matlab混沌算法

合集下载

用MATLAB实现基于混沌的图像置乱加密算法

用MATLAB实现基于混沌的图像置乱加密算法

用MATLAB实现基于混沌的图像置乱加密算法由于图像文件的加密有其自身的要求,传统的文字加密方法不适合图像文件加密。

为此,我们在混沌映射加密算法的基础上,提出了一种利用Logistic混沌序列对图像像素点置乱实现加密的算法,那么,我们今天借助MATLAB软件平台,看看基于混沌的图像置乱加密算法如何实现。

一、基于混沌的图像置乱加密算法本文提出的基于混沌的图像置乱加密算法示意图如图1所示。

加密算法如下:首先,数字图像B大小为M×N(M是图像B的行像素数,N是图像B的列像素数),将A的第j行连接到j-1行后面(j=2,3,A,M),形成长度为M×N的序列C。

其次,用Logistic混沌映射产生一个长度为的混沌序列{k1,k2,A,kM×N},并构造等差序列D:{1,2,3,A,M×N-1,M×N}。

再次,将所产生的混沌序列{k1,k2,A,kM×N}的M×N个值由小到大排序,形成有序序列{k1′,k2′,A’,kM×N’},确定序列{k1,k2,A,kM×N}中的每个ki在有序序列{k1′,k2′,A’,kM×N’}中的编号,形成置换地址集合{t1,t2,A,tM×N},其中ti为集合{1,2,A,M×N}中的一个;按置换地址集合{t1,t2,A,tM×N}对序列C进行置换,将其第i个像素置换至第ti列,i=1,2,A,M×N,得到C’。

将等差序列D做相同置换,得到D’。

最后,B’是一个M×N的矩阵,B’(i ,j)=C’((i-1)×M+j),其中i=1,2,A,M;j=i=1,2,A,N,则B’就是加密后的图像文件。

解密算法与加密算法相似,不同之处在于第3步中,以序列C’代替随机序列{k1,k2,A,kM×N},即可实现图像的解密。

混沌映射MATLAB仿真

混沌映射MATLAB仿真

混沌映射(序列)matlab算法“小全”:Logistic、Henon、帐篷、kent(含混沌二值图像生成函数)1.Logistic(罗切斯特)映射变换核:x n+1=ax n(1−x n)绘图程序:n=64;key=0.512;an=linspace(3.1,3.99,400);holdon;boxon;axis([min(an),max(an),-1,2]);N=n^2;xn=zeros(1,N);for a=an;x=key;for k=1:20;x=a*x*(1-x);%产生公式end;for k=1:N;x=a*x*(1-x);xn(k)=x;b(k,1)=x;%一维矩阵记录迭代结果end;plot(a*ones(1,N),xn,'k.','markersize',1);end;%figure;%imhist(b)实用混沌加密函数:functionichao_ans=ichaos_logistic(varargin)%logistic序列生成算法%函数名:%logistic混沌序列生成函数%参数:%(n,key),n为矩阵阶数,key为迭代初始值。

%(n),n为矩阵阶数,key=0.600。

%()或(n,key,...),n=64,key=0.600。

Switch nargin;case1;n=varargin{1};key=0.600;case2;n=varargin{1};key=varargin{2};otherwisekey=0.600;n=64;endN=n^2;xn=zeros(1,N);a=4;x=key;for k=1:20;x=a*x*(1-x);%产生公式end;for k=1:N;x=a*x*(1-x);xn(k)=x;%一维矩阵记录迭代结果end;c=reshape(xn,n,n);%一维矩阵转换二维矩阵d=zeros(n,n);%二维混沌矩阵调制For a1=1:n;For a2=1:n;ifc(a1,a2)>=0.5;d(a1,a2)=1;else d(a1,a2)=0;end;end;end;%figure;title('logistic映射');%imshow(d);ichao_ans=d;2.Henon(埃农)映射+1=yn+1−ax变换核:{xynn2n+1=bxn绘图程序:a∈(0,1.4)0.2<b≤0.314b=0.3;N=400;an=ones(1,N);xn=zeros(1,N);hold on;boxon;x=0;y=0;for a=0:0.001:1.4for k=1:N;xm=x;ym=y;x=ym+1-a*xm.*xm;y=b*xm;endxn(1)=x;for n=2:N;xm=x;ym=y;x=ym+1-a*xm.*xm;y=b*xm;xn(n)=x;endplot(an*a,xn,'k.','markersize',1);endxlim([0,a]);实用混沌加密函数:functionichao_ans=ichaos_henon(varargin)%埃农(Henon)映射%0.2<key<0.314;理想范围(0.25—0.314)。

matlab混沌,分形

matlab混沌,分形

matlab混沌,分形对于函数f(x)=λsin(πx),λ∈(0,1],使⽤matlab计算随着λ逐渐增⼤,迭代x=f(x)的值,代码如下:function y=diedai(f,a,x1)N=32;y=zeros(N,1);for i=1:1e4x2=f(a,x1);x1=x2;y(mod(i,N)+1)=x2;endend%f=@(a,x)a*x*(1-x);f=@(a,x)a*sin(pi*x);%x0=0.1;hold on;for x0=-1:0.05:1for a=0:0.01:1y=diedai(f,a,x0);for count=1:32plot(a,y(count),'k.');hold on;endendend得到的图像如下:其中横轴为λ,纵轴为x可以看到随着λ的逐渐增⼤,出现了倍周期分叉的情况。

由图中可以看出第⼀个分叉值⼤约在0.3附近,第⼆个在0.73到0.75之间,第三个在0.8到0.85之间,混沌⼤约出现在0.86附近。

接下来编写代码计算分叉值,代码如下:format long;x0=0.1;for a=0.3182:0.0000001:0.3183y=diedai(f,a,x0);if max(y)>0.001disp(a);break;endend得到第⼀个分叉值⼤约为0.3182298format long;x0=0.1;for a=0.7199:0.000001:0.72y=diedai(f,a,x0);if max(y)-min(y)>0.001disp(a);break;endend得到第⼆个分叉值⼤约为0.719911format long;x0=0.1;for a=0.8332:0.000001:0.8333y=diedai(f,a,x0);if abs(y(32)-y(30))>0.001disp(a);break;endend得到第三个分叉值⼤约为0.833267利⽤Feigenbaum常数估计第三个分叉值,得到0.805939分形图周常青画mandelbrot分形图,主要使⽤了三个函数:iter=mandelbrot1(x0,y0,maxIter),⽤来计算迭代后是否收敛,⽅程z=z2+z0。

基于Matlab的混沌特性分析

基于Matlab的混沌特性分析

基于Matlab的混沌特性分析混沌理论是20世纪60年代提出的一种新的动力学理论,它描述了非线性动力系统中表现出来的复杂、不可预测的行为。

混沌特性分析是利用数学工具和计算机模拟方法来研究混沌系统的行为和性质。

本文将介绍基于Matlab的混沌特性分析方法。

我们需要了解一些混沌系统的基本概念。

混沌系统是指由一组非线性方程描述的动力学系统,它具有以下特点:初值敏感性、确定性、周期倍增、拓扑混沌等。

在Matlab中,我们可以使用ode45函数来求解混沌系统的微分方程。

ode45是一个常用的数值解微分方程的函数,它可以自动选择合适的步长来保证解的准确性。

接下来,我们可以通过绘制混沌系统的相图来观察系统的演化规律。

相图是指在系统的状态空间中表示系统状态随时间变化的图形。

在Matlab中,我们可以使用plot函数来绘制相图。

除了相图,我们还可以使用混沌系统的Poincaré截面来描述系统的性质。

Poincaré截面是指将系统状态变化的轨迹投影到一个特定的平面上,以观察系统状态的聚集情况。

在Matlab中,我们可以使用scatter函数来绘制Poincaré截面。

我们可以通过计算混沌系统的Lyapunov指数来判断系统的混沌程度。

Lyapunov指数是一种用来衡量系统的初值敏感性的指标,它可以反映系统的混沌性质。

在Matlab中,我们可以使用lyapunov函数来计算Lyapunov指数。

基于Matlab的混沌特性分析方法包括求解微分方程、绘制相图、绘制Poincaré截面、绘制分岔图以及计算Lyapunov指数等步骤。

这些方法可以帮助我们进一步了解混沌系统的行为和性质,为混沌系统的应用提供理论依据。

基于Matlab的混沌特性分析

基于Matlab的混沌特性分析

基于Matlab的混沌特性分析混沌现象是指那些看似无序但又具有确定性的系统行为。

混沌特性分析是指对混沌系统进行一系列统计和数学分析的方法,以揭示其内在的规律和动力学特性。

Matlab是一种强大的数值计算软件,具有丰富的功能和工具箱,适于进行混沌特性分析。

下面将介绍基于Matlab的混沌特性分析的一些常用方法。

Matlab可以用来绘制混沌系统的相图和轨迹图。

通过绘制相图,可以观察到混沌系统的轨迹在相空间中的分布和演化规律,从而揭示出系统的吸引子和稳定周期等特性。

可以使用Matlab中的plot函数来绘制相图和轨迹图。

Matlab可以用来计算混沌系统的Lyapunov指数。

Lyapunov指数是衡量系统对初始条件的敏感程度的指标,它可以用来判断系统是否具有混沌特性。

通过计算系统在相空间中相邻轨道的分离率,可以得到Lyapunov指数的估计值。

在Matlab中,可以使用内置的函数lyapunov来计算Lyapunov指数。

Matlab还可以用来分析混沌系统的频谱特性。

混沌系统的频谱通常具有分形结构,即呈现出分形维度的特征。

通过计算系统的功率谱密度和分形维度,可以揭示混沌系统的频谱特性。

可以使用Matlab中的fft函数来计算功率谱密度,并使用fractal函数来计算分形维度。

Matlab还可以用来分析混沌系统的分岔图和吸引子。

分岔图是研究混沌系统的参数变化对系统行为的影响的重要工具,它可以帮助我们了解系统从周期运动向混沌运动转变的过程。

吸引子是描述混沌系统在相空间中的吸引轨道的几何形状,通过分析吸引子的分维和奇异性等特性,可以揭示混沌系统内在的规律。

可以使用Matlab中的bifurcation函数来绘制分岔图,并使用attractor函数来绘制吸引子。

基于Matlab的混沌特性分析可以帮助我们揭示混沌系统的规律和动力学特性。

通过绘制相图和轨迹图、计算Lyapunov指数、分析频谱特性、绘制分岔图和吸引子等,可以全面而深入地了解混沌系统的行为。

混沌信号的产生 matlab

混沌信号的产生 matlab

混沌信号的产生及其在Matlab中的实现一、混沌信号的概念与特点混沌是一种在确定性系统中表现出的随机、不可预测的行为。

混沌系统具有以下几个显著特征:1. 灵敏依赖于初值:在混沌系统中,微小的初值变化会导致系统行为的巨大变化,这就是所谓的“蝴蝶效应”。

2. 随机性和周期性:混沌系统表现出随机性和周期性的叠加,使得系统的行为呈现出复杂的、看似无序的特征。

3. 分形结构:混沌系统的轨迹具有分形结构,表现出自相似性和自组织性。

二、混沌信号的产生原理混沌信号的产生通常基于非线性动力系统模型,其中最经典的混沌系统包括 Logistic 映射、Henon 映射等。

混沌信号的产生一般遵循以下步骤:1. 选择合适的混沌系统模型,比如 Logistic 映射:$x_{n+1} =rx_n(1-x_n)$。

2. 选择初值和模型参数,并设定迭代次数。

3. 进行迭代计算,得到混沌信号的时域序列。

三、Matlab 中的混沌信号生成Matlab 是一种强大的科学计算软件,提供了丰富的工具箱和函数,使得混沌信号的产生和分析变得非常简单。

在Matlab 中,可以通过以下几种方法产生混沌信号:1. 直接求解微分方程:利用ode45函数求解混沌系统的微分方程,得到混沌时域序列。

2. 迭代计算:利用for循环结构进行模型的迭代计算,得到混沌信号的时域序列。

3. 利用现成的工具箱:Matlab 提供了一些专门用于产生混沌信号的工具箱,比如 ChaosBox。

四、示例代码以下是一个利用 Logistic 映射产生混沌信号的示例代码:```matlabLogistic 映射参数r = 3.9;时域序列长度N = 1000;初值x0 = 0.1;初始化时域序列x = zeros(1, N);x(1) = x0;迭代计算for i = 1:N-1x(i+1) = r * x(i) * (1 - x(i));end绘制混沌信号时域图plot(x);xlabel('时域');ylabel('信号幅值');title('Logistic 映射产生的混沌信号');```五、混沌信号的应用混沌信号作为一种具有随机性和周期性的信号,具有广泛的应用价值,包括但不限于:1. 加密通信:混沌信号可用于加密通信系统中的信息传输,利用混沌的随机特性可以提高数据的安全性。

混沌优化算法matlab

混沌优化算法matlab

混沌优化算法是一种通过利用混沌动态系统的特性来寻找最优解的优化算法。

在MATLAB中,可以使用以下步骤来实现混沌优化算法:1. 定义优化问题的目标函数。

2. 确定变量的边界和初始值。

3. 构建混沌动态系统模型。

可以选择Logistic映射或者其他混沌映射来构建模型。

4. 迭代更新混沌动态系统的状态,直到找到最优解。

以下是一个简单的MATLAB代码示例,用于实现混沌优化算法来求解一个简单的二次函数的最小值:```matlab定义目标函数fun = @(x) x(1)^2 + 3*x(2)^2 - 4*x(1)*x(2) - 5*x(1) - 11*x(2) + 20;确定变量的边界和初始值lb = [-5, -5]; ub = [5, 5];x0 = [0, 0];构建混沌动态系统模型k = 40; 迭代次数mu = 4; 控制参数lambda = log(mu)/k; 李雅普诺夫指数f = @(z) z.^2 - mu.*z + lambda; 混沌映射函数迭代更新混沌动态系统的状态,直到找到最优解x = x0;for i = 1:kz = f(x); 映射到新的状态x = x + z; 更新状态if x(1) < lb(1) || x(1) > ub(1) || x(2) < lb(2) || x(2) > ub(2)break; 越界则停止迭代endend输出最优解disp(['最优解为:[', num2str(x), ']']);disp(['最小值为:', num2str(fun(x))]);```这个例子中,我们使用Logistic映射来构建混沌动态系统模型,并使用控制参数mu=4和迭代次数k=40。

初始值设为x0=[0,0],变量的边界设为lb=[-5, -5]和ub=[5, 5]。

通过迭代更新混沌动态系统的状态,直到找到最优解,并输出最优解和最小值。

Matlab非线性方程与混沌

Matlab非线性方程与混沌
坏了一只蹄铁,折了一匹战马;
折了一匹战马,伤了一位骑士;
伤了一位骑士,输了一场战斗;
输了一场战斗,亡了一个帝国。
马蹄铁上一个钉子是否会丢失,本是初始条件的 十分微小的变化,但其“长期”效应却是一个帝 国存与亡的根本差别。 这就是军事和政治领域中的所谓“蝴蝶效应”。
2. 将参数r取0,0.3,0.6,0.9,1.2,…,3.9的迭代序列
收敛情况放置到同一坐标系中观察其变化
程序
clear;clf; hold on axis([0,4,0,1]);grid for r=0:0.3:3.9
x=[0.1]; for k=2:150
x(k)=r*x(k-1)*(1-x(k-1)); end pause(0.05) for k=101:150
混沌学的任务:就是寻求混沌现象的规律,加以 处理和应用。
60年代混沌学的研究热悄然兴起,渗透到物理学、 化学、生物学、生态学、力学、气象学、经济学、 社会学等诸多领域,成为一门新兴学科。
科学家给混沌下的定义是:混沌是指发生在确定性 系统中的貌似随机的不规则运动,一个确定性理论 描述的系统,其行为却表现为不确定性一不可重复、 不可预测,这就是混沌现象。
经典动力学的传统观点认为:系统的长期行为 对初始条件是不敏感的,即初始条件的微小变化 对未来状态所造成的差别也是很微小的。可混沌 理论向传统观点提出了挑战。混沌理论认为在混 沌系统中,初始条件的十分微小的变化经过不断
放大,对其未来状态会造成极其巨大的差别。
一则西方寓言:
丢失一个钉子,坏了一只蹄铁;
end
参数r的微小变化引起结果巨大的变化
请同学们再次加密r取值进行实验,回答 下面问题
(1)是否由4支分叉为8支,并依次类 推呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档