运筹学第五章动态规划2
运筹学教案动态规划

运筹学教案动态规划一、教学目标1. 了解动态规划的基本概念及其在运筹学中的应用。
2. 掌握动态规划的基本原理和方法,能够解决实际问题。
3. 学会使用动态规划解决最优化问题,提高解决问题的效率。
二、教学内容1. 动态规划的基本概念动态规划的定义动态规划与分治法的区别2. 动态规划的基本原理最优解的性质状态转移方程边界条件3. 动态规划的方法递推法迭代法表格法4. 动态规划的应用背包问题最长公共子序列最短路径问题三、教学方法1. 讲授法:讲解动态规划的基本概念、原理和方法。
2. 案例分析法:分析实际问题,引导学生运用动态规划解决问题。
3. 编程实践法:让学生动手编写代码,加深对动态规划方法的理解。
四、教学准备1. 教材:《运筹学导论》或相关教材。
2. 课件:动态规划的基本概念、原理、方法及应用案例。
3. 编程环境:为学生提供编程实践的平台,如Python、C++等。
五、教学过程1. 引入:通过一个实际问题,引出动态规划的概念。
2. 讲解:讲解动态规划的基本原理和方法。
3. 案例分析:分析实际问题,展示动态规划的应用。
4. 编程实践:让学生动手解决实际问题,巩固动态规划方法。
5. 总结:对本节课的内容进行总结,强调动态规划的关键要点。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂讲解:评估学生对动态规划基本概念、原理和方法的理解程度。
2. 案例分析:评估学生运用动态规划解决实际问题的能力。
3. 编程实践:评估学生动手实现动态规划算法的能力。
4. 课后作业:评估学生对课堂所学知识的掌握情况。
七、教学拓展1. 研究动态规划与其他优化方法的联系与区别。
2. 探讨动态规划在运筹学其他领域的应用,如库存管理、生产计划等。
3. 了解动态规划在、数据挖掘等领域的应用。
八、教学反思1. 反思本节课的教学内容、方法和过程,确保符合教学目标。
2. 考虑学生的反馈,调整教学方法和节奏,提高教学效果。
3. 探讨如何将动态规划与其他运筹学方法相结合,提高解决问题的综合能力。
运筹学课件--动态规划

初始状态s1是T(3,3)
结束状态sn是 T(0,0)
可达状态有哪些?(3,J) (2,2) (1,1) (0,J) J 3 2 1 0
2013-6-9
A
1
运筹学课件
2
3
I
阶段指标——每阶段选定决策xk后所产生的效益,记
vk= vk(Sk, xk)。
指标函数——各阶段的总效益,记相应于Pkn的指标函数
2013-6-9 运筹学课件
动态规划模型的分类: 以“时间”角度可分成:
离散型和连续型。
从信息确定与否可分成:
确定型和随机型。
从目标函数的个数可分成: 单目标型和多目标型。
2013-6-9 运筹学课件
8.2基本概念与方程
1.基本概念
阶段(Stage)——分步求解的过程,用阶段变量k表示,k=1,,n 状态(State)——每阶段初可能的情形或位置,用状态变 量Sk表示。 按状态的取值是离散或连续,将动态规划问题分为
当 k 3,f Max f v
3 0
3 3
3
4
Max 3x 5s 13.6(0.9s 0.2x )
0
3 3
3
3
3
3
Max 0.28x 17.24s
0
3 3
3
3
x s , f 17.52s ,即第3年初将全部完好机器都 投入高负荷。
指标函数vkn=
v
5
表示第k至5年的总产量;
1
递推公式:f Max f v
6
f 0, k 5, ,1
2013-6-9
运筹学课件
运筹学教案动态规划

运筹学教案动态规划一、引言1.1 课程背景本课程旨在帮助学生掌握运筹学中的动态规划方法,培养学生解决实际问题的能力。
1.2 课程目标通过本课程的学习,学生将能够:(1)理解动态规划的基本概念和原理;(2)掌握动态规划解决问题的方法和步骤;(3)能够应用动态规划解决实际问题。
二、动态规划基本概念2.1 定义动态规划(Dynamic Programming,DP)是一种求解最优化问题的方法,它将复杂问题分解为简单子问题,并通过求解子问题的最优解来得到原问题的最优解。
2.2 特点(1)最优子结构:问题的最优解包含其子问题的最优解;(2)重叠子问题:问题中含有重复子问题;(3)无后效性:一旦某个给定子问题的解确定了,就不会再改变;(4)子问题划分:问题可以分解为若干个子问题,且子问题之间是相互独立的。
三、动态规划解决问题步骤3.1 定义状态状态是指某一阶段问题的一个描述,可以用一组变量来表示。
3.2 建立状态转移方程状态转移方程是描述从一个状态到另一个状态的转换关系。
3.3 确定边界条件边界条件是指初始状态和最终状态的取值。
3.4 求解最优解根据状态转移方程和边界条件,求解最优解。
四、动态规划应用实例4.1 0-1背包问题问题描述:给定n个物品,每个物品有一个重量和一个价值,背包的最大容量为W,如何选择装入背包的物品,使得背包内物品的总价值最大。
4.2 最长公共子序列问题描述:给定两个序列,求它们的最长公共子序列。
4.3 最短路径问题问题描述:给定一个加权无向图,求从源点到其他各顶点的最短路径。
5.1 动态规划的基本概念和原理5.2 动态规划解决问题的步骤5.3 动态规划在实际问题中的应用教学方法:本课程采用讲授、案例分析、上机实践相结合的教学方法,帮助学生深入理解和掌握动态规划方法。
教学评估:课程结束后,通过课堂讨论、上机考试等方式对学生的学习情况进行评估。
六、动态规划算法设计6.1 动态规划算法框架介绍动态规划算法的基本框架,包括状态定义、状态转移方程、边界条件、计算顺序等。
实用运筹学——5.3 动态规划的模型及求解方法

min 1
6
min
7
7
v 2(B3,C 3 ) f3(C 3 )
5 12
17
即从点 B3 到终点 E 的最短路线为B 3 C 2 D 2 E ,最短距离为 7.
第一阶段,从始点 A 到终点 E 的最优决策为
v 1(A,B1) f2(B1)
2 10
12
f1(A) minv 1(A,B2 ) f2(B2 ) min5 13 min18 8
f4(D f4(D
12))
min45
5 2
min160
6
从点 C2 到终点 E 的最优路线为C 2 D 2 E ,最短距离为 6.
如果从点 C3 出发,则最优决策为
f3(C 3 )
minvv33((CC
3,D1 3,D2
) )
f4(D 1 ) f4(D2 )
min180
5 2
min1123
v 1(A,B3 ) f2(B3 )
1
7
8
即从始点 A 到终点 E 的最短路线为 A B 3 C 2 D 2 E ,最短距离
为 8.
6 12
18
即从点 B1 到终点 E 的最短路线为 B 1 C 2 D 2 E ,最短距离为 10.
从点 B2 到终点 E 的最优决策为
v 2(B 2,C 1) f3(C 1)
6 7
13
f2(B2 ) minv 2(B2,C 2 ) f3(C 2 ) min10 6 min16 13
❖ 下面通过求解例5.1.4,阐明逆序递推法的基本思路.
❖ 第四阶段,由点D1到终点E只有一条路线,其长度 f4(D1)=5,同理f4(D2)=2.
第5章动态规划

2022/8/10
山东大学 软件学院
10
再描述一遍
设第k个阶段的资源总数为xk,投给部门A的资源数量为yk。 则投给部门B的数量为xk yk。于是可得到收入g(yk) + h(xk yk),回收axk + b (xk yk)。 因此,问题就成为:求y1, y2, , yn, 最大化1 k n g(yk) + h(xk yk) ,且满足条件
此,从 a 到 g 的最短路就是从 a 到 b1,然后再从 b1 走到 g,
以及从 a 到 b2,再从 b2 走到 g,两种走法中最短的一个。
于是,定义 fk(u, g)为从当前顶点 u 开始经过 k 条边到达 g 的
最短路长度。则有:
f
k
u,
g
min
vN u
l
u,
v
f1u, g du, g,
/* 令 table(0, x) = 0 。*/ 4 if t > v then v t。 5 endfor 6 return v。
2022/8/10
山东大学 软件学院
15
说明
每计算一个单元格的 fk(x),都需要计算一个max 0 y x {…} 函数。因此,尽管使用表格暂存了计算结果,为计算出最 后的 fn(x) 仍需要大量的计算。 小技巧:不用每行都从 0 计算到 1000。每年无论如何投放, 回收的机床最多是 0.8x 台(max{a, b} = 0.8)。例如表格第 5 行表示最后一个阶段,其前面有 4 个阶段。因此对于第5 行,只需要从 0 计算到 0.84 1000 4096。 但动态规划法已经比直接用递归的方法解递推方程减少了 大量的计算。
7 else 8 for y 0 到 x do 9 t g(y) + h(x y) + f(k 1, ay + b(x y))。 10 if t > v then v t。
运筹学动态规划

运筹学动态规划运筹学是一门综合运筹学、优化学、决策学和统计学等多学科知识的学科,它的核心内容是对决策问题进行建模和分析,并通过数学方法进行求解和优化。
动态规划是运筹学中的一种重要方法,它通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。
下面将详细介绍运筹学中的动态规划方法。
动态规划方法的核心思想是将原问题分解为若干个相互重叠的子问题,并通过求解子问题的最优解来求解原问题的最优解。
为了可以使用动态规划方法,必须满足以下两个条件:子问题的最优解可以作为原问题的最优解的一部分;子问题之间必须具有重叠性,即一个子问题可以被多次使用。
动态规划方法的具体步骤如下:首先,将原问题分解为若干个子问题,并定义出每个子问题的状态和状态转移方程;其次,通过迭代求解每个子问题的最优解,直到求解出原问题的最优解;最后,根据子问题的最优解和状态转移方程,得到原问题的最优解。
动态规划方法的应用非常广泛,可以用于求解各种各样的优化问题。
例如,在物流配送中,可以使用动态规划方法求解最短路径问题;在生产计划中,可以使用动态规划方法求解最优生产计划;在股票投资中,可以使用动态规划方法求解最优投资策略等。
动态规划方法的优点是可以通过求解子问题的最优解来求解原问题的最优解,避免了穷举法的复杂性。
此外,动态规划方法还可以通过引入一定的约束条件,来对问题进行更精确的建模和求解。
然而,动态规划方法也存在一些局限性。
首先,动态规划方法要求问题能够满足子问题的最优解可以作为原问题的最优解的一部分,这限制了动态规划方法的应用范围。
其次,动态规划方法通常需要建立较为复杂的状态转移方程,并进行复杂的计算,使得算法的实现和求解过程比较困难。
综上所述,动态规划是运筹学中的一种重要方法,通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。
动态规划方法的优点是可以高效地求解优化问题,但同时也存在一些局限性。
运筹学课程动态规划课件
5 A
3
1 B1 3
6
8 B2 7
6
C1 6 8
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
1
2
3 4 运筹学课程动态规划
5
6
7
示例5(生产与存储问题):
某工厂生产并销售某种产品。已知今后四个月市场需求 预测及每月生产j个单位产品的费用如下:
上一个阶段的决策直接影响下一个阶段的决策
运筹学课程动态规划
8
示例6(航天飞机飞行控制问题):
由于航天飞机的运动的环境是不断变化的,因 此就要根据航天飞机飞行在不同环境中的情况, 不断地决定航天飞机的飞行方向和速度(状态), 使之能最省燃料和实现目的(如软着落问题)。
运筹学课程动态规划
9
所谓多阶段决策问题是指一类活动过程,它可以分为若 干个相互联系的阶段,在每个阶段都需要作出决策。这 个决策不仅决定这一阶段的效益,而且决定下一阶段的 初
1 6
C3
D1
10
E
D2
6
运筹学课程动态规划
12
以上求从A到E的最短路径问题,可以转化为四个性质完
全相同,但规模较小的子问题,即分别从 Di 、 Ci 、Bi、
A到E的最短路径问题。
第四阶段:两个始点 D 1 和 D 2 ,终点只有一个;
本阶段始点 (状态)
D1 D2
本阶段各终点(决策) E 10 6
cj30j
j0 j1,2,6
月1 2 3
4
需求 2 3 2
运筹学教案动态规划ppt课件
(uk ,u2un )
注: 指标函数的含义是多样的,如:距离、 利润、成本、产品产量、资源消耗等。
最优化原理与动态规划问题基本方程
最优化原理
“作为全过程的最优策略具有这样的性质: 无论过去的状态和决策如何,对于前面决策所形 成的状态(即该最优策略上某一状态)而言,余 下的诸决策必须构成以此状态为初始状态的最优 策略。
3 A5
4
1 阶段
B
9
1
5
4
B
3
2
5
1 B
3
7
2
阶段
C1
1
5
D
1
4
8
C
4
2 D6
E 1
1
2
6
29
F
2 E
4 C
4
3
2
3
阶段
7
D
3
5
4 阶段
2
5 阶段
状态与状态变量
状态: 表示每个阶段开始时所处的自然状 况或客观条件,又称为不可控因素,是阶段的特 征,通常一个阶段有若干个状态。
如:前例,第一阶段状态为点A,第二阶段 的状态有B1,B2,B3三个状态。
但是要受到维数限制。
求解动态规划问题的过程: (1)将问题过程划分恰当阶段,选择阶段
变量k.。 正确(描2过)程正的确演选变择,状又态要变满量足x无k. 后应效注性意。:既能够
(3)正确选择决策变量uk,确定允许集合 。 (4)正确写出状态转移方程 xk+1= Tk(xk, uk)。 (5) 列出按阶段可分的准则函数V1,n ,要 满足几个性质。
概述
▪ 动态规划为运筹学的一个分支,是用于求解 多个阶段决策过程的最优化数学方法。
《运筹学》 第五章习题及 答案
《运筹学》第五章习题1.思考题(1)试述动态规划的“最优化原理”及它同动态规划基本方程之间的关系。
(2)动态规划的阶段如何划分?(3)试述用动态规划求解最短路问题的方法和步骤。
(4)试解释状态、决策、策略、最优策略、状态转移方程、指标函数、最优值函数、边界函数等概念。
(5)试述建立动态规划模型的基本方法。
(6)试述动态规划方法的基本思想、动态规划的基本方程的结构及正确写出动态规划基本方程的关键步骤。
2.判断下列说法是否正确(1)动态规划分为线性动态规划和非线性动态规划。
(2)动态规划只是用来解决和时间有关的问题。
(3)对于一个动态规划问题,应用顺推法和逆推法可能会得到不同的最优解。
(4)在用动态规划的解题时,定义状态时应保证各个阶段中所做的决策的相互独立性。
(5)在动态规划模型中,问题的阶段等于问题的子问题的数目。
(6)动态规划计算中的“维数障碍”,主要是由于问题中阶段数的急剧增加而引起的。
3.计算下图所示的从A 到E 的最短路问题4.计算下图所示的从A 到E 的最短路问题5.计算从A 到B、C、D 的最短路线。
已知各线段的长度如下图所示。
6.设某油田要向一炼油厂用管道供应油料,管道铺设途中要经过八个城镇,各城镇间的路程如下图所示,选择怎样的路线铺设,才使总路程最短?7.用动态规划求解下列各题(1).222211295max x x x x z -+-=;⎩⎨⎧≥≤+0,52121x x x x ;(2).33221max x x x z =⎩⎨⎧≥≤++0,,6321321x x x x x x ;8.某人外出旅游,需将3种物品装入背包,但背包重量有限制,总重量不超过10千克。
物品重量及其价值等数据见下表。
试问每种物品装多少件,使整个 背包的价值最大?913 千克。
物品重量及其价值的关系如表所示。
试问如何装这些物品,使整个背包 价值最大?10 量和相应单位价值如下表所示,应如何装载可使总价值最大?303011 底交货量,该厂的生产能力为每月600件,该厂仓库的存货能力为300件,又 每生产100件产品的费用为1000元。
运筹学课件动态规划
C4 A — B— C — D — E
f2(C1)=7,f3(C2)=8,f3(C3)=10,f3(c4)=9
阶段1
阶段2 阶段3 阶段4
S0={A} S1={B1,B2} S2={C1,C2,C3,C4 } S3={D1,D2} S4={E}
f3(D1)=11,f4(D2)=13
案例---资源分配
D1 5 E
D2 2
[引例] 马车驿站问题
f(C1)=8
阶段 起点 1A
终点
B1 B2
可选路线
AB1 AB2
路线数 2
f(B1)=8
B1 5 A
f(A)=313 8
B2
2 3 6
7 6
C1 6
f(C2)=85
C2 3
f(C3)=54
3 C3 3
84
f(B2)=11 C4
f(C1)=5
A —B— C —
最k优=4化原理
(Optimality principle) :
最k优=3策略具备这样的决性策质::无D1论初E始 状态与初始决策如何,以后诸决策对 以第一个决策所形成的状态作为初 始状态的过程而言,必决然策构:成D2最优E策 策略.通俗地说:最优策略的子策略 也k是=2最优的.
例 A13—k如,其=B1,子1—在策C导略2入—:B案D11—例—C中决E2决决,,—策最策策最D:短::1优A距—CC策12离E略B,为1DD是11 C2—D1—E, D1—E也决是策最:优C3的。D2
(4)状态转移方程 (5)递归方程(k→n)
1、划分为4个阶段 2、用点集表示各阶段的状态 S1={A};s2= {B1,B2,B3}, s3= {C1,C2,C3}; s4= {D1,D2} 3、指标函数:Vk,4(i)为第k阶段第i点到E点的距离 4、最优值函数fk(i)为i点到E的最短距离 5、决策变量xk=d[i,j]为第k阶段第i状态的选择 6、边界条件: f5(E)=0 7、基本方程: fk(i)=min{d[i,j]+ fk+1(j) }(k=1,2,3,4)