第三章 代数系统(3)

合集下载

代数系统简介

代数系统简介

代数发展简史一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。

傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。

F. Cajori0、引言数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。

大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。

这三大类数学构成了整个数学的本体与核心。

在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。

在此简要介绍代数学的有关历史发展情况。

“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为“还原”,这里指把负项移到方程另一端“还原”为正项;muqabalah 意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项.在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文译作“algebra”。

阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》.1859年,我国数学家李善兰首次把“algebra”译成“代数”。

第一讲代数系统

第一讲代数系统
θl,则称θl为A中关于运算*的左零元。
右零元:如果有一个元素θr∈A,对于任意的元素 x∈A都有x*θr= θr,则称θr为A中关于运算*的右零元。
零元:如果A中的一个元素θ,它既是左零元,又是 右零元,则称θ为A中关于运算*的零元。 θ* x=x*θ=θ
23
6.1代数结构
【例题10】 设“浅”表示不易褪色的浅色衣服,“深”表示易褪 色的深色衣服,集合S={浅,深},定义S的一个二元 运算“混洗”,记为“ * ”,则*的运算表如下表所示。 求S中关于*运算的幺元和零元。
解答:∪和∩运算是可交换的。 ∀ A,B∈ρ(S),有
A∩(A∪B)=A A∪(A∩B)=A
所以∪和∩满足吸收律。又有
A ∩A=A
A ∪A=A
所以∪和∩满足等幂律。
17
6.1代数结构—代数运算性质
性质六 可约律(消去律)
设*是定义在集合上的一个二元运算,元素a∈A, 如果对于任意x,y ∈A,都有
证明思路:先证el =er=e,再证e的唯一性。
证明:设el 和er分别是A中关于运算*的左幺元和右 幺元,则有
el= el *er= er=e
假设另有幺元e’∈A, 则有e’=e’*e=e,结论得证。
22
6.1代数结构
零元 左零元:设*是定义在集合A上的一个二元运算,如
果有一个元素θl∈A,对于任意的元素x∈A都有θl*x=
问☆是否是可交换的?
10
6.1代数结构—代数运算性质
性质二 结合律
设*是定义在集合A上的一个二元运算,如果对于任意 x,y,z∈A ,都有
x*(y*z)=(x*y)*z
则称该二元运算是可结合的。
【例题6】
设A是一个非空集合,*是A上的一个二元运算,对于任意 a,b ∈A ,有a*b=b,证明运算*是可结合的。

第三章 正规子群和群的同态与同构

第三章 正规子群和群的同态与同构
第三章 正规子群和群的同态与同构
§1群同态与同构的简单性质
(Basic Properties of Homomorphism and Isomorphism of the groups)
一 定义
定义1 设 ( G, ) 和 G, 是两个群,如果存在映射ϕ:G → G满足
( )
ϕ (a b) = ϕ (a) ϕ (b)(∀a, b ∈ G(即ϕ 保运算) )
G ⇒ ϕ ( N ) G;
( 2) N
G ⇒ ϕ −1 ( N ) G
5.子群之积
定理3 若群G的一个正规子群和一个子群之积仍是G的子群, 两个正规子群之积仍是正规子群,也就是说,若H ≤ G , N ≤ G, 则
(1) 若N ( 2 ) 若H
G ⇒ NH ≤ G且N G且N G ⇒ HN
NH , H ∩ N
H
G,进一步,若还有H ∩ N = {e},
则∀h ∈ H , ∀n ∈ N 都有hn = nh
例4 若H ≤ G,那么N ( H ) = {x ∈ G | xH = Hx}叫做H 在G中 的正规化子,试证H N ( H ) ≤ G。

1. 商群的定义
设N 即


G,任取2个陪集aN , bN。则 (aN )(bN ) = a ( Nb) N = abNN = (ab) N, (aN )(bN ) = (ab) N
ϕ
三 循环群的同态象
定理3 设G和G为两个群,且G ∼ G,若G为循环群, 则G也为循环群。
推论2 循环群的商群仍为循环群. 推广 交换群的满同态象仍为交换群;交换群的商群 也是交换群.
ϕ
四 同态映射下两个群的子群之间的关系
引理 设σ :G → G是群同态映射,又H ≤ G,如果H ⊇ Kerϕ, 则

离散数学_第三部分_代数系统部分 - 副本

离散数学_第三部分_代数系统部分 - 副本
1.主要算律
定义 10.3 设为 S 上的二元运算, (1)若对于任意的 x,y∈S 有 xy=yx, 则称运算在 S 上满足交换律. (2)若对于任意的 x,y,z∈S 有 (xy)z=x(yz), 则称运算在 S 上满足结
合律.
(3)若对于任意的 x∈S 有 xx=x, 则称运算在 S 上满足幂等律. 定义 10.4 设和∗为 S 上两个不同的二元运算,
则矩阵加法和乘法都是 Mn(R)上的二元运算.
(6)S 为任意集合,则∪、∩、-、 为 P(S)上的二元运算.
(7)SS 为 S 上的所有函数的集合,则合成运算为 SS 上的二元运算.
2. 一元运算的定义与实例 定义 10.2 设 S 为集合,函数 f:S→S 称为 S 上的一元运算,简称为一元运算. 例
定理 10.1 设为 S 上的二元运算,el 和 er 分别为 S 中关于运算的左和 右单位元,则 el = er = e 为 S 上关于运算的惟一的单位元.
证:el = eler (er 为右单位元) eler = er (el 为左单位元)
所以 el = er, 将这个单位元记作 e.
假设 e也是 S 中的单位元,则有 e = ee = e. 惟一性得证.
(4)设 S={a1,a2,…,an}, aiaj =ai 为 S 上二元运算.
(5)设 Mn(R)表示所有 n 阶(n≥2)实矩阵的集合,即
Mn
(R)


a11 a21 an1
a12 a22
an2


a1n
a2n


ann

aij R, i, j 1,2,..., n
对一元运算, x 的运算结果记作x. 2.表示二元或一元运算的方法---解析公式和运算表

代数系统PPT教学讲义

代数系统PPT教学讲义

例:运算可看作是一个具有输入端与输出端的黑盒
子,图4.1a表示为一元运算而图4.1b则表示为二元
运算.一元运算中对应的是一个输入端与一个输出
端.
输出
输出
二元运算中则对应两个
输入端与一个输出端.
输入
输入
(a)
(b)
图4.1运算是一个黑盒子
10
第4章 代数系统概论
定 义 4.2 代 数 系 统 : 非 空 集 合 S 上 的 K 个 运 算 1, 2,…,k一元或二元运算所构成的封闭系统称为代
练习
设V1=<R,+>, V2=<R,·>,其中R和R分别为实数集与非 零实数集,+ 和 ·分别表示普通加法与乘法.令 f : R→R,f x= ex 则 f 是V1到V2的单同态.
若令g: R →R,gx= ex,则g是V2到V1的 _______
31
第4章 代数系统概论
对三种同态作详细的分析: 1.同构 定理4.3:代数系统A与B同构则系统中的六个性质结 合律、交换律、分配律及单位元、零元、逆元的 存在能双向保持. 2.满同态 定理4.4:代数系统A与B满同态则系统中的六个性质 结合律、交换律、分配律及单位元、零元、逆元 的存在能单向保持.
那么 3∗4 = 3, 0.5∗3 = 0.5
6
运算表
运算表:表示有穷集上的一元和二元运算
aa11 aa22 …… aann
aa11 aa11aa11 aa11aa22 …… aa11aann
aa22 aa22aa11 aa22aa22 …… aa22aann
..
……
..
……
..
……
aann aannaa11 aannaa22 …… aannaann

第三章 正规子群和群的同态与同构

第三章 正规子群和群的同态与同构
⇒ G / N = (G : N ),
由 Lagrange定理,对有限群 G有 G = N (G : N ),
G . 从而有 G / N = N
定理5 (A.L.Cauchy) 设G是一个pn阶有限交换群, 其中p是一个素数,则G有p阶元素,从而有p阶子群. 推论
pq(p,q为互异素数)阶交换群必为循环群.
为素数.
∴ a = n,
从而 G =< a > 为循环群,
由G为单群知n为素数. 练习 设G = Z , N = mZ < G , (1)写出商群的全部元素;(2)商群是否为循环群?
作 业
习题3.2 第91页 2,3,4,5
3.3
群同态基本定理
一、复习 二、 群同态基本定理 三、应用
一、复习
1、正规子群:
结论: 如果 G与G 为各有一个代数运算的 代数系统,
_
且 G ≅ G,则当 G与G 有一个是群时,另一个 一定是群.
_
_
定理2 设ϕ为群G到群G的一个同态映射(不一 定为满射),
_

1) 当 H ≤ G时,有 ϕ ( H ) ≤ G 2)当 H ≤ G 时,有 ϕ −1 ( H ) ≤ G .
_ _ _
乘法)的集合,如果 G ~ G ,则 G 也是一个群 .
_ _ __
注意:定理中的同态映射ϕ 必须是满射. 推论 设ϕ为群 G到群G的一个同态映射,
则群 G的单位元的象是群 G 的单位元; G的元素 a的逆元的象 是 a的象的逆元 ,即a
_ −1 _
_
= (a)−1 或 ϕ (a −1 ) = ϕ (a)−1 .
当ϕ是双射时,称 ϕ为群 G到 G 的一个 同构映射.

离散数学-代数系统


代数系统
环的性质
• 设〈A,+, • 〉是一个环,则对任意的 • a, b,c∈A, 有 (1) a • θ= θ • a= θ(加法的幺元是乘法的零元) (2) a •(-b)=(-a) •b=-(a •b) (3) (-a) •(-b)=a •b (4) a •(b-c)=a •b-a •c (5) (b-c) •a=b •a-c •a 其中, θ是加法幺元,-a是a的加法逆元,并记 a+(-b)为a-b.
拉格朗日定理
• 设〈H,*〉是群〈G,*〉的一个子群, 那么 (1)R={〈a, b〉| a∈G, b∈G, a-1*b∈H} 是G中的一个等价关系;而且由R所确定 的等价类[a]R=aH。 (2) 如果G是有限集,|G|=n, |H|=m, 则 m|n (m整除n)。
代数系统
具有两个二元运算的代数系统
代数系统
代数系统的引入
• 设 f1, f2, …, fk 是在非空集合A上定义的运 算,这些运算与集合组成一个代数系统, 记作 <A, f1, f2, …, fk >. • 当运算只有一种时,通常写作<A, f>, • 而运算 f 通常表示成 *,•, ★, △, ◇, ⊕, ⊙等。
代数系统
封闭性与唯一性
代数系统
等幂性
• *是集合A上的一个二元运算,如果对于 任意的 x∈A, 都有 x*x=x, 则称运算*是等 幂的。
代数系统
运算表
• *是定义在集合A上的二元运算,A是有 限集,A={x1, x2, …, xn},那么对于任意的 xi, xj∈A, xi* xj 的结果放在以 xi 为行、xj 为列所组成的一个表格内。 • 例如
代数系统
子群

第三章:布尔代数分析与数字电路逻辑化简表示(不同的展开方式)

第二章:布尔代数及其分析数字电路基于排列组合与数字集合论,和数理逻辑有一定距离。

在逻辑函数的计算方面,使用数理逻辑的非计算,能够化简布尔表达式。

布尔逻辑代数引进数字电路,与命题的真假判断有区别,因此逻辑函数用数字函数描述更有广泛的内涵:既包括逻辑计算也包括组合功能.英国数学家布尔的研究导致逻辑代数的出现,并被命名为布尔代数。

逻辑代数给数字电路建立二值逻辑模型,可进行具体数字系统的分析和设计,并在此基础上化简运算,得到数字系统的最优实现方法.使用布尔代数还可以揭示不同逻辑函数之间的相互关系,很清楚的发现这些逻辑函数所对应的具体数字电路之间的转换关系,根据实际需要灵活选择,实现不同数字电路的互换.§1.布尔代数系统的基本内容布尔代数系统建立在集合{0,1}上的运算和规则。

布尔代数的基本定律用恒等式的形式表示,包括代入,反演,对偶,展开四个基本运用规则,主要用来解决逻辑函数的变换与化简. 1布尔代数系统简介数字函数表达式:12(,,...,)n Y F A A A =,其中:12,,...,n A A A 称为输入变量,Y 叫做输出变量,F 称为逻辑函数,表示基本逻辑运算或复合逻辑运算。

def1在二值集{0,1}E =中,逻辑变量取值为0或1,称为布尔变元或变量。

注:布尔变元可用大写字母,也可用小写字母表示,但是一定要保持一致性。

def2从n E 到E 的函数被称为n 度布尔函数,其中n E =011{,,...,,,01}n i x x x x E i n -<>∈≤≤- 说明:n 度布尔函数与n 元组逻辑函数是一个概念,定义域是()n In E 。

2布尔代数的基本运算和复合运算表1:布尔代数与,或,非运算真值表说明:①与运算表示只有全部输入变量都为1时,输出变量为1;其它输入变量组合,得到得输出都为0。

②或运算表示只有全部输入变量都为0时,输出变量为0;其它输入变量组合,得到得输出都为1。

第三章 代数系统(2)



a b c
a a
b a b c
c c
解:
a b c
a c a b
b a b c
c b c a
3.1 群的定义和性质
3.2 变换群
3.3 有限群
3.4 循环群
3.5 子群
3.4 循环群
定义3. (G , )是群, G , 令 a
a0 e a n 1 a n a a n (a 1 ) n
定理1
(G , )为群, (G , )与代数系统 ,*) 同构, 若 (H 则(H ,*)也为群。
[证] 结合律,单位元,逆元性质均保持。
3.1 群的定义和性质
3.2 变换群
3.3 有限群 3.4 循环群 3.5 子群
3.2 变换群
[复习定义] 集合S上的变换:
: S S为一一映射, 为S上的 变换; 称
§2 半群与单元半群
2.1 半群
定义1. 代数系统 S , ) (其中“ ” ( 是二元运算 ) 若满足结合律, 则称为半群。 若半群满足交换律, 则称为 可换半群。
例1. 代数系统(I , +)是一个半群, 而且可换; 而(I , -)不是半群。 例2. 代数系统(R , max)为半群,且为可换。
但(S , ) 不是一个可换半群。 a b b a) (如
返回
定理1. 半群( S , )的子代数必是半群 。 (称为( S , )的 子半群 )
[证] 半群(S , )满足结合律, 则其子代数必也满足结合律, 故也是半群。
定义2. 代数系统 (S , ) 为半群, S , a n定义如下 a 1 a1 a 2 a n 1 a n a

离散数学介绍


2015年5月13日星期三
DS
反映美国的一个学校的孩子的友谊关系的 一个复杂星期三
DS
离散数学与信息安全
纠错编码 前缀码 公钥密码 安全性理论 ~代数学、图论、数论、组合学
DS
离散数学与运筹
最短路径问题 关键路径问题 中国邮路问题(管梅谷,1960) 货郎担问题 ~图论、算法
2015年5月13日星期三
DS
8.如果你的孩子被宠坏了,打他屁股会使他发怒;如果 他没有被宠坏,打他屁股会使你懊悔。但是要么是被宠 坏了,要么是没有宠坏。所以, 打他屁股要么会使你懊悔,要么使他发怒。 打他屁股也许对他没有什么好处。
9.正方形是有角的图形,这个图形没有角,所以, 这个图形是个圈。 无确切的结论。 这个图形不是正方形。
2015年5月13日星期三
DS
数学基础论与悖论
说谎者悖论 伊壁孟德:“所有的克里特人都是撒谎者” 我正在说谎 不准涂写 唐吉诃德悖论 鳄鱼与小孩 诉讼师
DS
唐· 吉诃德悖论是指记载在唐· 吉诃德小说中的一个涉及悖论的 故事。
桑丘· 潘萨在他治理的岛上颁布一条法例,规定过 桥的旅客必需诚实地表示自己的目的,否则就会 被绞死。 有一个旅客在见到桥上的告示后,宣称自 己过桥是要被绞死的。 这使执法者感到为难: 如果该人的言论为真,则他应被释放,但如此一来其言论 即变为假。 如其言论为假,则他会被绞死,但如此一来其言论即变为 真。 该旅客被带到桑丘面前,而桑丘最后把他释放。
☆Discrete Structures include important material from such area as set theory,logic,graph and combinatorics.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档