空间向量与立体几何教案
空间向量在立体几何中的应用教学设计

空间向量在立体几何中的应用教学设计一、教学目标1.知识目标:了解空间向量的概念和性质,掌握空间向量的基本运算法则。
2.能力目标:能够应用空间向量的知识解决立体几何中的问题,如线段长度、向量共线、线段垂直等。
3.情感目标:培养学生的观察力和分析问题的能力,增强解决问题的自信心。
二、教学重点与难点1.教学重点:空间向量的概念和运算法则。
2.教学难点:将空间向量的知识应用到立体几何问题中。
三、教学准备白板、黑板笔、投影仪、屏幕、计算器等。
四、教学过程Step 1 引入1.教师出示两个立方体模型并提问:你们能用线段表示两个立方体顶点之间的距离吗?2.引出空间向量的概念,并与平面向量进行比较,说明二者的区别。
Step 2 理论讲解1.教师通过投影仪将空间向量的定义、表示和性质呈现给学生,学生做好笔记。
2.教师讲解空间向量的基本运算法则,例如加法、数乘和点乘,并通过具体的例题演示计算过程。
Step 3 实例分析1. 教师出示一道题目:“已知直线l: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$,过直线l上一点A(2,3,4),作与直线垂直的平面,并找出平面与原点O(0,0,0)的距离。
”2.请学生先思考如何解决这个问题,然后汇报自己的解题思路。
3.教师引导学生运用空间向量的知识来解答问题,并逐步给予提示。
4.学生进行计算,分组讨论和交流思路。
Step 4 拓展应用1.教师设计一道拓展题:“已知线段AB与线段CD的中点E重合,向量BD的坐标为(1,2,3),向量CE的坐标为(4,5,6),求向量AD的坐标。
”2.学生尝试解答,提出自己的解题思路。
3.教师引导学生应用向量共线的性质来解答问题,并逐步给予提示。
4.学生进行计算,分组讨论和交流思路。
Step 5 总结与归纳1.教师引导学生回顾本节课的学习内容,总结空间向量的基本性质和运算法则。
2.学生通过小组合作的方式归纳学习过程中的思考和解题方法。
江苏省苏州市第五中学高中数学教案 苏教版选修2-1 第三章《空间向量与立体几何》3.1空间向量及其运算

第3章 空间向量与立体几何3.1 空间向量及其运算一、学习内容、要求及建议二、预习指导1.预习目标(1)了解空间向量的概念及空间向量的几何表示法、字母表示法和坐标表示法;(2)了解共线或平行向量概念、向量与平面平行(共面)意义,掌握它们的表示方法;(3)会用图形说明空间向量加法、减法、数乘向量及它们的运算律;(4)了解空间向量基本定理及其意义;会在简单问题中选用空间三个不共面向量作基底,表示其他的向量;(5)会用向量解决立体几何中证明直线和平面垂直、直线和直线垂直、求两点距离或线段长度等问题的基本方法步骤.(6)掌握空间向量的正交分解及其坐标表示;掌握空间向量的线性运算及其坐标表示;(7)理解空间向量夹角和模的概念及表示方法,理解两个向量的数量积的概念、性质 知识、方法 要求 学习建议空间向量的概念 了解 空间向量的定义、表示方法及相等关系都与平面向量相同.可在复习平面向量的定义、表示方法及其相等关系后类比进行理解﹒空间向量共线、共面的充分必要条件 理解 共面向量与共线向量的定义对象不同,但定义形式相同. 空间向量的加法、减法及数乘运算 理解 掌握空间向量的加法、减法和数乘运算.利用图形说明空间向量加法、减法、数乘向量及它们的运算律﹒空间向量的坐标表示 理解 空间向量的坐标运算,加法、减法和数量积同平面向量类似,具有类似的运算法则,学习中可类比推广.空间向量的数量积 理解 掌握空间向量的数量积的定义及其性质;掌握空间向量的坐标表示;掌握用直角坐标计算空间向量数量积的公式;理解向量长度公式及空间两点间距离公式.空间向量的共线与垂直 理解 能运用向量的数量积判断向量的共线与垂直.AB C OM N G 和计算方法及运算律.(8)理解向量的长度公式、夹角公式、两点间距离公式,并会用这些公式解决有关问题.2.预习提纲(1)回顾平面向量的相关知识:①平面向量的基本要素是什么? ②平面向量是如何表示的?③特殊的平面向量有那些? ④什么是平行向量(共线向量)?⑤什么是相等向量? ⑥什么是相反向量?⑦平面向量共线定理是什么? ⑧平面向量基本定理你知道吗?(2)请你填一填:①对平面内任意的四点A ,B ,C ,D ,则AB BC CD DA +++=u u u r u u u r u u u r u u u r ; ②设1(2,3),(1,5),,33A B AC AB AD AB -==u u u r u u u r u u u r u u u r 且,则C 、D 的坐标分别是____________; ③已知(1,2),(3,)OA OB m =-=u u u r u u u r ,若OA OB ⊥u u u r u u u r ,则m = ;④若三点(1,1),(2,4),(,9)P A B x --共线,则x = ____________;⑤已知正方形ABCD 的边长为1,,,AB a BC b AC c ===u u u r r u u u r r u u u r r ,则a b c ++r r r 的模等于____________;⑥已知向量(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r ,且,,A B C 三点共线,则k = ;⑦等腰Rt ABC ∆中,2,AB AC AB BC ==⋅u u u r u u u r u u u r u u u r 则= ;⑧已知(2,3),(1,2),(2,1)a b c ==--=r r r ,则()a b c ⋅r r r 的值= ____________;⑨1,9a b a b ==⋅=-r r r r ,则a r 与b r 的夹角是____________;⑩已知,a b r r 是两个非零向量,且,a b a b a a b ==-+r r r r r r r 则与的夹角= ____________.(3)研读教材P71—P833.典型例题例1 如图,已知四面体OABC ,,M N 分别是棱,OA BC 的中点,点G 在线段MN 上,且2MG GN =,用基底向量,,OA OB OC u u u r u u u r u u u r 表示向量OG u u u r . 解:23OG OM MG OM MN =+=+u u u r u u u u r u u u u r u u u u r u u u u r 121211()[()]232322111111()233633OA ON OM OA OB OC OA OA OB OC OA OA OB OC =+-=++-=++-=++u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ∴313161++=点评:若变题为已知OG xOA yOB zOC =++u u u r u u u r u u u r u u u r ,求,,x y z ﹒则由空间向量基本定理存在一个唯一的有序实数组),,(z y x 知111,,633x y z ===. 例 2 设空间任意一点O 和不共线的三点,,A B C ,若点P 满足向量关系z y x ++=(其中1x y z ++=).试问:,,,P A B C 四点是否共面?解:由z y x ++=可以得到z y +=(见教材P75)由,,A B C 三点不共线,可知与不共线,所以,,共面且具有公共起点A .从而,,,P A B C 四点共面.点评:若,,M A B 三点不共线,则空间一点P 位于平面MAB 内的充要条件是存在有序实数对,x y 使得:y x +=,或对空间任意一点O 有:y x ++=. 例3 已知空间四边形ABCD ,E 为AD 的中点,F 为BC 中点, 求证:1()2EF AB DC =+u u u r u u u r u u u r . 证明:(法一)如图, 0EF FC CD DE +++=u u u r u u u r u u u r u u u r r ,0EF FB BA AE +++=u u u r u u u r u u u r u u u r r ,两式相加得: 2()()()EF FC FB CD BA DE EA ++++++u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 20EF BA CD =++=u u u r u u u r u u u r r 所以,11()()22EF BA CD AB DC =-+=+u u u r u u u r u u u r u u u r u u u r ,得证. (法二)如图,在平面上任取一点O ,作OE uuu r 、OF u u u r , ∵1()2OE OA OD =+u u u r u u u r u u u r ,1()2OF OB OC =+u u u r u u u r u u u r , ∴11()()22EF OE OF OB OC OA OD =-=+-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r 111()()()222OB OA OC OD AB DC =-+-=+u u u r u u u r u u u r u u u r u u u r u u u r . 点评:若表示向量1a u r ,2a u u r ,…,n a u u r 的有向线段终点和始点连结起来构成一个封闭折图形,则210n a a a +++=u r u u r u u r r L .这一结论的使用往往能够给解题带来很大的方便.例4 如图,在空间四边形OABC 中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=o ,60OAB ∠=o ,求OA 与BC 的夹角的余弦值.分析:OA 与BC 的夹角即为OA u u u r 与BC uuu r 的夹角,可根据夹角公式求解.解:∵BC AC AB =-u u u r u u u r u u u r ,∴OA BC OA AC OA AB ⋅=⋅-⋅u u u r u u u r u u u r u u u r u u u r u u u r||||cos ,||||cos ,OA AC OA AC OA AB OA AB =⋅⋅<>-⋅⋅<>u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r84cos13586cos12024=⨯⨯-⨯⨯=-o o∴243cos ,855||||OA BC OA BC OA BC ⋅--<>===⨯⋅u u u r u u u r u u u r u u u r u u u r u u u r , 所以,OA 与BC的夹角的余弦值为35-. 点评:由图形知向量的夹角时易出错,如,135OA AC <>=o u u u r u u u r 易错写成,45OA AC <>=o u u u r u u u r . 例5 已知三角形的顶点是(1,1,1)A -,(2,1,1)B -,(1,1,2)C ---,试求这个三角形的面积.分析:可用公式1||||sin 2S AB AC A =⋅⋅u u u r u u u r 来求面积 解:∵(1,2,2)AB =-u u u r ,(2,0,3)AC =--u u u r ,∴||3AB ==u u u r,||AC ==u u u r(1,2,2)(2,0,3)264AB AC ⋅=-⋅--=-+=u u u r u u u r ,∴cos cos ,||||AB AC A AB AC AB AC ⋅=<>===⋅u u u r u u u r u u u r u u u r u u u r u u u rsin sin ,A AB AC =<>=u u u r u u u r ,∴1||||sin 2ABC S AB AC A ∆=⋅⋅=u u u r u u u r 例6 已知(1,0,0)A ,(0,1,0)B ,(0,0,2)C ,求满足//DB AC ,//DC AB 的点D 的坐标.分析:已知条件//DB AC ,//DC AB ,也即//DB AC u u u r u u u r ,//DC AB u u u r u u u r ,可用向量共线的充要条件处理.解:设点(,,)D x y z ,∴(,1,)DB x y z =---u u u r ,(1,0,2)AC =-u u u r ,∵//DB AC u u u r u u u r ,∴DB AC λ=u u u r u u u r ,∴(,1,)(,0,2)x y z λλ---=-,∴102x y z λλ-=-⎧⎪-=⎨⎪-=⎩,∴12x y z λλ=⎧⎪=⎨⎪=-⎩,∴(,1,2)D λλ-,∴(,1,22)DC λλ=--+u u u r ,(1,1,0)AB =-u u u r ,又∵//DC AB u u u r u u u r ,∴设DC u AB =u u u r u u u r ,∴(,1,22)(,,0)u u λλ--+=-,∴1220u u λλ-=-⎧⎪-=⎨⎪+=⎩∴1u λ==-,所以,D 点坐标为(1,1,2)-.点评:本题采用的方法是用向量坐标运算处理空间向量共线问题的常用方法.4.自我检测(1)已知点(3,1,4)A --,则点A 关于x 轴的对称点的坐标为____________.(2)设(2,6,3)a =-r ,则与a r 平行的单位向量的坐标为 .(3)已知(1,1,),(2,,)a t t t b t t =--=r r ,则||a b -r r 的最小值是 .(4)如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b ,A A 1=c .则M B 1= .(用a ,b ,c 表示)﹒(5)已知四边形ABCD 为平行四边形,且(4,1,3),(2,5,1),(3,7,5)A B C --,则点D 的坐标为 .(6)设向量(1,3,2),(4,6,2),(3,12,)a b c t =-=-=-r r r ,若c ma nb =+r r r ,则t = ,m n += .(7)已知(cos ,1,sin ),(sin ,1,cos )a b θθθθ==r r ,则向量a b +r r 与a b -r r 的夹角是 .三、课后巩固练习A 组1.已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量: (1)AB BC CD ++u u u r u u u r u u u r ; (2)1()2AB BD BC ++u u u r u u u r u u u r ; (3)1()2AG AB AC -+u u u r u u u r u u u r . 2.平行六面体1111ABCD A B C D -中,设→---AB =a r ,→---AD =b r ,→---1AA =c r ,E 、F 分别是AD 1、BD 中点,试用a r 、b r 、c r 表示下列向量:(1)→---B D 1;(2)→---AF ;(3)→---C D 1;(4)→---EF . 3.正方体OASB CQRP -中,→--OA = i r ,→--OB =j r ,→--OC =k r ,→--OP =a r ,→--OQ =b r ,→--OS =c r , 设→z =λa r +μb r +γc r ,则→z = i r + j r + k r . 4.设a r 、b r 、c r 不共面,2,,453m a b n b c p a b c =-=+=--u r r r r r r u r r r r ,判断m u r 、n r 、p u r 是否共 面. 5﹒已知空间四边形ABCD ,AB a =u u u r r ,AC b =u u u r r ,AD c =u u u r r ,点M 在AB 上,且2AM MB =,N 为CD 中点,试用,,a b c r r r 表示MN u u u u r .B 组6.已知,,A B C 三点不共线,O 为空间任意一点,若111333OM OA OB OC =++u u u u r u u u r u u u r u u u r ,试证: 点M 与,,A B C 共面.7.证明四点()()()()1,0,1,4,4,6,2,2,3,10,14,17A B C D 在同一平面上. 8.已知()()3,1,5,1,2,3a b ==-r r ,若9,4a c b c ⋅=⋅=-r r r r ,且→c 垂直于Oz 轴,求→c .9.已知a r 、b r 、c r 是两两垂直的单位向量,求:(1)()a b c ⋅+r r r ; (2)()()23a b b c -⋅+r r r r ; (3)()()4332a b c a b c -+⋅+-r r r r r r .10.已知直角坐标系内的a r 、b r 、c r 的坐标,判断这些向量是否共面?如果不共面,求出以 它们为三邻边所作的平行六面体的表面积:(1)()()()3,4,5,1,2,2,9,14,16a b c ===r r r ; (2)()()()3,0,1,4,3,0,1,2,2a b c =-=-=--r r r .11.已知()()322,0,4,2,1,2,2,4,a b c a c b θ-=-=-⋅==r r r r r r 为,b c r r 夹角,求cos θ.12.已知()()1,0,2,2,1,0a b =--=--r rB CD M G A(1)求a r 与b r 夹角余弦值的大小; (2)若c =r c r 分别与,a b r r 垂直,求c r .13. 平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都等于1,且两两夹角都为600,求1AC 的长.14.已知()()()1,2,3,2,1,5,3,2,5A B C --,求:(1)△ABC 的面积; (2)△ABC 的AB 边上的高. 15.空间两个不同的单位向量()(),,0,,,0OA p q OB r s ==u u u r u u u r ,都与()1,1,1OC =u u u r 成4π角. (1)分别求出p q +和pq 的值;(2)若AOB ∠为锐角,求AOB ∠.四、学习心得五、拓展视野N 维向量空间的起源宇宙,一个人类永远的话题,也是人类永远探索的目标.“没人确切的知道宇宙是怎么开始的.有人推论是一场无序的灾难性爆炸使无尽的世界群不断旋转向黑暗--这些世界随后有了不可思议的生命形态和天差地别的炯异.也有人相信宇宙是被某个强大实体以整体形式创造出来的.”宇宙, 是一个空间概念. 它包括行星, 星系等实体.宇宙同时也是一个时间概念. 现代有人解释宇宙为“无限的空间与时间”,正好印证了中国的一本古书<淮南子>对宇宙的定义,其中说“四方上下谓之宇, 古往来今谓之宙”. “四方上下”概括了所有空间, "古往来今"则概括了部分的时间.为什么说是部分的时间呢? “古往来今”的含义是从永远的过去到现在的今天. 这样的定义没有把从现在到无限的未来包括进来.如果我们把时间用一个变量 t 表示.那么“古往来今”则表示的是 t 在负无穷大到零的区间,即(-∞, 0],如果我们设定坐标零点为现在,负方向代表过去,正方向代表将来.对于无限的空间的定义(即,时间 t从永远的过去到永远的将来),就成为了(-∞, +∞).那么空间呢?同样我们可以用坐标系的方式来定义空间.问题的关键就在于,我们怎么看待我们生存的空间.我们不是生活在一个2维的平面上(而古代的中国人认为地是方的,就如同我小时候想得一样.),而是生活在一个类似于球体的物体上.这样,很多人会说,我们生活在一个3维空间里面.这样一个3维空间由三个坐标轴 X , Y , Z 组成.在这样一个3维空间中,任何一个位置p 都可以用三个数(x , y , z )表示,x 为位置p 在X 轴上的取值(也是投影),同理,y 和z 也是.同时,这三条坐标轴是正交的.何谓正交,就是三条坐标轴互相垂直.在这个3维空间中,我们有两点111,,)P y z 1(x (可能是伦敦)和2222,,)P x y z ((可能是巴黎),从1P到2P 之间(伦敦到巴黎)的最小距离(直线距离)为D=||1P -2P ||=sqrt((1x -2x )2+(1y -2y )2+(1z -2z )2).在一般情况,因为各种限制,我们可能用不了最小距离,但是最小距离给我们找到一个下限.宇宙不仅包括空间,而且包括时间,所以,我们的这个宇宙就变成了3+1=4维的了.那么宇宙就可以描述为(),,,x y z t ,有了四条正交的坐标轴,,,X Y Z T .比如说事件A 为(),,,x y z t 表示,事件A 发生在(),,x y z 地点,发生在t 时间.在这样一个4维空间中,两个事件之间的最小距离也可以表示出来.但是这个“距离”就不是空间上的相对位置的改变,而是表示两个事件之间的“关系”.跳出我们仅仅对宇宙作为时间+空间的定义.如果我们将宇宙描述为包容万象的,我们就会看到仅仅用时间+空间不能来完整来表示.比如说,如何表述一个人?如何表述我们情感?仅仅用四条坐标轴很难去表述这些东西.显然,我们需要更多的坐标轴.如果要表示我是高兴还是悲伤,我们可以加一条坐标轴e ,e=0表示我即不高兴也不悲伤,当e 取负值,越远离坐标原点,说明我越不happy ,相反,当e 取正值,越远离坐标原点,说明我越happy .如果我们要描叙其他的属性,我们有加入了新的坐标轴.如果,要描述的属性不计其数,要加入的坐标轴也不计其数了.显然,这是有可能的,因为我们对事物的认识是没有止境的,所以,当我们要描叙一个事物时,其属性可能无限多.这也反过来说明了宇宙的包容一切.所以,宇宙是一个无限维的空间,定为n 维空间(n=∞),其存在n 条正交的坐标轴.无数的基本元素组成了宇宙(注意,这里的元素与化学中提到的元素不同,这里的元素是指单元).每个元素是一个向量v , v = {v1, v2, v3, ..., vn}, n =∞,(其实就相当于3维和2维空间中的一个点).无数个向量组成的空间叫做向量空间.向量空间的维度就是坐标轴的个数.宇宙就是一个n 维向量空间。
数学:第三章《空间向量与立体几何》教案(人教版选修2-1)

高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。
2.理解共线向量定理和共面向量定理及其意义。
3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。
三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。
5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。
立体几何与空间向量优秀教案

空间向量及线性运算【本课重点】1、理解空间向量地概念,掌握空间向量地线性运算及性质;2、通过平面向量向空间向量地推广,体会数学地类比和归纳地思想方法.【预习导引】1、在空间,既有___________又有_____________地量叫空间向量.空间向量可以用________表示;__________地长度叫向量地模;凡是方向相同且长度相等地有向线段表示同一向量或______________.2、已知空间向量b a ,,在空间任取一点O ,作b AB a OA ==,,则=+b a ___________; 作b OB a OA ==,,则=-b a ___________;作)(,R OA OP a OA ∈λλ==,则=OP ______.3、空间向量地加法和数运算满足运算律:(1)__________________________________;(2)________________________________; (3)____________________________________.4、如果表示空间向量地有向线段互相_____或____,那么这些向量叫_________或_______向量a 与b 平行,记为____________.5、对空间任意两个向量a 与b (0≠a ),b 与a 共线地充要条件是存在实数λ,使_________.【典例练讲】例1、如图,M,N,P ,Q,R,S 为平行六面体1111ABCD A B C D -所在棱中点,化简下列向量表达式,并标出化简结果地向量.(1) AB BC + (2) 1AB AD AA ++(3) 112AB AD CC ++(4) 11()3AB AD AA ++(5) 11BC BB B D -- (6) MN PQ RS ++例2、如图,在长方体111OADB CA D B -中,3OA =,4OB =,2OC =,1OI OJ OK ===,点,E F 分别是11,DB D B 地中点.设OI i =,OJ j =,OK k =.试用向量,,i j k 表示1OD 、1OA 、OE 、OF .例3、如图,在空间四边形ABCD 中,E 是线段AB 地中点,(1)若2CF FD =,连接EF ,CE ,AF ,BF 化简下列各式,并在图中标出化简得到地向量: ①AC CB BD ++; ②AF BF AC --; ③1223AB BC CD ++; (2)若F 为CD 地中点,求证:1()2EF AD BC =+.例4、已知六面体1111ABCD A B C D -是平行六面体(如图). (1)化简11223AA BC AB ++,并在图上标出结果; (2)设M 是底面ABCD 地中心,N 是侧面11BCC B 对角线1BC 上地四等分点(靠近点1C ), 设1,MN AB AD AA αβλ=++试求,,αβγ地值ABCEFDA B 1BD 1 C 1 B 1A 1D C B A S RQPNM共面向量定理【本课重点】空间共面向量地概念、判定、性质及运用. 【预习导引】1、_______________________________叫共面向量.2、在平面向量中,向量b 与向量)0(≠a a 共线地充要条件是存在实数λ,使得a b λ=;在空间向量中,已知向是b 与a 不共线,那么向量p 与向量a ,b 共面地充要条件是存在有序实数组(x,y ),使得=p ____________.3、已知空间四点O 、A 、B 、C 满足OB OA OC β+α=,则A 、B 、C 三点共线地充要条件是________________.4、已知A 、B 、C 三点不共线,则点O 在平面ABC 内地充要条件是存在有序实数对x,y,使=OA _______________.5、设空间任意一点O 和不共线地三点A 、B 、C ,若点P 满足向量关系OC z OB y OA x OP ++=(其中x+y+z=1)试问:P 、A 、B 、C 四点是否共面?并证明你地结论.【典例练讲】例1、正方体1111ABCD A B C D -,E 和F 点分别为面1111A B C D 与11BB C C 地中心,判断下列几组向量是否为共面向量:(1)1111,,BC A D D D ;(2)111,,EF C D D D ;(3)11,,A B DC EF .例2、如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点,M N 分别在对角线,BD AE 上,且13BM BD =,13AN AE =.求证://MN CDE 平面.例3、证明:三个向量12332a e e e =-++,123462b e e e =-+,12331211c e e e =-++共面.例4、(1)对于空间某一点O ,空间四个点A 、B 、C 、D (无三点共线)分别对应着向量OA 、OB 、OC 、OD ,求证:A 、B 、C 、D 四点共面地充要条件为存在四个不全为零实数,,,αβγδ,使得0OA OB OC OD αβγδ+++=,且0αβγδ+++=;(2)设空间任意一点O 和不共线三点A 、B 、C ,若点P 满足向量关系OP xOA yOB zOC =++,当,,x y z 满足什么条件时,能够使得,,,P A B C 四点共面.F ED 1 C 1B 1 A 1D CB A · · F EABCOMNG空间向量基本定理【本课重点】空间向量基本定理及其运用. 【预习导引】1、如果3个向量321,,e e e 不共面,那么对空间任一向量p ,存在___________地有序实数组{x,y,z},使=p ____________________.{321,,e e e }称为空间地一个________,321,,e e e 叫做______________.当321,,e e e 两两互相垂直时称为____________,当321,,e e e 为两两垂直地单位向量时称为__________________,通常用____________表示.2、已知空间四边形OABC ,点M ,N 分别是OA ,BC 地中点,G 在AN 上,且AG=2GN ,c OC b OB a OA ===,,,用c b a ,,作为基底,则向量MN 可表示为____________;OG 可表示为___________.3、如图,已知空间四边形OABC ,其对角线,OB AC ,,M N 分别是对边,OA BC 地中点,点G 在线段MN 上,且3MG GN =,用基底向量,,OA OB OC 表示向量_________.OG =【典例练讲】例1、如图,在平行六面体1111ABCD A B C D -中,已知DA a =,DC b =,1DD c =,点G 是侧面11B BCC 地中心,试用向量,,a b c 表示下列向量:111,,,DB BA CA DG .例2、在正方体OADB CA D B '''-中,点E 是AB 与OD 地交点,M 是OD '与CE 地交点,(1)试分别用向量,,OA OB OC 表示向量OD '和OM ;(2),,OI OJ OK 分别为,,OA OB OC 方向上地单位向量,试用,,OI OJ OK 表示,,OA OB OC .例3、已知空间四边形OABC ,其对角线为,OB AC ,点,M N 分别是对边,OA BC 地中点,点G 在直线MN 上,且2MG GN =,试用基底向量,,OA OB OC 表示向量OG .例4、如图,在平行六面体1111ABCD A B C D -中,点,,E F G 分别是11A D ,1D D ,11DC 地中点,请选择恰当地基底向量.证明:(1)//EG AC ;(2)平面EFG //平面1AB C .GDCBD 1AC 1B 1A 11空间向量地坐标表示【本课重点】空间向量地坐标表示、运算及空间向量平行地坐标表示. 【预习导引】1、 若),,(111z y x A ,),,(222z y x B 那么=AB _________________.2、 设),,(111z y x a =,),,(222z y x b =,R ∈λ,那么(1)=+b a ___________________; (2) )=-b a ___________________;(3)a λ=_____________________; (3) 若)0(//≠a b a ,则____________.3、已知向量a =(8,12x ,x ),b =(x,1,2),其中x >0.若a ∥b ,则x 地值为__________.4、给出命题:①若a 与b 共线,则a 与b 所在地直线平行;②若a 与b 共线,则存在唯一地实数λ,使b =λa ;③若A ,B ,C 三点不共线,O 是平面ABC 外一点,OM =13OA +13OB +13OC ,则点M 一定在平面ABC 上,且在△ABC 地内部.其中真命题是________.【典例练讲】例1、已知1111ABCD A B C D -是棱长为2地正方体,E 、F 、G 、H 、I 、J 分别为图中所示各棱地中点,P 为正方体地中心,建立如图所示地空间直角坐标系. (1)、试写出图中各点地坐标;(2)、x 轴,y 轴,z 轴上地点地坐标有什么特点?例2、(1)已知(1,3,8)a =-,(3,10,4)b =-,求a b +,a b -,3a ,32a b -.(2)已知A ,B ,C 三点坐标分别为(2,1,2)-,(4,5,1)-,(2,2,3)-,求满足下列条件地P 点地坐标:①1()2OP AB AC =-;②1()2AP AB AC =-.例3、已知(2,1,1)a =-,(1,3,2)b =-,(2,1,3)c =--和(3,2,5)d =,试求实数,,λμν, 使d a b c λμν=++.例4、(1)、已知向量(2,4,5)a =,(3,,)b x y =,若//a b ,求,x y 地值;(2)、已知空间四点(2,3,1)A -,(2,5,3)B -,(10,0,10)C 和(8,4,9)D ,求证:四边形ABCD 为梯形.空间向量地数量积(1)【本课重点】空间向量数量积、夹角及求法. 【预习导引】1、设b a ,是空间两个非零向量,过空间任一点O 作a OA =,b OB =,则AOB ∠叫向量a 与b 地__________,记作________,范围为________.若<b a ,>=0,则向量a 与b __________;若<b a ,>=π,则向量a 与b ____________;若<b a ,>=2π,则向量a 与b 互相_____________,记为b a ⊥.b a ⊥⇔____________2、设b a ,是空间两个非零向量,把cos ||||b a <b a ,>叫做向量a 与b 地数量积,记为______________. 并规定:零向量与任一向量地数量积为0.空间向量地数量积地运算律:(1)_____________________;(2)________________________;(3)_______________________.3、已知,a b 是空间两个向量,若3,2a b ==,7,a b +=则,a b 地夹角为_________.4、如图所示,空间四边形OABC 中,,.OA BC OB AC ⊥⊥求证:.OC AB ⊥【典例练讲】例1、如图,已知空间四边形ABCD 地每条边和对角线都等于1,点E 、F 分别是AB ,AD 地中点,计算:EF BA ⋅,EF BD ⋅,EF DC ⋅.例2、已知向量a b ⊥,向量c 与,a b 地夹角均为60︒,且||1a =,||2b =,||3c =,试求:2()a b +,2(2)a b c +-,(32)()a b b c --.例3、如图,在平行四边形ABCD 中,AB=AC=1,90ACD ∠=︒,将它沿着对角线AC 折起,使AB 与CD 成60︒角,求BD 间地距离.例4、在三棱锥O-ABC 中,已知侧棱OA ,OB ,OC 两两垂直,求证:底面ABC ∆是锐角三角形.AEF A B D C空间向量地数量积(2)【本课重点】空间向量数量积地坐标运算. 【预习导引】1、 设),,(111z y x a =,),,(222z y x b =则(1)||a =___________________________; (2)=⋅b a _________________________;(3)cos <b a ,>=____________________; (4)b a ⊥⇔________⇔_________________.2、若),,(111z y x A ,),,(222z y x B ,则AB 中点M 地坐标为____________________________;=AB ________________________;=||AB ______________________________.3、“0a b ⋅<”是“,a b <>为钝角”地_____________条件.(填“充分不必要”,“必要不充分”,“充分必要”或“既不充分也不必要”)4、已知(1,1,)a t t t =--,(2,,)b t t =,则b a -地最小值为________.【典例练讲】例1、(3,5,4)a =-,(2,1,8)b =,计算:(1)23a b +,34a b -,ab ,||a ,|23|a b + (2)cos ,a b <>;(3)求向量23a b +与a 地夹角;(4)确定,λμ地关系,使a b λμ+与z 轴垂直.例2、已知(1,5,1)a =-,(2,3,5)b =-. (1)若()//(3)ka b a b +-,求k 地值; (2)若()(3)ka b a b +⊥-,求k 地值.例3、已知(1,0,1),(2,2,2),(0,2,3)A B C ,求(1)线段AB 地中点坐标和AB 地长度; (2)AB AC 与地夹角地正弦值;(3)求ABC ∆地面积; (4)到C 点地距离为1地P (x,y,z )地坐标,,x y z 满足地条件.例4、在棱长为1地正方体1111ABCD A B C D -中,,E F 分别是1,D D BD 地中点,G 在棱CD 上,且14CG CD =,H 是1C G 地中点,应用空间向量法解决下列问题:(1)求证:1EF B C ⊥; (2)求EF 与1C G 所成角地余弦值; (3)求FH 地长. E A 1D 1C 1B 1H直线地方向向量和平面地法向量【本课重点】直线地方向向量和平面地法向量. 【预习导引】1、直线l 上地_____________________________叫做直线l 地方向向量.2、如果表示非零向量n 地有向线段所在直线与平面α______,那么称向量n 与平面α_______,记着___________,此时,把向量n 叫做平面α地_____________.3、下列说法正确地是________.(1) 一条直线地所有方向向量都互相平行;(2)一个平面地所有法向量都互相平行; (3)平面地法向量一定是非零向量;(4)向量n 是平面α地法向量,向量a 是与平面α平行或在平面α内,则有0=⋅a n . 4、(1)在空间直角坐标系O xyz -中,下列向量中不是y 轴地方向向量地是_______.○1(0,1,0); ○2(0,-1,0); ○3(0,12,-1); ○4(0,1,1)(2)过空间三点(1,1,0),(1,0,1),(0,1,1)A B C 地平面地一个法向量为__________.【典例练讲】例1、(1)在正方体1111ABCD-A B C D 中,求证:1DB 是平面1ACD 地法向量;(2)已知:A(1,2,1),B(3,2,3),C(5,3,1),求平面ABC 地一个单位法向量.例2、在空间直角坐标系中,设平面α经过点000P(x ,y ,z ),平面α地法向量是e (a,b,c)=,M(x,y,z)是平面α内地任意一点,求x ,y ,z 满足地关系式.例3、已知:A(-2,3,-3),B(4,5,9). (1)写出直线AB 地一个方向向量;(2)若点M(x,y,z)在直线AB 上,求x ,y ,z 满足地关系式;(3)设平面α经过线段AB 地中点,且与直线AB 垂直,点P(x,y,z)是平面α内一点,求x,y,z 满足地关系式;(4)求到A,B 两点距离相等地点Q(x,y,z)地坐标x,y,z 满足地关系式.例4、在棱长为1地正方体1111ABCD-A B C D 中,,E F 分别是棱,AB BC 地中点,则在棱1BB 上是否存在点M ,使得11D M EFB ⊥平面?若存在,指出点M 地位置;若不存在,请说明理由.空间线面关系地判定(1)【本课重点】用向量语言表述线线、线面、面面地平行和垂直关系;用向量方法判定空间线面地平行和垂直关系.【预习导引】1、设两直线21,l l 地方向向量分别为21,e e ;平面21,αα地法向量分别为21,n n ,那么: (1)⇔21//l l __________________; ⇔⊥21l l __________________; (2)⇔α11//l __________________; ⇔α⊥11l __________________; (3)⇔αα21//________________; ⇔α⊥α21__________________.2、设b a ,分别是直线21,l l 地方向向量,根据下列条件,判断21,l l 地位置关系:(1))6,3,6(),2,1,2(--=--=b a __________; (2))2,3,2(),2,2,1(-=-=b a __________; 3、设v u ,分别是平面βα,地法向量,根据下列条件,判断βα,地位置关系:(1))4,4,6(),5,2,2(-=-=v u __________; (2))4,4,2(),2,2,1(--=-=v u __________; (3))4,1,3(),5,3,2(--=-=v u __________.4、已知直线l 地方向向量(1,0,2)a =--,平面α地一个法向量为(4,0,)e m =,若直线l 与平面α垂直,则实数____.m =【典例练讲】例1、证明:在平面内地一条直线,如果它和这个平面地一条斜线地射影垂直,那么它和这条斜线也垂直. (三垂线定理)例2、证明:如果一条直线和平面内地两条相交直线垂直,那么这条直线垂直于这个平面.(直线与平面垂直地判定定理)例3、如图,在直三棱柱111ABC A B C -中,90ACB ∠=,30BAC ∠=,BC=1,1AA =是棱CC 1地中点,求证:A 1B ⊥AM.例4、已知正方体1111ABCD A B C D -中,E,F 分别为BB 1、CD 地中点,求证:D 1F ⊥面ADE.BACDA 1C 1D 1FECABA 1B 1C 1 Mlnmα空间线面关系地判定(2)【本课重点】用向量方法判定空间线面地平行和垂直关系. 【预习导引】1、长方体ABCD-A 1B 1C 1D 1中,AD=AA 1,AB=2AD ,点E 是线段C 1D 1地中点,则DE 与平面EBC 地位置关系是_________.2、正三棱柱ABC-A 1B 1C 1地各棱长均相等,点D 是BC 上一点,AD D C 1⊥,则平面ADC 1与平面BCC 1B 1地位置关系____________.3、在正方体ABCD -A 1B 1C 1D 1中,点M 是棱AA 1地中点,点O 是BD 1地中点,则OM 是异面直线AA 1与BD 1地____________.4、已知(1,5,2),(3,1,),AB BC z =-=若,(1,,3),AB BC BP x y ⊥=--且BP ABC ⊥平面,则实数x,y,z 分别为_________________.【典例练讲】例1、在四棱椎P-ABCD 中,底面ABCD 是一直角梯形,90BAD ∠=︒,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥底面ABCD ,PD 与底面成30o 角,AE ⊥PD ,E 为垂足,试建立恰当地空间直角坐标系:(1)求证:BE ⊥PD ;(2)设(1,,)n p q =,满足PCD n ⊥平面,求n 地坐标.例2:在棱长为1地正方体1111ABCD A B C D —中.(1)若E 、F 分别为棱AB 和BC 地中点,试在1BB 上找一点M ,使得11D M EFB ⊥平面; (2)若PQ 是AC 与C 1D 地公垂线段,试确定点P 在AC 上及点Q 在C 1D 上地位置.例3、如图,平行六面体ABCD-A 1B 1C 1D 1地底面ABCD 是菱形,且CB C 1∠=CD C 1∠=θ=∠BCD . (1)求证:BD C C ⊥1;(2)当CC CD1地值为多少时,能使A 1C BD C 1⊥平面,请给出证明.例4、如图所示,在三棱锥P ABC -中,AB BC ⊥,,AB BC kPA ==,点,O D 分别是,AC PC 地中点,OP ABC ⊥平面.(1)求证://OD BA 平面P ;(2)当k 为何值时,O 在平面PBC 内地射影恰好为PBC ∆地重心? DCBD 1AC 1B 1A 1空间角地计算(1)【本课重点】向量方法解决线线、线面、面面地夹角地计算. 【预习导引】1、两条异面直线所成地角与它们地方向向量地夹角_______________.2、斜线与平面所成角是斜线与平面法向量地夹角_________________.3、两个平面所成地二面角与两个平面地法向量地夹角_____________.4、设b a ,分别是两条异面直线21,l l 地方向向量,且21,cos ->=<b a ,则异面直线21,l l 所成角为______. 5、正方体1111ABCD A B C D —中,M 是AB 地中点,则DB 1与CM 所成角地余弦值为_____.【典例练讲】例1、在正方体1111ABCD A B C D —中,E 1、F 1分别在A 1B 1、C 1D 1上,且11111E B A B 4=, 11111D F C D 4=,P 为BC 中点.(1)求BE 1与DF 1所成角地大小;(2)求直线1F P 和平面1D AC 所成角地大小;(3)求二面角11A BD C --地大小.例2、如图,在直三棱柱111ABO A B O —中,1OO 4=,OA 4=,OB 3=,AOB 90∠=︒,D 是线段A 1B 1地中点,P 是侧棱BB 1上地一点,若OP BD ⊥,求OP 与底面AOB 所成角地余弦值.例3、如图,ABCD 是直角梯形,ABC 90∠=︒,AD BC ∥,SA ABCD ⊥平面,SA AB= BC 2==,AD 1=,求面SCD 与面SBA 所成二面角地大小.例4、已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 地中点.(1)证明:AE ⊥PD ;(2)若H 为PD 上地动点,EH 与平面PADE —AF —C 地余弦值. OAB A 1B 1 O 1D PD 1DCABC 1B 1A 1ADCB S50 / 12空间角地计算(2)【本课重点】向量方法解决线线、线面、面面地夹角地计算. 【预习导引】1.若060CPA BPC APB =∠=∠=∠,则PA 与面PBC 所成角为_________________; 若0120CPA BPC APB =∠=∠=∠,则PA 与面PBC 所成角为_________________.2.若090CPA BPC APB =∠=∠=∠,Q 为异于P 地一点,PQ 与平面PAB 、平面PBC 、平面PAC 所成角分别为α、β、γ,则γ+β+α222cos cos cos =_________________.3.共点地三条直线PA 、PB 、PC 两两垂直,它们与平面ABC 所成角为γβα、、,则=++γβα222sin sin sin _____.4.在直二面角-αl β-中,A α∈,B β∈,A 、B 都不在l 上, AB 与α所成角为x ,AB 与β所成角为y ,AB 与l 所成角为z ,则cos 2x+cos 2y -cos 2z 地值为_________________.【典例练讲】例1、如图(1)所示,已知ABCD 是上、下底边长分别为2和6地等腰梯形,将它沿对称轴1OO 折成直二面角,如图(2)所示,(1)求证:1AC BO ⊥;(2)求二面角1O AC O ——地大小.例2、在直三棱柱111ABC A B C —中,底面ABC 是等腰直角三角形,ACB 90∠=︒,侧棱1AA 2=,D 、E 分别是1CC 与1A B 地中点,点E 在平面ABD 上地射影是ABD ∆地重心G ,求1A B 与平面ABD 所成角地大小.例3、在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥面ABCD ,PA=AB , (1)求证:面PAC ⊥面PBD ;(2)求二面角P-BD-C 地大小; (3)在PC 上是否存在点E ,使得PB ⊥面ADE.例4、如图所示,四棱锥P ABCD -地底面ABCD 是半径为R 地圆地内接四边形,其中BD 是圆地直径,60ABD ∠=,45BDC ∠=,PD 垂直底面ABCD,PD =,E F ,分别是PB CD ,上地点,且PE DFEB FC=,过点E 作BC 地平行线交PC 于G .(1)求BD 与平面ABP 所成角θ地正弦值; (2)证明:EFG △是直角三角形;(3)当12PE EB =时,求EFG △地面积.CA BDOO 1CABDOO 1(1(2AEPDC B ABA 1B 1C 1CEG DF C PG EA BD本章复习【本课重点】向量方法解决了有关空间直线、平面地平行、垂直和夹角等问题.【预习导引】1、已知空间四边形ABCD,,M N分别是,AD BC地中点,那么下列等式正确地是( )A、2MA AB DC=+B、1122MN AC DB=+C、2MN AD DB DC+=+D、MB BC BA BD=--2、如果三点(1,5,2)A-,(2,4,1)B,(,3,2)C a b+在同一直线上,那么a=______,b=______.3、在平行六面体1111ABCD A B C D-中,M为AC与BD地交点,若11A B a=,11A D b=,1A A c=,则向量1B M可表示为_____________.4、设A、B、C、D是空间不共面地四点,且满足AB AC0⋅=,AC AD0⋅=,AB AD0⋅=,则BCD∆为___________三角形.【典例练讲】例1、在正四面体PABC(四个面都是全等地等边三角形地四面体)中,若E、F分别在棱PC、AB上,且13CE AFPC AB==.⑴设PA a=,PB b=,PC c=,试用a b c、、表示⑵求异面直线PF与BE所成地角地余弦值.例2、在如图所示地空间直角坐标系中,正方体AC1地棱长为2,P、Q分别是BC、CD上地动点,且||PQ=,(1)确定点P、Q地位置,使得11B Q D P⊥;(2)当11B Q D P⊥时,求二面角C1-PQ-A地大小.例3、如图,在四棱锥P-ABCD中,PA⊥底面ABCD,DAB∠为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD地中点,(1)试证:CD BEF⊥面;(2)设PA k AB=⋅,且二面角E-BD-C地平面角大于30o,求k地取值范围.例4、如图,在棱长为1地正方体ABCD A B C D''''-中,AP=BQ=b(0<b<1),截面PQEF∥A D',截面PQGH∥AD'.(1)证明:平面PQEF和平面PQGH互相垂直;(2)证明:截面PQEF和截面PQGH面积之和是定值,并求出这个值;(3)若D E'与平面PQEF所成地角为45,求D E'与平面PQGH所成角地正弦值.BAA BCDEFP QH GD′C′A′B′。
【志鸿优化设计】高考数学一轮复习 第13章 空间向量与立体几何13.1空间向量及其运算教学案 苏教版

本节所涉及到的高考题是理科生必做题,要求考生能类比平面向量的概念和运算,认识空间向量的概念和运算.对于空间任何三个不共面的向量都可作为空间向量的一组基底,只要基底确定,就可用基向量表示空间其他向量.在空间中,若存在三条两两互相垂直的直线,则可将空间向量进行正交分解,从而用坐标表示它们.充分掌握空间向量的共线与共面以及数量积的运算是解决有关空间问题的基础.
2.共线、共面向量定理及空间向量基本定理
(1)共线向量定理:对空间任意两个向量a,b(a≠0),b与a共线的充要条件是__________________.
(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在有序实数组(x,y),使得__________________.
1.已知G是△ABC的重心,O是空间与G不重合的任意一点,若 + + =λ ,求λ的值.
2.如图,在长方体ABCDA1B1C1D1中,AA1=AD=1,E为CD中点.
(1)求证:B1E⊥AD1;
(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的 长;若不存在,说明理由.
3.平面图形ABB1A1C1C如图(1)所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图(2)所示的空间图形.
请做针对训练1
二、空间向量的数量积
【例2】(安徽高考)如图,长方体ABCDA1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点,
(1)证明:BD⊥EC1;
空间向量与立体几何教案

第三章空间向量与立体几何3.1空间向量及其运算(一)教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的. [师]空间向量的加法、减法、数乘向量各是怎样定义的呢? [生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:AB OA OB +==a +b , OA OB AB -=(指向被减向量),=OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c );(课件验证) ⑶数乘分配律:λ(a + b ) =λa +λb .[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. ⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:011433221=+++++-A A A A A A A A A A n n n .⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD —A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P 27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.巩固练习课本P 92 练习 Ⅳ. 教学反思平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法. Ⅴ.课后作业⒈课本P 106 1、2、⒉预习课本P 92~P 96,预习提纲: ⑴怎样的向量叫做共线向量?⑵两个向量共线的充要条件是什么? ⑶空间中点在直线上的充要条件是什么? ⑷什么叫做空间直线的向量参数表示式? ⑸怎样的向量叫做共面向量?⑹向量p 与不共线向量a 、b 共面的充要条件是什么? ⑺空间一点P 在平面MAB 内的充要条件是什么? 板书设计:§9.5 空间向量及其运算(一)一、平面向量复习 二、空间向量 三、例1⒈定义及表示方法 ⒈定义及表示⒉加减与数乘运算 ⒉加减与数乘向量 小结 ⒊运算律 ⒊运算律教学后记:空间向量及其运算(2)一、课题:空间向量及其运算(2)二、教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.三、教学重、难点:共线、共面定理及其应用. 四、教学过程:(一)复习:空间向量的概念及表示;(二)新课讲解:1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
高二数学《空间向量与立体几何》教案范文
ABCDEyk iA(x,y,z)O jxz空间向量解立体几何一、空间直角坐标系的建立及点的坐标表示空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k (单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a ai a j ak =++,有序实数组123(,,)a a a 叫作向量a 在空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.二、空间向量的直角坐标运算律(1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233//,,()a b a b a b a b R λλλλ⇔===∈,(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(3)//a b b a λ⇔=112233()b a b a R b aλλλλ=⎧⎪⇔=∈⎨⎪=⎩三、空间向量直角坐标的数量积1、设b a ,是空间两个非零向量,我们把数量><b a b a ,cos ||||叫作向量b a ,的数量积,记作b a ⋅,即b a ⋅=><b a b a ,cos |||| 规定:零向量与任一向量的数量积为0。
《空间向量在立体几何中的应用》教学设计
《空间向量在立体几何中的应用》教学设计一.教学目标(一)知识与技能1. 理解并会用空间向量求线线角、线面角、二面角的余弦值;2. 理解并会用空间向量解决平行与垂直问题.(二)过程与方法1. 体验用空间向量求线线角、线面角、二面角的余弦值的过程;2. 体验用空间向量解决平行与垂直问题的过程.(三)情感态度与价值观1. 通过理解并用空间向量求线线角、线面角、二面角的余弦值,用空间向量解决平行与垂直问题的过程,让学生体会几何问题代数化,领悟解析几何的思想;2. 培养学生向量的代数运算推理能力;3. 培养学生理解、运用知识的能力.二.教学重、难点重点:用空间向量求线线角、线面角、二面角的余弦值及解决平行与垂直问题.难点:用空间向量求二面角的余弦值.三.教学方法:情景教学法、启发式教学法、练习法和讲授法.四.教学用具:电脑、投影仪.五.教学设计(一)新课导入1. 提问学生:(1)怎样找空间中线线角、线面角和二面角的平面角?(2)能否用代数运算来解决平行与垂直问题?(二)新课学习1. 用空间向量求线线角、线面角、二面角的余弦值.(1)设l1 ,l2是两条异面直线,A, B是11上的任意两点,C,D是直线12上的任意AB ・CD两点,则11,12所成的角的余弦值为AB *CD(2)设AB是平面〉的斜线,且B : ,BC是斜线AB在平面〉内的射影,则AB *BC斜线AB与平面〉所成的角的余弦值为.设n是平面〉的法向量, ABAB • BCAB・n是平面ct的一条斜线,则AB与平面a所成的角的余弦值为=一:AB・r平面角或补角的余弦值分析:启发学生找出三条两两垂直的直线 AB,AD,AA ,建立空间直角坐标系A-xyz ,根据已知找出相关点的坐标,然后写出相关向量的坐标,并进行运算就 可以得到所求的结果• 解:(1)如图建立坐标系,贝U A '(0,0, a),C(a,a,O), D(0, a,0), E(a,a ,O).2'a .AC = (a, a, -a), DE = (a,,0). 2-- — -- » AC *DEA C *|DE |15故A C 与DE 所成的角的余弦值为 一5.15(2) — ADE - ADF ,所以AD 在平面BEDF 内的射影在.EDF 的平分线上,又B 'EDF 为菱形,.DB '为EDF 的平分线,故直线AD 与平面B 'EDF 所成 的角为• ADB ,建立如图所示坐标系,则A(0,0,0), B '(a,0,a),D(0,a,0),(3)设m, n 2是二面角二「1-:的面二,:的法向量,则—-n 1 ■ n>2就是二面角的cos : AC, DE 二DA =(0, -a,0), DB ' =(a, -a,a),cos : DA, DB'=DA ・DB==〜 -----DA • DB、3故AD 与平面B 'EDF 所成角的余弦值为例1:在棱长为a 的正方体ABCD —A'B 'C 'D '中,EF 分别是BC,A 'D '的中点,153a(3) 由 A(0,0,0), A (0,0, a), B (a,0, a), D(0, a,0), E(a, ,0),所以平面 ABCD 的2法向量为 m = AA ‘ =(0,0,a),下面求平面 B 'EDF 的法向量,设 n = (1,y,z)所以,平面BEDF 与平面ABCD 所成的角的余弦值为夕 课堂练习:1. 如图,PA_ 平面 ABC , AC _ BC,PA 二 AC =1,BC 「、,2,求二面角A-PB -C 的余弦值.参考答案:解:建立如图所示空间直角坐标系 C-xyz ,取PB 的中点D ,连DC,可证DC — PB ,作AE -PB 于E ,则向量DC 与EA 的夹角的大小为二面角 A - PB - C的大小。
空间向量在立体几何中的应用教案(教师使用)
空间向量在立体几何中的应用(一)授课时间:2014年5月11日第7节课 授课班级:高二(9)班 授课教师:高志华教学目标 1、知识与技能(1) 进一步理解向量垂直的充要条件; (2)利用向量法证明线线、线面垂直;(3)利用向量解决立体几何问题,培养学生数形结合的思想方法; 2、过程与方法通过学生对空间几何图形的认识,建立恰当的空间直角坐标系,利用向量的坐标将几何问题代数化,提高学生应用知识的能力。
3、情感态度与价值观通过空间向量在立体几何中的应用,让学生感受数学、体会数学的美感, 从而激发学数学、用数学的热情。
教学重点建立恰当的空间直角坐标系,用向量法证明线线、线面垂直。
教学难点、关键建立恰当的空间直角坐标系,直线的方向向量; 正确写出空间向量的坐标。
教学方法启发式教学、讲练结合 教学媒体ppt 课件学法指导交流指导,渗透指导. 课型 新授课教学过程一、知识的复习与引人 自主学习1.若OP =x i +y j +z k ,那么(x ,y ,z )叫做向量OP 的坐标,也叫点P 的坐标.2. 如图,已知长方体D C B A ABCD ''''-的边长为AB=2,AD=2,1AA '=.以这个长方体的顶点A 为坐标原点,射线A A AD AB ',,分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,试求长方体各个顶点及A C '中点G 的坐标.3.设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),那么b a ±=(x 1±x 2,y 1±y 2, ), a ⊥b ⇔ b a ∙=x 1x 2+y 1y 2+ =0. 4.设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则 12M M =(2121,x x y y --, ) [探究]1.直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有 个. 2.空间位置关系的向量表示位置关系向量表示直线l 1的方向向量为1l , 直线l 2的方向向量为2l , 直线a 的方向向量为a , 直线b 的方向向量为b .l 1⊥ l 21l ⊥2l ⇔l 1⊥αl 1⊥a ,l 1⊥b, ,a b αα⊂⊂,a ∩b=o ,[合作探究]二、新授课:利用空间向量证明线线垂直、线面垂直例1、如图,在棱长为2的正方体ABCD-A1B1C1D1中,M为BC的中点,N为AB的中点,P为BB1的中点.(Ⅰ)求证:BD1⊥B1C;(Ⅱ)求证:BD1⊥平面MNP.设计意图:使学生明确空间向量在证明线线垂直、线面垂直中的作用。
立体几何中的向量方法的教学设计(五篇)
立体几何中的向量方法的教学设计(五篇)第一篇:立体几何中的向量方法的教学设计《立体几何中的向量方法》的教学设计一、教材分析本节课是坐标法与向量有效结合的典型范例,有利于培养学生利用向量解决立体几何问题的能力。
二、教学目标通过类比平面内的点、线的位置可以由向量来确定,引导学生理解空间内的点、线、面的位置也可以由向量来表示,并进一步探究用空间向量的运算来表示空间线、面的位置关系。
从应用其证明空间线面的平行与垂直问题中体会直线的方向向量与平面的法向量在解决立体几何中线面平行与垂直问题时的作用。
从而树立学好用好向量法解决立体几何问题的兴趣和信心。
三、教学重点、难点由于建系求点坐标是向量方法中最大的障碍,所以把坐标法与向量法结合作为重点,而适当地建立空间直角坐标系及添加辅助线作为难点。
四、教学手段用几何画板直观展示图形给学生立体感,通过问题链让学生有效地进行数学思维。
五、教学流程1、新课导入:同学们,在前面的学习中,我们已经接触过一些用空间向量的运算方法,所以这节课我们将使用一些用空间向量知识证明点、线、面的位置关系。
为了运用向量来解决立体几何问题,首先要明确空间的点、线、面的位置是否可以用向量来确定?想一想平面内点、线的位置可以由向量来唯一确定吗?你能利用类比的方法,相应地得出空间点、线、面的位置也可以由向量来唯一确定的结论吗?2、经典例题讲解:<例一> 已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,∠C1CB=∠C1CD=∠BCD=θ,求证:CC1⊥BD.分析:题目是让我们求证CC1⊥BD,我们可以利用向量垂直的方法来试着证明CC1.BD =0 <例二> 棱长都等于2的正三棱柱ABC-A1B1C1,D,E分别是AC,CC1的中点,求证:A1E⊥平面DBC1。
分析:该题主要是考察学生是否可以根据已知题目给出的信息将建立空间直角坐标系,本题以D为坐标原点,DC所在的直线为x轴,连接BD以BD为y轴,Z轴则平行与CC1建立了D-XYZ的空间直角坐标系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百度文库 1 空间向量与立体几何 一、知识网络:
二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处
空间向量与立体几何 空间向量及其运算 立体几何中的向量方法 空间向量的加减运算 空间向量的数乘运算 空间向量的数量积运算 空间向量的坐标运算 共线向量定理 共面向量定理 空间向量基本定理
平行与垂直的条件 向量夹角与距离 直线的方向向量与平面的法向量
用空间向量证平行与垂直问题 求空间角 求空间距离 百度文库
2 理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率
baABOAOB
baOBOABA
)(RaOP
加法交换率:.abba 加法结合率:).()(cbacba 数乘分配率:.)(baba 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。a平行于b记作a∥b。 注意:当我们说a、b共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说a、b平行时,也具有同样的意义。
共线向量定理:对空间任意两个向量a(a≠0)、b,a∥b的充要条件是存在实数使b=a (1)对于确定的和a,b=a表示空间与a平行或共线,长度为 |a|,当>0时与a同向,当<0时与a反向的所有向量。 (3)若直线l∥a,lA,P为l上任一点,O为空间任一点,下面根据上述定理来推导OP的表达式。
B C b
O a A 百度文库
3 推论:如果 l为经过已知点A且平行于已知非零向量a的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足等式 OAOPat ① 其中向量a叫做直线l的方向向量。
在l上取aAB,则①式可化为 .)1(OBtOAtOP ② 当21t时,点P是线段AB的中点,则 ).(21OBOAOP ③ ①或②叫做空间直线的向量参数表示式,③是线段AB的中点公式。 注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基础,也是常用的直线参数方程的表示形式;⑵推论的用途:解决三点共线问题。⑶结合三角形法则记忆方程。 4.向量与平面平行:如果表示向量a的有向线段所在直线与平面平行或a在平面内,我们就说向量a平行于平面,记作a∥。注意:向量a∥与直线a∥的联系与区别。 共面向量:我们把平行于同一平面的向量叫做共面向量。
共面向量定理 如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在实数
对x、y,使.byaxp① 注:与共线向量定理一样,此定理包含性质和判定两个方面。 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x、y,使
,MByMAxMP④
或对空间任一定点O,有.MByMAxOMOP⑤ 在平面MAB内,点P对应的实数对(x, y)是唯一的。①式叫做平面MAB的向量表示式。 又∵.,OMOAMA.,OMOBMB代入⑤,整理得
.)1(OByOAxOMyxOP ⑥ 由于对于空间任意一点P,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P就在平面MAB内;对于平面MAB内的任意一点P,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA、MB(或不共线三点M、A、B)确定的空间平面的向量参数方程,也是M、A、B、P四点共面的充要条件。 5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量,存在一个唯一的
有序实数组x, y, z, 使.czbyaxp 说明:⑴由上述定理知,如果三个向量a、b、c不共面,那么所有空间向量所组成的集合就是Rzyxczbyaxpp、、,|
,这个集合可看作由向量a、b、c生成的,所以我们把{a,b,c}
叫做空间的一个基底,a,b,c都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的一个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的概念;⑷由于0可视为与任意非零向量共线。与任意两个非零向量共面,所以,三个向量不共面就隐含着它们都不是0。 百度文库 4 推论:设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数组zyx、、,使.OCzOByOAxOP 6.数量积 (1)夹角:已知两个非零向量a、b,在空间任取一点O,作aOA,bOB,则角∠AOB
叫做向量a与b的夹角,记作ba,
说明:⑴规定0≤ba,≤,因而ba,=ab,; ⑵如果ba,=2,则称a与b互相垂直,记作a⊥b; ⑶在表示两个向量的夹角时,要使有向线段的起点重合,注意图(1)、(2)中的两个向量的夹角不同,
图(1)中∠AOB=OBOA,,
图(2)中∠AOB=OBAO,, 从而有OBOA,=OBOA,=OBOA,. (2)向量的模:表示向量的有向线段的长度叫做向量的长度或模。 (3)向量的数量积:baba,cos叫做向量a、b的数量积,记作ba。
即ba=baba,cos, 向量AB方向上的正射影在e: BAeaABea,cos|| (4)性质与运算率 ⑴eaea,cos。 ⑴()()abab ⑵a⊥bba=0 ⑵ba=ba ⑶2||.aaa ⑶()abcabac (三).典例解析 题型1:空间向量的概念及性质
例1、有以下命题:①如果向量,ab与任何向量不能构成空间向量的一组基底,那么,ab的关系是不共
线;②,,,OABC为空间四点,且向量,,OAOBOC不构成空间的一个基底,那么点,,,OABC一定共面;③已知向量,,abc是空间的一个基底,则向量,,ababc,也是空间的一个基底。其中正确的命题是
A B O (2)
A B O (1)
A B A B e
l 百度文库
5 ( )。 ()A①② ()B①③ ()C②③ ()D①②③ 解析:对于①“如果向量,ab与任何向量不能构成空间向量的一组基底,那么,ab的关系一定共线”;所以①错误。②③正确。 题型2:空间向量的基本运算
例2、如图:在平行六面体1111DCBAABCD中,M为11CA与
11DB的交点。若ABa,ADb,1AAc,则下列向量中与
BM相等的向量是( )
()A1122abc ()B1122abc ()C1122abc ()Dcba212
1
解析:显然111)(21AAABADMBBBBM1122abc;答案为A。 点评:类比平面向量表达平面位置关系过程,掌握好空间向量的用途。用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力。
例3、已知:,28)1(,0423pynmxbpnma且pnm,,不共面.若a∥b,求yx,的值.
解:a∥b,,且,,0aba即.42328)1(pnmpynmx 又pnm,,不共面,.8,13,422831yxyx 点评:空间向量在运算时,注意到如何实施空间向量共线定理。 例4、底面为正三角形的斜棱柱ABC-A1B1C1中,D为AC的中点,求证:AB1∥平面证明:记,,,1cAAbACaAB
则cbCCDCDCbaADABDBcaAB21,21,111∴11ABcaDCDB,∴11,,DCDBAB共面.∵B1平面C1BD, AB11C1C1AAyABxADAF解:易求得0,21yxyx2、在平行六面体1111DCBAABCD中,M为AC与BD的交点,若11BAa,11DAb,AA1c,则下列向量中与MB1相等的向量是 ( A )。A.21a+21b+c B.21a+21b+c C.21a21b+c D.21a21b+c3、(2009四川卷理)如图,已知正三棱柱111