
民一 凡le口陈闷卫 一|广 -S
|J习
一州
-J
|
丫产-
二驱动电路
。主些室
过电压保护比较器欠电压锁定 UVLO
71 VC
}OVPI1;1'内ENA
1.055 Vm-I
蜂值电流限侧
比较器
位里与参考V.,7V屯赢蔽丽尹Ek %f时钟
ISNS 13甜5Q91 GATP
C,=_ Vpg压误差放大器至 渔螃 \ V.
r-Q2FAULT
故阵保护、开环保护、抽出欠压卜一故障Ut1150内部结构框图
cOMP愈
几 圈1圣于单周期控制芯片IR1150的无桥功率因教校正电路图2.1主电路原理与设计器。在这个电路中,输出和输人并无直接的连接,
对于图1所提出的无桥式高功率因数整流于是就存在输人电压的检测、电流的检测和电磁器,主电路采用无桥升压电路,该主电路拓扑结构干扰噪音等问题。特别是由于升压电感器放在交是1983年提出的,主要用于AC一DC开关型电流输人端这边,因此很难检测作为输人的电网交源和电机驱动,该电路存在两个Boost变换器,流电压和电感器上的电流。PFC电路中存在的各自在翰人电压的半个周期内工作,其功率传递检测电压和电流的问题与设计人员选择的控制策每次只经过两个半导体器件。当输人电流为正略有关。对于常规的升压PFC电路,最常用的是时,二极管D,、开关5、电感L起着Boost变换器平均电流控制和峰值电流控制,但它们都是使用的功能,同时开关几及其体内二极管处于反向导模拟乘法器的技术,如果采用此方法需要使用某通续流状态;当输人电流为负时,二极管Dz、开关种类型的输人电压检测电路和电感器的电流检测岛、电感L起着Boost变换器的功能,而开关5电路。在无桥式电路中,检测电压和检测电流是及其体内二极管处于反向导通续流状态[7]. V,很复杂的,但是,在选用了无桥式整流电路的情况为高功率因数整流器的输出电压。下,单周期(OCC)控制技术却很有优势。(ACC使 图1中,电路的输人端没有二极管组成的桥用输出电压和电感器中的电流峰值来计算前后衔式整流电路,而是在交流输人端有2个升压电感接的每个周期的占空比,所以,在使用OCC方法 33
万方数据电气传动2007年第37慈第9翔基于TR115。的无桥Boost高功率因教整流器的研究时,需要的所有信息是从直流母线电压和电流那里得到的,不需要检侧交流电网的电压,从而提高了效率和功率密度,也最大限度地提高了功率因数。2.2基于单周期控制的PFC芯片IR1150 IR115。内部结构框图如图1所示,控制环路包括一个外部的电压环和一个内部的电流环。输出电压通过分压电阻接人脚6(VFB,电压环误差放大器反向愉人端),该引脚内部接人电压误差放大器U、反向输入端,反馈电压通过与Vas比较后得到控制电压V..呱一路与脚3 (ISNS)电流检测端输人信号经过运算得到V,(t),另一路经过误差放大器构成的带有复位开关的积分器得到三角波认(t)。之后V, (t)与叭(t)接人比较器COMP,通过二者的比较即可确定占空比D, 电流环路和电压环路结合的结果,使AC输入平均电流(即经输人高频旁路电容器和EMI滤波器后的低频电流)与AC输人电压成正比,并且呈正弦波,与输人电压保持同相位,从而产生几乎等于1的功率因数。 一个周期内的工作波形如图2所示。在t,时刻,时钟CLK产生的脉冲将RS触发器置位,Q端输出高电平,通过驱动电路开通开关管,Q端为低电平,积分器工作,三角波叭 (t)开始上升,直到t:时刻叭(t)达到V, (t)的幅值,比较器COMP翻转输出高电平,将RS触发器复位,Q端输出低电平,开关管关断。直到下一个周期初始(:3时刻)又开始重复上述过程。由上可知,开关管占空比D是由V, (t)与Vz(t)比较所确定的[,1。V, (t)既反映了电感电流的大小,同时又实现了每周期的电流峰值限制。
模干扰的唯一寄生电容是MOSFET晶体管的漏极与地之间的寄生电容。对于无桥式的功率因数校正电路,其输出相对于交流输人端来讲是浮动的,因此就有多个寄生电容在MOSFET晶体管漏极和地之间以及地与输出端之间导致共模干扰,在这种情况下,共模干扰比传统PFC电路的共模干扰更加严重。为了解决这个问题,可以在无桥式PFC电路中增加两只电容器C, ,认,如图1所示,在轴人交流电网与辘出电压的地之间形成一个高频通路。 虽然IR1150的驱动能力很强,可以提供最大1.5 A的门极快速驱动。但是,高速驱动脉冲也带来了比较大的EMI问题。为此,可以适当的在MOSFET门极添加驱动电阻以减缓驱动脉冲的d订de,可以有效降低变换器产生的开关噪声,从而对前级的EMI滤波器的要求也相应降低。同时还应选择快恢复二极管作为该电路的升压二极管,以减小二极管反向恢复所引起的传导和辐射千扰。 由于PFC电路的脉宽占空比是不断变化的,
所以引起的开关噪声比恒定脉宽的变换器要大。芯片供电脚与地之间的藕合电容必须尽量靠近芯片,使芯片的供电具有良好的抗躁能力。藕合电容的选取与开关频率、MOSFET的输入电容和接人MOSFET门极的电阻有关系,一般来说470 nF的无极电容就可满足要求。2.4电流检测方案 通常有两种电流传感检测方法,即在变换器接地线返回端串联一个检测电阻器或用两个电流互感器。检测电阻是花费最小的方法. 检测电流的电阻器决定了电流软过载的数值,输人电流就是限制在这个数值上,而这时输出电压将下降。最坏的情形是在电网电压低时而电流为最大,而且转换器的升压系数又比较高。电流检测电阻器的数值必须设计成这样:来自电网的输人电压为最低、负载为最大时,转换器能够维持输出电压。 可以这样来确定电流检侧电阻器的数值,计算检测电流的电阻器两端用于设定输人电压为最低时的“软”电流极限所需要的电压,然后,按电感器中的最大峰值电流,计算电流检测电阻器的数值。电阻器中的功率损耗可以按输人电压为最小时,输人有效值电流为最大的情形来计算。同时还要妥善地遵守降额使用的基本原则。种以v.(t)v:(’) 圈2单周期控制的工作波形2.3 EMI分析与设计 电磁干扰(EMI)的特性一般与功率级的结构有关。对于传统的功率因数校正器而言,输出的地总是通过桥式整流器与输人电网相连,引起共 34