天然气水合物储运技术综述

天然气水合物储运技术综述
天然气水合物储运技术综述

天然气水合物储运技术综述

【摘要】在能源危机日益严峻的21世纪,天然气水合物被公认为是具有良好前景的重要后续能源。其储运技术在近年来也得到了大力的发展。本文介绍了天然气水合物的特性、目前天然气主要的储运方式以及国内外水合物储运技术的应用前景。

【关键词】天然气水合物技术

天然气水合物(natural gas hydrate,简称ngh),又称笼形包合物(c1athrate),是在一定条件(合适的温度、压力、气体饱和度、水的盐度、ph值等)下由水和天然气组成的类冰的、非化学计量的、笼形结晶化合物。可用m·nh2o来表示,m为气体分子,n

为水分子数。对含甲烷超过99%的天然气水合物通常称为甲烷水合物(methane hydrate)。天然气水合物多呈白色或浅灰色晶体,外貌类似冰雪,可以像酒精块一样被点燃,故也有人叫它为“可燃冰”、“气冰”或“固体瓦斯”[1]。由于天然气水合物储量巨大,因此在在能源危机日益严峻的21世纪,天然气水合物被公认为是具有良好前景的重要后续能源。

1 天然气水合物

电力科技论文电力电子技术论文:现代电力电子技术应用的探讨

电力科技论文电力电子技术论文: 现代电力电子技术应用的探讨 摘要:随着电力电子、计算机技术的迅速发展,交流调速取代直流调速已成为发展趋势。变频调速以其优异的调速和启、制动性能被国内外公认为是最有发展前途的调速方式。变频技术是交流调速的核心技术,电力电子和计算机技术又是变频技术的核心,而电力电子器件是电力电子技术的基础。电力电子技术是近几年迅速发展的一种高新技术,广泛应用于机电一体化、电机传动、航空航天等领域,现已成为各国竞相发展的一种高新技术。 关键词:电力电子;技术;发展;应用 1电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 2现代电力电子的应用领域 2.1计算机高效率绿色电源 高速发展的计算机技术带领人类进入了信息社会,同时也促进了

电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领域。 2.2通信用高频开关电源 通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V 的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。 因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。 2.3直流-直流(DC/DC)变换器

天然气水合物开采技术对比与展望

Open Journal of Nature Science 自然科学, 2019, 7(5), 398-405 Published Online September 2019 in Hans. https://www.360docs.net/doc/c26963282.html,/journal/ojns https://https://www.360docs.net/doc/c26963282.html,/10.12677/ojns.2019.75049 Comparison and Prospect of Natural Gas Hydrate Exploitation Technology Tong Jia, Xinyan Wang, Yijie Shang Department of Roommate Engineering, Yanshan University, Qinhuangdao Hebei Received: Aug. 26th, 2019; accepted: Sep. 10th, 2019; published: Sep. 17th, 2019 Abstract Natural gas hydrate is a new type of clean energy, and has huge reserves in the seabed permafrost. It is of great significance to alleviate the energy crisis facing mankind and comply with the trend of world green development. Therefore, the formation and exploitation mechanism of natural gas hydrate have attracted worldwide attention. Up to now, only Mesoyaha gas field in Russia has been commercially exploited for gas hydrate, which indicates that the exploitation technology of gas hydrate still needs further development. In this paper, the advantages and disadvantages of several successful small-scale trial production methods are introduced and compared. Keywords Natural Gas Hydrate, Mining Technology, Comparison of Mining Methods 天然气水合物开采技术对比与展望 贾童,王鑫炎,商一杰 燕山大学石油工程系,河北秦皇岛 收稿日期:2019年8月26日;录用日期:2019年9月10日;发布日期:2019年9月17日 摘要 天然气水合物是一种新型清洁能源,且在海底冻土层储量巨大,对于缓解人类面临的能源危机以及顺应世界绿色发展潮流有重要意义,因此其形成和开采机理受世界广泛关注。截止到现在天然气水合物实现商采仅有俄罗斯麦索亚哈气田,这说明天然气水合物的开采技术仍需进一步发展。本文介绍了目前小规模试采成功的几种方法的优缺点及对比,以及对未来技术的发展做出展望。

天然气水合物典型特征综述

作者:樊浩 单位:中国石油辽河油田海南油气勘探分公司124010 作者简介:樊浩(1979-),男,湖北潜江市人,硕士,中级工程师,现从事海洋油气勘探。标题:天然气水合物典型特征综述 摘要:概述国内外天然气水合调查研究的勘探进展情况,详细地介绍判识天然气水合物的地球物理和地球化学特征。 关键词:天然气水合物;现状;特征 0 引言 天然气水合物, 也称“气体水合物”, 是由天然气与水分子在高压、低温条件下形成的一种固态结晶物质。由于天然气中80%~99.9%的成分是甲烷, 故也有人将天然气水合物称为甲烷水合物。天然气水合物多呈白色或浅灰色晶体, 外貌似冰状, 易点燃, 故也称其为“可燃冰”。在天然气水合物晶体化学结构中, 水分子构成笼型多面体格架, 以甲烷为主的气体分子包裹于其中。这是一种新型的潜在能源, 全球资源量达2.1×1015m3, 是煤炭、石油和天然气资源总量的两倍,具有巨大的能源潜力。因此, 世界各国尤其是各发达国家和能源短缺国家均高度重视天然气水合物的调查研究、开发和利用研究。 1 国内外天然气水合物勘探现状 1.1国外天然气水合物勘探历史及现状 天然产出的水合物矿藏首次在1965年发现于俄罗斯西西伯利亚永久冻土带麦索亚哈油气田。1972—1974年,美国、加拿大也在阿拉斯加、马更些三角洲冻土带的油气田区发现了大规模的水合物矿藏。同期,美国科学家在布莱克海岭所进行的地震探测中发现了“拟海底反射层(BSR)”。1979年,国际深海钻探计划(DSDP)第66、67航次在中美洲海槽危地马拉的钻孔岩芯中首次发现了海底水合物。此后,水合物的研究便成为DSDP和后续的大洋钻探计划(ODP)的一项重要任务,并相继在布莱克海岭、墨西哥湾、秘鲁—智利海沟、日本海东北部奥尻脊、南海海槽、北美洲西部近海—喀斯喀迪亚陆缘等地发现了BSR或水合物。德国在20世纪80年代中后期以联邦地学与资源研究中心、海洋地学研究中心为首的一些单位,结合大陆边缘等研究项目,开展了水合物的地震地球物理、气体地球化学调查。在各国科学家的努力下,海底水合物物化探异常或矿点的发现与日俱增,迄今已达80处。从1995年开始,日本、印度、美国、德国先后投巨资,实施了大规模的研究发展计划,韩国、俄国、加拿大、法国、英国、挪威、比利时、澳大利亚等国也正在制订计划或积极调查中。 1.2国内天然气水合物勘探历史及现状 与国外的发展历程相似, 中国天然气水合物也起始于实验室研究, 然后再扩展到资源调查领域。中国在1999年正式实施试验性调查前还经历了一段短暂的预研究阶段, 中国大洋矿产资源研究开发协会于1995年设立了“西太平洋气体水合物找矿前景与方法的调研”课题, 这是中国天然气水合物资源领域的第一个调研课题, 中国地质科学院矿产资源研究所等单位就天然气水合物在世界各大洋的分布特征及找矿方法进行了分析和总结, 并对西太平洋的找矿远景进行了初步评价。随后原地质矿产部于1997年设立了“中国海域天然气水合物勘测研究调研”课题, 国家863计划820主题也于1998年设立了“海底气体水合物资源勘查的关键技术”课题, 中国地质科学院矿产资源研究所、广州海洋地质调查局、中国科学院地质与地球物理研究所等单位对中国近海天然气水合物的成矿条件、调查方法、远景预测等方面进行了前期预研究, 为中国开展天然气水合物调查做好了资料和技术准备。 2 识别天然气水合物的标志特征 2.1地球物理标志 2.1.1 海底模拟反射层( BSR )来自水合物稳定带底面的反射也大致与海底平行,通常称为

电力电子技术课程综述.doc

HefeiUniversity 合肥学院电力电子技术课程综述 系别:电子信息及电气工程系 专业:自动化 班级: 姓名: 学号:

目录 摘要: (3) 绪论 (4) 1.1电力电子技术简介: (4) 1.2电力电子技术的应用: (4) 1.3电力电子技术的重要作用: (5) 1.4电力电子技术的发展 (5) 本课程简介 (6) 2.1电力电子器件: (6) 2.1.1根据开关器件是否可控分类 (6) 2.1.2 根据门极)驱动信号的不同 (6) 2.1.3 根据载流子参与导电情况之不同,开关器件又可分为单极型器件、双极型器 件和复合型器件。 (6) 2.2 DC-DC变换器 (7) 2.2.1主要内容: (7) 2.2.2直流-直流变换器的控制 (7) 2.3 DC-AC变换器(无源逆变电路) (8) 2.3.1电压型变换器 (8) 2.3.2电流型变换器 (8) 2.3.3脉宽调制(PWM)变换器 (9) 2.4 AC-DC变换器(整流和有源逆变电路) (9) 2.4.1简介 (9) 2.4.2工作原理 (9) 2.5 AC-AC变换器 (10) 2.5.1 简介 (10) 2.5.2 分类 (10) 2.6 软开关变换器 (10) 2.6.1分类 (10) 2.6.2 重点 (10) 总结 (11) 参考文献 (11)

摘要:电力电子技术是在电子、电力与控制技术上发展起来的一门新兴交 叉学科,被国际电工委员会(IEC)命名为电力电子学(Power Electronics)或称为电力电子技术。近20年来,电力电子技术已渗透到国民经济各领域,并取得了迅速的发展。作为电气工程及其自动化、工业自动化或相关专业的一门重要基础课,电力电子技术课程讲述了电力电子器件、电力电子电路及变流技术的基本理论、基本概念和基本分析方法,为后续专业课程的学习和电力电子技术的研究与应用打下良好的基础。 关键词:电力电子技术控制技术自动化电力电子器件 Abstract: Power electronic technology is in Electronics, electric Power and control technology developed on an emerging interdisciplinary, is the international electrotechnical commission (IEC) named Power Electronics (Power Electronics) or called Power electronic technology. Nearly 20 years, power electronic technology has penetrated into every field of national economy, and have achieved rapid development. As electrical engineering and automation, industrial automation or related professional one important courses, power electronic technology course about power electronics device, power electronic circuits, the basic theory of converter technology, the basic concept and basic analysis for subsequent specialized course of study and power electronic technology research and application lay a good foundation. Keywords:Power electronic technology control technology automation power electronics device

交流单相在线式不间断电源【文献综述】

毕业设计文献综述 电气工程及其自动化 交流单相在线式不间断电源 随着社会的发展,人类对电能的需求正日益增加,同时对电能质量以及供电安全性的要求也越来越高。现代社会中,电能是一种使用最为广泛的能源,其应用程度是衡量一个国家发展水平的重要标志之一。在银行、证券、通信、工业自动化生产线、办公自动化、医疗、甚至物业管理等各行业中,供电故障将有可能带来巨大的经济损失。特别是随着Internet高速发展和信息化、网络化建设步伐的加快,数据安全成为各行业普遍关注的问题,供电故障对数据的安全性无疑是致命的。使用不间断电源(UPS, Uninterruptible Power System),确保关键用电设备的安全性是解决上述问题的最重要的方法之一。 最初的UPS电源是在二十世纪六十年代出现的靠电动机所带飞轮惯性提输出电源的质量和提供后备供电时间(一般不超过5秒);然后出现了以蓄电池组供电给直流电动机带交流发电机提供后备电源的供电系统,这种方式供电效率较低再后来是靠内燃机提供后备供电的UPS电源,这种UPS设备庞大笨重、操作不够灵活、而且效率低、噪声大。这些都是动态方式的UPS电源。 随着电力电子学的发展,可实现大功率的电能转换,于是出现了静态UPS,这种UPS 具有没有振动、噪音低、体积小、控制灵活、效率高等优点,现代UPS基本上都是静止型的。随着电力电子技术微电子技术的飞速发展,UPS技术也正在朝着网络化、智能化、自动化、远程监控化和数字化的方向发展。 (1)、UPS的网络化 网络时代的UPS产品已经由独立的外设产品发展成为整个计算机和网络系统不可分割的一部分,除了要求UPS产品可方便地接入网络和计算机,有些还要要求其能够实现与网络和计算机间的双向数据通讯。为实现网络连接,目前大多数的UPS产品都提供了RS.232,RS-485通信接口,对于要求能执行计算机网络控制管理功能的UPS来说,还配置了SNMP(silIIpIe Network Management Protoc01),简单网络管理协议卡,实现了UPS 设备接入网络和计算机系统中。 (2)、UPS的智能化

生物大分子分离技术综述

生物大分子分离技术综述 摘要:生物大分子包括核酸DNA和RNA、多糖、酶、蛋白质以及多肽等。生物大分子分离技术是生物研究中的核心技术之一,当前医学,药学及生命科学学科之间的交叉渗透为大分子分离技术的发展提供了更多的契机。本文对以沉淀、透析、超滤和溶剂萃取为代表的传统分离技术, 以及色谱, 电泳等现代分离技术的发展概况、方法、特点及应用进行了综述。 关键字:分离技术生物大分子 1前言 生命科学的发展给生物大分子的分离技术提出了新的要求。各种生化、分子研究要求提取分离高纯度,结构完整和具有生物活性的活性的生物大分子样品,这就使得分离技术在各项研究中起着至关重要的作用。对生物大分子分离技术的研究也就随之产生。同时,随着各学科之间的交叉渗透,纳米材料、计算机自动化等技术的发展也为生物大分子技术的发展提供了更多的空间。 生物大分子的制备具有如下特点:生物样品的组成极其复杂,许多生物大分子在生物样品中的含量极微,分离纯化的步骤繁多,耗时长;许多生物大分子在分离过程中就非常容易失活,因此分离过程中如何保证生物大分子的活性,也是提取制备的困难之处;生物大分子的制备几乎都是在溶液中进行的,温度、PH值、离子强度等各种参数对溶液中各种组成的综合影响,很难准确估计和判断。这些都要求生物大分子的分离技术以此为依据,突破这些难点,优化分离程序以获得符合要求的生物大分子试剂。 2传统分离技术 被广泛应用传统的生物大分子分离方法有透析、溶剂萃取、沉淀和超滤等,它们都是一些较早就建立起来比较完善的的分离方法。 2.1透析法 1861年Thomas Graham发明透析方法,已成为生物化学实验中最简易常用的分离纯化技术之一。在生物大分子的分离过程中,除盐、少量有机溶剂、生物小分子杂质和浓缩样品等都需用到透析。现在,除半透膜的材料更加多样化,透析方式也更加多样。透析法主要是利用小分子物质在溶液中可通过半透膜,而大分子物质不能通过半透膜的性质,达到分离的方法。例如分离和纯化DNA、蛋白质、多肽、多糖等物质时,可用透析法以除去无机盐、单糖、双糖等杂质。反之也可将大分子的杂质留在半透膜内,而将小分子的物质通过半透膜进入膜外溶液中,而加以分离精制:透析是否成功与透析膜的规格关系极大。透析膜的膜孔有大有小,要根据欲分离成分的具体情况而选择。透析膜有动物性膜、火棉胶膜、羊皮纸膜、蛋白质胶膜、玻璃纸膜等。分离时,加入欲透析的样品溶液,悬挂在纯化水容器中,经常更换水加大膜内外溶液浓度压,必要时适当加热,并加以搅拌,以利透析更快。最后,透析是否完全,须对透析膜内溶液进行检测。

电力电子技术论文

电力电子技术在太阳能中的应用 电力电子技术: 电力电子技术是指电力功率半导体器件,这些器件作为开关操作其中的控制和转换。硅控整流器的来临,简称可控硅,导致的新的电力电子领域的应用发展。之前的可控硅引进,汞弧整流器用于电力控制,但这种整流电路工业电子和汞弧整流器的应用范围是有限的一部分。一旦可控硅可用,应用领域蔓延到许多领域,如驱动器,电源供应器,航空 电力电子技术是什么? 电力电子技术是应用电子电路的能量转换。 您可能有更多的比你想象中的电力电子的相互作用。如果你开车,使用一台电脑,用微波炉做饭,对任何类型的电话交谈,听音响,或用电钻钻孔,然后你来接触电力电子技术。由于电力电子,电力运行所需的处理,过滤,并以最高的效率,最小的尺寸和最小重量的东西,你日常使用。在正式条款“,该技术包括使用的电子元件,应用电路理论与设计技术,分析工具,对电子的转换效率,控制和电力空调的发展。” 电力电子技术研究的主要领域包括: ?电子器件(如二极管和晶体管) ?控制和监管 电力转换器的电路设计和各项工作的转换器电路拓扑 ?磁性元件(如变压器和电感器) ?电子电路封装和制造 ?电机控制 电力电子技术的主要任务 电力电子技术,涵盖了整个电力系统领域的应用,这些应用延伸,从几个VA /瓦数兆伏安/兆瓦的功率范围。 电力电子技术的主要任务是控制和电源转换从一种形式到另一种。转换的四种主要形式是: ?整风指交流电压为直流电压的转换, ?直流到交流的转换, ?直流- 直流转换和 ?交流到交流的转换。 ?“电子式电能转换器”是用来指电力电子电路,转换电压和电流从一种形式到另一个任期。 此外,可控硅和其他功率半导体器件被用作静态开关。 电力电子技术的重要性和用途 电力电子技术是随处可见。例如,电力电子技术中使用 ?计算机 ?汽车 ?电信 ?空间系统和卫星 ?电机

天然气水合物的开采方法

天然气水合物的开采方法

天然气水合物的开采方法 天然气水合物的开采是很大的难题。通用的方法是先用各种方法将水合物分解再回收游离的气体。前苏联的麦索亚哈水合物气藏最早进入了试验性工业开采。2001年10月~2002年3月,在加拿大的Mallik气藏钻了一口生产试验井和两口观察井,成功地进行了为期79d的降压开采和加热开采试验。目前提出的天然气水合物的开采方法基本上还是概念性的,这方面的研究尚处于试验阶段。 1 热力开采法 热力开采法又称热激法。是研究最多、最深入的天然气水合物开采技术。其利用钻探技术在天然气水合物稳定层中安装管道,对含天然气水合物的地层进行加热,提高局部储层温度,破坏水合物中的氢链,从而促成天然气水合物分解,再用管道收集析出的天然气f见图1。对含天然气水合物的地层加热有两种途径:一是将蒸汽、热水、热盐水或其他热流体通过地面泵注入水合物地层:二是采用开采重油时使用的火驱法或利用钻柱加热器。

热开采技术的主要缺陷是会造成大量热损失,效率很低,特别是在永久冻土区,即使利用绝热管道.永冻层也会降低传递给储集层的有效热量。蒸汽注入和火驱技术在薄水合物气层的热损失很大,只有在厚段(大于15m)水合物气层热效率较高。注入热水的热损失较蒸汽注人和火驱小,但水合物气层内水的注入率限制了该方法的使用。采用水力压裂工艺可改善水的注入率,但由于连通效应,又要产生较低的传质效率。 研究表明,电磁加热法是一种比常规加热方法更为有效的方法 1,其有效性已在开采重油方面得到了显示。此法是在垂直(或水平)井中沿井的延伸方向,在紧邻水合物带的上下(或水合物层内)放入不同的电极,再通以交变电流使其生热并直接对储层进行加热。储层受热后压力低.通过膨胀产生气体。此外,电磁热还很好地降低了流体的黏度.促进了气体的流动。其中,最有效的电磁加热法当属微波加热。因为天然气水合物对微波有一定的吸收作用。在微波的辐射下会产生热效应而加快天然气水合物的分解。使用微波加热法时可直接将微波发生器置于井下,利用仪器自身重力使发生器紧贴水合物层。同时发生器可附加驱动装置,使其在井下自由移动。此方法适于各类天然气水合物的开采。 2 降压法 降压法是通过降低压力破坏天然气水合物稳定状态,促使其分解。其最大的特点是不需要昂贵的连续激发,仅通过调节天然气的提取速度就可控制储层压力,进而控制水合物分解的效果。降压法一般是通过降低水合物层之下的游离得不稳定而分解见图2。也可以通过采取矿层中流体的方法来降低水合物矿层的层压。实际上,如果天然气水合物气藏与常规天然气藏相邻,开采水合物层之下的游离气是降低储层压力的一

混合动力电动汽车中电力电子技术应用综述

混合动力电动汽车中电力电子技术应用综述 1 引言 电力电子技术是研究应用电力半导体器件实现电能变换和控制的学科,它是一门由电子、电力半导体器件和控制三者相互交叉而出现的新兴边缘学科。它研究的内容非常广泛,主要包括电力半导体器件、磁性材料、电力电子电路、控制集成电路以及由其组成的电力变换装置。目前,电力电子学研究的主要方向是[1>:(1)电力半导体器件的设计、测试、模型分析、工艺及仿真等; (2)电力开关变换器的电路拓扑、建模、仿真、控制和应用; (3)电力逆变技术及其在电气传动、电力系统等工业领域中的应用等。 电动汽车(EV)作为清洁、高效和可持续发展的交通工具,既对改善空气质量、保护环境具有重大意义,又对日益严重的石油危机提供了解决方法;同时,电动汽车作为电力电子技术的一个新的应用领域,涵盖了DC/DC和DC/AC的全部变换,是实用价值非常高的运用领域[2>。 2 混合动力电动汽车简介 当前世界汽车产业正处于技术革命和产业大调整的发展时期,安全、环保、节能和智能化成为汽车界共同关心的重大课题。为了使人类社会和汽车工业持续发展,世界各国尤其是发达国家和部分发展中国家都在研究各种新技术来改善汽车和环境的协调性。 电动汽车作为21世纪汽车工业改造和发展的主要方向,目前已从实验室开发试验阶段过渡到商品性试生产阶段,世界上许多知名汽车厂家都推出了具有高科技水平的安全或环保型概念车,目的是为了引导世界汽车技术的潮流。 2.1 各种类型电动汽车特点及其发展 根据所使用的动力源不同,电动汽车大致可分为三类:蓄电池电动汽车或纯电动汽车(Battery Electric Vehicle)、以氢气为能源的燃料电池电动汽车(Fuel Cell Electric Vehicle)和混合动力电动汽车(Hybrid Electric Vehicle)。 纯电动汽车是单独依靠蓄电池供电的,但目前动力电池的性能和价格还没有取得重大突破,因此,纯电动汽车的发展没有达到预期的目的; 燃料电池电动汽车具有能量转化率高、不污染环境、使用寿命长等不可比拟的优势。但是由于目前燃料电池技术和研究还没有取得重大突破,燃料电池电动汽车的发展也受到了限制; 混合动力电动汽车是同时采用了电动机和发动机作为其动力装置,通过先进的控制系统使两种动力装置有机协调配合,实现最佳能量分配,达到低能耗、低污染和高度自动化的新型汽车。自1995年以来,世界各大汽车生产商已将研究的重点转向了混合动力电动汽车的研究和开发,日本、美国和德国的大型汽车公司均开发了包括轿车、面包车、货车在内的混合动力电动汽车。 以作为混合动力电动汽车研发前沿的丰田汽车公司为例,所开发的混合动力电动汽车已达到实用化水平,自1997年所推出的世界上第一款批量生产的混合动力电动汽车Prius开始,其后又在2002年推出了混合动力面包车,该车混合动力系统采用了世纪首次批量生产的电动四轮驱动及四轮驱动力/制动力综合控制系统。2003年,丰田又推出了新一代Prius,也被称为“新时代丰田混合动力系统统——THS II”(见图1),节能效果可达到100km油耗不足3L。从2004年开始,丰田公司向欧洲市场推出了一款新的Lexus RX型豪

PLC电梯控制系统文献综述

毕业设计(论文) 文献综述 设计(论文)题目:四层电梯PLC控制系统设计 学院名称:机械工程学院 专业:机械设计制造及其自动化 学生姓名:学号: 指导教师: 2012年12 月25 日 一、前言 随着我国经济的发展,城市中涌现出越来越多的高层建筑,而与之配套的电梯已成为人们日常生活中不可缺少的工具。同时,由于城市老龄化问题的日益突出,多层建筑同样也有使用电梯的要求。电梯作为现代智能建筑的代步工具,方便了人们的生活、节省了时间和体力,也越来越显示出它的重要作用。电梯质量

的好坏在很大程度上取决于它的控制系统。传统的电梯自动控制系统由继电器——接触器进行控制,其缺点是触点多、接线复杂、故障率高、可靠性差、维修工作量大等。而采用PLC组成的控制系统很好地解决上述问题,它具有工作可靠性高、灵活性和通用性高、编程简单、使用方便、抗干扰能力强等优点,它使电梯运行更加安全、方便。因此,开发设计由PLC组成的控制系统是非常有必要的。 二、电梯的发展历史 人类利用升降工具运输货物、人员的历史非常悠久。早在公元前2600年,埃及人在建造金字塔时就使用了最原始的升降系统,这套系统的基本原理至今仍无变化:即一个平衡物下降的同时,负载平台上升。早期的升降工具基本以人力为动力。1203年,在法国海岸边的一个修道院里安装了一台以驴子为动力的起重机,这才结束了用人力运送重物的历史。英国科学家瓦特发明蒸汽机后,起重机装置开始采用蒸汽为动力。紧随其后,威廉?汤姆逊研制出用液压驱动的升降梯,液压的介质是水。在这些升降梯的基础上,一代又一代富有创新精神的工程师们在不断改进升降梯的技术。然而,一个关键的安全问题始终没有得到解决,那就是一旦升降梯拉升缆绳发生断裂时,负载平台就一定会发生坠毁事故。 生活在继续,科技在发展,电梯也在进步。150年来,电梯的材质由黑白到彩色,样式由直式到斜式,在操纵控制方面更是步步出新——手柄开关操纵、按钮控制、信号控制、集选控制、人机对话等等,多台电梯还出现了并联控制,智能群控;双层轿厢电梯展示出节省井道空间,提升运输能力的优势;变速式自动人行道扶梯的出现大大节省了行人的时间;不同外形——扇形、三角形、半菱形、半圆形、整圆形的观光电梯则使身处其中的乘客的视线不再封闭。如今,以美国奥的斯公司为代表的世界各大著名电梯公司各展风姿,仍在继续进行电梯新品的研发,并不断完善维修和保养服务系统。调频门控、智能远程监控、主机节能、控制柜低噪音耐用、复合钢带环保——一款款集纳了人类在机械、电子、光学等领域最新科研成果的新型电梯竞相问世,冷冰冰的建筑因此散射出人性的光辉,人们的生活因此变得更加美好。 当今世界上最大的电梯生产企业是美国的奥蒂斯电梯公司,其产量约占世界电梯产量的25%。此外,瑞士迅达电梯公司、芬兰柯尼电梯公司及后起之秀的日本日立、三菱公司在国际电梯业也有一定的声誉。 1900年,美国奥蒂斯电梯公司通过代理商Tullock & Co.获得在中国的第1份电梯合同——为提供2台电梯。从此,世界电梯历史上展开了中国的一页。 据统计,中国在用电梯34.6多万台,每年还以约5万~6万台的速度增长。电梯服务中国已有100 多年历史,而中国在用电梯数量的快速增长却发生在改革开放以后,目前中国电梯技术水平已与世界同步。

三种新型分离技术的综述

1引言 国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,决定了分离技术的多样性。按机理划分,可大致分为五类:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术。 2超临界流体萃取技术及其应用 超临界流体萃取是_种以超临界流体代替常规有机溶剂对目标组分进行萃取和分离的新型技术。其原理是利用流体(溶剂)在临界点附近区域(超临界区)内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动来实现分离的。由于二氧化碳具有无毒、不易燃易爆、廉价、临界压力低、易于安全地从混合物中分离出来,所以是最常用的超临界流体。相对于传统提取分离方法(煎煮、醇沉、蒸发浓缩等)具 作者简介:周芙蓉,女,中北大学化工与环境学院研究生有以下优点:萃取效率高、传递速度快、选择性高、提取物较干净、省时、减少有机溶剂及环境污染、适合于挥发油等脂溶性成分的提取分离。 超临界流体萃取技术特点 ⑴由于在临界点附近,流体温度或压力的微小变化会引起溶解能力的极大变化,使萃取后溶剂与溶质容易分离。 ⑵由于超临界流体具有与液体接近的溶解能力,同时又保持了气体所具有的传递性,有利于高效分离的实现。 (3)利用超临界流体可在较低温度下溶解或选择性地提取出相应难挥发的物质,更好地保护热敏性物质。 (4)萃取效率高,萃取时间短。可以省却清除溶剂的程序,彻底解决了工艺繁杂、纯度不够且易残留有害物质等问题。 (5)萃取剂只需再经压缩便可循环使用,可大大降低成本。 (6)超临界流体萃取能耗低,集萃取、蒸馏、分离于_体,工艺简单,操作方便。 (7)超临界流体萃取能与多种分析技术,包括气相色谱、高效液相色谱、质谱等联用,省去了传统方法中蒸馏、浓缩溶剂的步骤。避免样品的损失、降解或污染,因而可以实现自动化。

电力电子技术论文

电力电子技术的应用 班级:电082 陈泽平40850171 【摘要】本文主要介绍了电力电子技术在电力系统、汽车工业、储能领域等方面的应用。 【关键词】电力电子技术应用电力系统汽车工业储能领域 电力电子技术是一门应用于电力领域的电子技术,就是使用电力电子器件对电能进行变换和控制的技术。电力电子技术所变换的“电力”,功率可以达到数百兆瓦甚至吉瓦,也可以小到数瓦甚至毫瓦级。进入21世纪,随着新的理论、新的器件、新的技术的不断涌现,特别 是与微电子(计算机与信息)技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展。以下主要对电力电子技术在电力系统、汽车工业、储能领域等方面的应用作简要介绍。 一.电力电子技术在电力系统中的应用 自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用。 1.在发电环节的应用 大型发电机广泛采用静止励磁控制。静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控

制规律提供了充分发挥作用并产生良好控制效果的有利条件。1 变速恒频励磁广泛应用于水力、风力发电机。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。这种技术就叫变速恒频励磁。 2.在输电环节的应用 在输电环节中应用的技术主要有直流输电(HVDC)和轻犁直流输电(HVDC Light)技术以及柔性交流输电(FACTS)技术,其中柔性交流输电技术应用尤为重要。 3.在配电环节的应用 DFACTS是指应用于配电系统中的灵活交流技术,它是Hingorani于1988年针对配电网中供电质量提出的新概念。 4.在节能环节的运用 通过交负荷电动机的调速技术节电是电动机节电非常重要的一个方面。交流调速在冶金、矿山等部门及社会生活中得到了广泛的应用。 二.电力电子技术在汽车工业中的应用 电力电子技术在汽车工业的应用2,主要包括以下几个方面: 1)利用电子开关替代传统的机械开关以及继电器; 2)无触点点火、燃油电子喷射; 3)电子动力转向、电子自动变速器; 4)对原有的直流电源系统进行改造;

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

智能电网文献综述

智能电网综述 摘要:智能电网是当今世界电力系统发展变革的最新动向,并被认为是21世纪电力系统的重大科技创新和发展趋势。目前,以美国、英国、法国、德国为代表的欧美国家,己经纷纷加入到研究和发展智能电网的行列中来,将智能电网(Smart Grid )作为末来电网发展的远景目标之一,建立一个高效能、低投资、安全可靠、灵活应变的电力系统。具有对用户可靠、经济、清洁、互动的电力供应和增值服务的智能电网是未来电网的发展方向。本文阐述了智能电网的内涵和特点,分析了国内外智能电网的研究进展和我国发展智能电网的条件,对一些现有的研究行进了分析和讨论。 关键词:智能电网;智能化;信息化;节能减排; 1 智能电网的概念 随着一些国家对电网的环境影响、可靠性和服务质量的关注,电网朝着更经济、稳定、安全和灵活的方向发展,因此提出了“智能电网”的概念。智能电网是以通信网络为基础,通过传感和测量技术、电力电子技术、控制方法以及决策支持系统技术,实现电网的可靠、安全、经济、高效、环境友好和高服务质量的目标,其主要特征包括自愈、引导用户、抵御攻击、提供满足用户需求的电能质量、容许各种不同发电形式的接入、电力市场以及资产的优化高效运行。 目前,全世界智能电网的发展还处在起步阶段,没有一个共同的精确定义。对于智能电网,各个国家的定义有所不同。美国能源部在《Grid 2030》中将智能电网定义为:一个完全自动化的电力传输网络,能够监视和控制每个用户和电网节点,保证从电厂到终端用户整个输配电过程中所有节点之间的信息和电能的双向流动。中国物联网校企联盟将智能电网更具体的定义为:智能电网由:智能配电网、智能电能表、智能发电系统、新型储能等系统组成。欧洲技术论坛把智能电网定义为:一个可整合所有连接到电网用户所有行为的电力传输网络,以有效提供持续、经济和安全的电力。而国家电网中国电力科学研究院将智能电网定义为:以物理电网为基础(中国的智能电网是以特高压电网为骨干网架、各电压等级电网协调发展的坚强电网为基础),将现代先进的传感测量技术、通讯技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网。它以充

新型膜分离技术研究进展

新型膜分离技术研究进展 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。 关键词:膜分离;原理;应用;进展 膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。 1膜分离技术的分离原理和特点 1.1纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200-1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技术,是国内外研究的热点。余跃等[1]废水进行了去除COD和脱色的研究。结果表明,纳滤技术可有效地去除印染废水中的色度和COD。 1.2超滤 超滤的截留相对分子质量在1000-100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。徐超等[2]在中试中采用浸没式超滤膜代替传统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果,设备费用降低了。 1.3微滤 微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05-10μm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。微滤分离的实质是利用膜的“筛分”作用来进行的。即:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。 1.4反渗透 反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。学界对于反渗透分离机理的解释主要流行以下理论:溶解一扩散模型、优先吸附一毛细孔流理论、氢键理论。 自从上个世纪90年代邓宇发明了非加压吸附渗透海水淡化法以来,反渗透用于海水淡化的研究得到了极大发展[3]。在重金属废水处理领域,美国芝加哥API工艺公司采用B一9芳香族聚酞胺中空纤维膜组件处理镀镍漂洗水,废水中Niz+的分离率为92%[4]。 1.5电驱动膜

电力电子技术及应用论文

电力电子技术及应用 引言: 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代 电气传动技术舞台。从工程应用的角度看,无论是电力、机械、矿冶、交通、石油化工、轻纺等传统产业,还是通信、激光、机器人、环保、原子能、航天等高科技产业,都迫切需要提供高质量的电能,特别是要求节能。而电力电子则是实 现将各种能源高效率地变换成高质量电能、节能、环保和提高人民生活质量的 重要手段,它已经成为弱电控制与强电运行之间,信息技术与先进制造技术之间,传统产业实现自动化、智能化、节能化、机电一体化的桥梁。电力电子的突出 特点是高效、节能、省材,所以电力电子已成为我国国民经济的重要基础技术, 是现代科学、工业和国防的重要支撑技术。因此,无论上述诸多高技术应用领域,还是各种传统产业,乃至照明、家电等量大面广的,与人民日常生活密切相关的 应用领域,电力电子产品已无所不在。 电力电子技术概述 电力电子技术是一门新兴的应用与电力领域的电子技术,就是使用电力电 子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子 技术所变换的“电力”功率可大到数百MW甚至GW,也可小至数W甚至1W以下,和以信息处理为主的信息电子技术不同,电力电子技术主要用于电力变换。

电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。电力电子技术现已成为现代电气工程与自动化专业 的一门专业基础课,在培养该专业人才中占有重要地位。 电力电子学是由电力学、电子学和控制理论三个学科交叉二形成的。其概 念的基础就是由于晶闸管和晶闸管变流技术的发展而确立的。电力电子技术的 应用范围及其广泛,比如优化电能使用,通过电力电子技术对电能的处理,使 电能的使用达到合理、高效和节约,实现了电能使用最佳化;改造传统产业和 发展机电一体化等新兴产业,电力电子技术是弱电控制强电的媒体,是机电设 备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了 条件,成为发挥计算机作用的保证和基础;电力电子技术高频化和变频技术的 发展,将是机电设备突破工频传统,向高频化方向发展,实现最佳工作效率, 将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何 基准信号,实现无噪音且具有全新的功能和用途;电力电子智能化的发展,在 一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展可能引起电子技术的重大改革。 电力电子技术的内容可分为: 1、电力电子器件; 2、相控型整流器和有源逆变电路; 3、直流电压变换电路; 4、交流电压变换电路; 5、电力电子应用技术。 电力电子器件 常用电力电子器件的基本结构、工作原理、外特性、主要参数、开关特性、安 全工作区。 1、根据开关器件是否可控分类

相关文档
最新文档