◇方位角问题√
专题 用勾股定理解决实际问题

专题四勾股定理的实际问题考点一树折断问题【方法点拨】注意树折断前后的长度是固定的。
1.如图所示,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前()米.A.15B.20C.3√7D.242.如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是()A.18m B.10m C.14m D.24m3.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?考点二梯子滑落问题【方法点拨】梯子滑落前后的长度是相等不变的,一般利用“两次勾股定理”求线段的长。
1.如图,一个梯子AB长10米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为6米,梯子滑动后停在DE的位置上,测得BD长为2米,求梯子顶端A下落了多少米?2.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?3.如图,长7.5m的梯子靠在墙上,梯子的底部离墙的底端4.5m.(1)求梯子的顶端到地面的距离;(2)由于地面有水,梯子底部向右滑动1.5m,则梯子顶端向下滑多少米?考点三台风问题【方法点拨】运用点到直线的距离最短,可判断是否受台风的影响。
1.如图,在点B正北方150√2cm的A处有一信号接收器,点C在点B的北偏东45°的方向,一电子狗P 从点B向点C的方向以5cm/s的速度运动并持续向四周发射信号,信号接收器接收信号的有效范围为170cm.(1)求出点A到线段BC的最小距离;(2)请判断点A处是否能接收到信号,并说明理由.若能接收信号,求出可接收信号的时间.2.在某台风登陆期间,A市接到台风警报时,在该市正南方向l50km的点B处台风中心正以20km/h的速度沿BC方向移动,已知城市A到BC的距离AD=90km.(1)台风中心经过多长时间从点B移动到点D?(2)如果在距台风中心30km的圆形区域内都有受到台风破坏的危险,为让处于点D的人脱离危险.人必须在接到台风警报后的几时内撤离(撤离速度为6km/h)?3.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿BC方向移动.已知AD⊥BC且AD=12AB,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?考点四方位角问题【方法点拨】掌握方位角的概念,可以巧用特殊方位角构造直角三角形求解。
浙教版七年级下册数学第1章 解直角三角形 用解直角三角形解方位角问题

(2) 渔船到达距离小岛 B 最近点后,按原航向继续航行 20 6n mile 到点 C 处时突然发生事故,渔船马上向小 岛 B 上的救援队求救,问救援队从 B 处出发沿着哪个 方向航行到达事故地点航行路程最短?最短航行路程 是多少?(结果保留根号)
解:在 Rt△BDC 中,tan∠C=BDDC=2200
解:如图,作点B关于MN的对称点G,则点B, D,E,G在一条直线上,连结AG交MN于点P, 连结PB,点P即为体育馆. 此时PA+PB=PA+PG=AG, 即A,B两所学校到体育馆的距离之和最短为 AG的长.
在 Rt△ADG 中,AD=3 km, DG=DE+EG=DE+BE=4+6=10(km), ∠ADG=90°, ∴AG= AD2+DG2= 32+102= 109(km). 答:最短距离为 109km.
(2)小船从点P处沿射线AP的方向以3千米/时的速度进行 沿途考察,航行一段时间后到达点C处,此时,从B测 得小船在北偏西15°方向,求小船沿途考察的时间.
解:如图,过点 B 作 BF⊥AC 于点 F.
根据题意得∠ABC=90°+15°=105°,
在 Rt△ABF 中,∠AFB=90°,∠BAF=30°,
10 如图,在一笔直的海岸线上有 A,B 两个观测站,A 观 测站在 B 观测站的正东方向,有一艘小船在点 P 处,从 A 处测得小船在北偏西 60°方向,从 B 处测得小船在北 偏东 45°方向,点 P 到点 B 的距离是 3 2千米.(注:结 果有根号的保留根号)
(1)求 A,B 两观测站之间的距离;
高限速 60 千米/时,此车__没__有__超__速____.(填“超速”或“没 有超速”)(参考数据: 3≈1.732)
3 【中考·绵阳】一艘在南北航线上的测量船,于 A 点处 测得海岛 B 在点 A 的南偏东 30°方向,继续向南航行
象限角和方位角的关系

象限角和方位角的关系
真方位角与象限角关系1、第一象限:真方位角=象限角2、第二象限:真方位角=180°-象限角3、第三象限:真方位角=180°+象限角4、第四象限:真方位角=360°-象限角。
象限角和方位角的关系有哪些
真方位角与象限角关系1、第一象限:真方位角=象限角2、第二象限:真方位角=180°-象限角3、第三象限:真方位角=180°+象限角4、第四象限:真方位角=360°-象限角。
如果知道了直线的方位角,就可以换算出它的象限角,反之,知道了象限也就可以推算出方位角。
两者换算关系:第一象限α=R;第二象限α=180°-R;第三象限α=180°+R;第四象限α=360°-R。
坐标方位角α指的是以平行于X轴的方向为基准方向,于某边的一个端点,从基准方向顺时针转至该边的水平角度(0~360°)。
象限角R 指从X方向顺时针或逆时针转至某直线的水平角度(0~90°)。
从坐标纵轴的北端或南端顺时针或逆时针起算至直线的锐角称为坐标象限角。
其角值变化从0°~90°,为了表示直线的方向,应分别注明北偏东、北偏西或南偏东、南偏西。
如北东85°,南西47°等。
显然,如果知道了直线的方位角,就可以换算出它的象限角,反之,知道了象限也就可以推算出方位角。
真方位角与象限角关系
1、第一象限:真方位角=象限角
2、第二象限:真方位角=180°-象限角
3、第三象限:真方位角=180°+象限角
4、第四象限:真方位角=360°-象限角。
坐标方位角的推算

使用时的注意事项
01
02
03
了解精度限制
在使用坐标方位角推算结 果前,应了解其精度限制, 避免误用。
注意适用范围
不同坐标系、不同计算方 法得到的坐标方位角可能 存在差异,使用时应明确 适用范围。
定期校准
对使用的设备和软件进行 定期校准和维护,确保其 性能和准确性。
05
总结与展望
总结
坐标方位角的概念
02
坐标方位角的计算方法
计算公式
坐标方位角计算公式
arctan((y2-y1)/(x2-x1))。其中,(x1, y1)和(x2, y2)分别为两个已 知点的平面直角坐标。
真方位角计算公式
arctan((y2-y1)/(x2-x1)) + (如果 x2 > x1,则取0°,否则取180°)。
磁方位角计算公式
应用领域的拓展
随着人们对地理信息和位置服务的不断需求,坐标方位角的 应用领域也将不断拓展。例如,在智能交通、城市规划、环 境保护等领域中,坐标方位角将发挥更加重要的作用。
展望
与其他技术的结合
坐标方位角可以与其他技术结合使用 ,例如与GIS技术、遥感技术、人工智 能等技术的结合,可以实现更加复杂 和精细的地理信息处理和应用。
THANKS
感谢观看
将点A和点B的坐标代入坐标方位角计算公式,得到arctan((8-4)/(6-3)) = arctan(4/3) = 53.13°。
因此,AB的坐标方位角为53.13°。
03
坐标方位角的应用
在地图导航中的应用
确定方向
坐标方位角是地图上两点之间的方向线与正北方向的夹角,通过计算坐标方位 角,可以确定地图上任意两点之间的相对方向,从而在地图导航中确定正确的 路径。
专题09 几何图形初步中角的比较与运算重难点题型分类(解析版)—七年级数学上册重难点必刷题(人教版)

专题09几何图形初步中角的比较与运算重难点题型分类(解析版)专题简介:本份资料包含《几何图形初步》这一章中角的比较与运算这一模块除动角问题压轴题之外全部重要题型,所选题目源自各名校月考、期末试题中的典型考题,具体包含六类题型:四类小题(方位角问题、角度单位换算、余角补角问题、重叠与折叠图形中的角度计算)、两类求角度的中档大题(算术方法求角度、方程方法求角度),适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一:方位角问题1.(雅礼)如图,下列说法错误的是()A.OA的方向是北偏西60°B.OB的方向是西南方向C.OC的方向是南偏东60°D.OD的方向是北偏东30°【解答】解:A、OA的方向是北偏西30°,故原选项错误,符合题意;B、OB的方向是西南方向,正确,不合题意;C、OC的方向是南偏东60°,正确,不合题意;D、OD的方向是北偏东30°,正确,不合题意.故选:A.2.(广益)如图,下列说法错误的是()A.OA的方向是北偏西60°B.OB的方向是西南方向C.OC的方向是南偏东60°D.OD的方向是北偏东30°【解答】解:A、OA的方向是北偏西30°,故原选项错误,符合题意;B、OB的方向是西南方向,正确,不合题意;C、OC的方向是南偏东60°,正确,不合题意;D、OD的方向是北偏东30°,正确,不合题意.故选:A.3.(一中双语)某货轮O在航行过程中,发现灯塔A在它的南偏东65°方向上,同时在它的北偏东40°方向发现了一座海岛B,则∠AOB的度数是.【解答】解:如图:∠AOB=180°﹣40°﹣65°=75°.故答案是:75°.4.(明德)如图,OA表示北偏东15°方向的一条射线,OB表示南偏西55°方向的一条射线,则∠AOB的度数是()A.160°B.150°C.140°D.130°【解答】由题意得:∠AOD=15°,∠BOC=55°,∴∠BOD=180°﹣∠BOC=125°,∴∠AOB=∠BOD+∠AOD=140°,故选:C.5.(雅礼)如图,甲从A点出发沿北偏东65°方向行进至点B,乙从A点出发沿南偏西20°方向行进至点C,则∠BAC等于()A.125°B.135°C.160°D.165°【解答】解:如图,根据题意得∠1=65°,∠2=20°,∴∠3=90°﹣∠1=90°﹣65°=25°,∴∠BAC=25°+90°+20°=135°.故选:B.题型二:角度单位换算6.(雅礼)比较大小:38°15′38.15°(选填“>”“<”“=”).【解答】解:∵0.15°=0.15×60′=9′,∴38.15°=38°9′,∴38°15′>38°9′,即38°15′>38.15°,故答案为:>.7.(青竹湖)计算:2714'24''︒=︒【解答】解:答案为:27.24°.8.(长郡)用度、分、秒表示21.24︒为()A.211424'''︒ B.212024'''︒ C.2134'︒ D.21︒【解答】解:21.24°=21°+0.24×60′=21°+14′+0.4×60″=21°14′24″,故选:A .9.(中雅)计算(1)4839673121175'+'-'⨯ (2)90513711''-' 【解答】解:(1)答案为:945' ;(2))答案为:3812'49'' .题型二:余角、补角问题10.(长郡)如果∠A =36°28',那么∠A 的余角为.【解答】解:∠A 的余角=90°﹣∠A =90°﹣36°28′=89°60′﹣36°28′=53°32′;故答案为:53°32′.11.(雅礼)已知一个锐角为30°51',则它的余角的度数为.【解答】解:∵一个锐角为30°51',∴它的余角的度数为:9°﹣30°51'=59°9'.故答案为:59°9'.12.(广益)已知∠α=36°25′,则∠α的补角为.【解答】解:∵∠α=36°25′,∴∠α=180°﹣36°25′=143°35′.故答案为:143°35′.13.(北雅)若∠α的补角为76°28′,则∠α=.【解答】解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为:103°32′.14.(一中)若∠α的补角为76°28′,则∠α=.【解答】解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为:103°32′.15.(北雅)如图,点O 在直线AB 上,∠COB =∠EOD =90°,那么下列说法错误的是()A.∠1与∠2相等B.∠AOE与∠2互余C.∠AOE与∠1互余D.∠AOE与∠COD互余【解答】解:∵∠COB=∠EOD=90°,∴∠1+∠COD=∠2+∠COD=90°,∴∠1=∠2,故A选项正确;∵∠AOE+∠1=90°,∴∠AOE+∠2=90°,即∠AOE与∠2互余,故B选项正确;∵∠AOE+∠1=90°,∴∠AOE与∠1互余,故C选项正确;∵∠AOE+∠1=90°,∠COD+∠2=90°,∠1=∠2,∴∠∠AOE =∠COD,故D选项错误.故选:D.16.(一中)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④【解答】解:图①,∠α+∠β=180°﹣90°=90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故选:A.17.(长郡)如图,点O在直线AB上,∠COB=∠EOD=90°,那么下列说法错误的是()A.∠1与∠2相等B.∠AOE与∠2互余C.∠AOD与∠1互补D.∠AOE与∠COD互余【解答】解:∵∠COB=∠EOD=90°,∴∠1+∠COD=∠2+∠COD=90°,∴∠1=∠2,故A选项正确;∵∠AOE+∠1=90°,∴∠AOE+∠2=90°,即∠AOE与∠2互余,故B选项正确;∵∠COB=90°,∵∠AOD+∠2=180°,∵∠1=∠2,∴∠AOD+∠1=180°,即∠AOD与∠1互补,故C选项正确;无法判断∠AOE与∠COD是否互余,D选项错误;故选:D.18.(长郡)若∠1与∠2互为余角,∠1与∠3互为补角,则下列结论:①∠3﹣∠2=90°;②∠3+∠2=270°﹣2∠1;③∠3﹣∠1=2∠2;④∠3<∠1+∠2.其中正确的是()A .①B .①②C .①②③D .①②③④【解答】解:根据题意得:(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴(2)﹣(1)得,∠3﹣∠2=90°,∴①正确;(1)+(2)得,∠1+∠2+∠1+∠3=270°,∴∠3+∠2=270°﹣2∠1,∴②正确;(2)﹣(1)×2得,∠3﹣∠1=2∠2,∴③正确;∵(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴2(∠1+∠2)=180°,∴∠3=180°﹣∠1=2(∠1+∠2)﹣∠1=∠1+2∠2,∴∠3>∠1+∠2,∴④错误;故选:C .题型四:重叠与折叠图形中的角度计算19.已知一副直角三角板按如图的位置放置,其中∠COD =45°,∠AOB =60°,经测量∠BOC =90°,则∠AOD 度数为()A .15°B .25°C .30°D .45°【详解】解:∵∠COD =45°,∠BOC =90°,∴∠DOB =∠BOC -∠COD =45°.∴∠AOD =∠AOB -∠DOB =15°.故选:A .20.(2022·湖南)如图,是一副三角板的摆放图,将一个三角板60°的角的顶点与另一个三角板的直角顶点重合,20BAE ∠=︒,则CAD ∠的大小是().A .60°B .50°C .40°D .30°【详解】解:由题意得:∠DAE =90°,∠BAC =60°,∵∠BAE =20°,∴∠CAE =∠BAC −∠BAE =60°-20°=40°,∵∠CAE +∠CAD =∠DAE =90°,∴∠CAD =90°−∠CAE =90°-40°=50°,故选:B .21.(广益)如图,将一副三角板叠放在一起,使直角的顶点重合于点O ,并能绕O 点自由旋转,若∠DOB =65°,则∠AOC +∠DOB =.【解答】解:如右图所示,∵∠AOD +∠BOD =90°,∴∠AOD =90°﹣∠BOD ,∴∠AOC +∠DOB =∠AOD +90°+∠DOB =90°﹣∠BOD +90°+∠DOB =180°.故答案是180°.22.(广益)如图,把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处,若∠1=70°,求∠2的度数是()A .70°B .65°C .60°D .55°【解答】解:根据折叠的性质得:∠2=∠BOG ,∵∠1=70°,∴∠B ′OG +∠BOG =110°,∴∠2=×110°=55°,故选:D .23.(广益)如图1拿一张长方形纸片,按图中所示的方法折叠一角,得到折痕EF ,如果35DFE ∠=︒,则DFA ∠=______.【解答】解:答案为:110°.24.(中雅)如图所示,将长方体ABCD 的一角沿AE 折叠,若32BAD '∠= ,那么EAD '∠=__________.【解答】解:答案为:29°.题型五:算术方法求角度25.(雅礼)补全推导过程:如图,已知∠AOB=90°,∠AOC=60°,OD平分∠BOC,OE平分∠AOC.求∠DOE的度数.解:∵∠AOB=90°,∠AOC=60°,∴∠BOC=∠AOB+∠AOC=°.∵OD平分∠BOC,∴∠DOC=∠=°.∵OE平分∠AOC,∴∠EOC=∠=°.∴∠DOE=∠﹣∠=°.【解答】解:∵∠AOB=90°,∠AOC=60°,∴∠BOC=∠AOB+∠AOC=150°.∵OD平分∠BOC,∴∠DOC=∠BOC=75°.∵OE平分∠AOC,∴∠EOC=∠AOC=30°.∴∠DOE=∠DOC﹣∠EOC =45°.故答案为:150;BOC;75;AOC;30;DOC;EOC;45.26.(明德)如图,O为直线AB上一点,OC平分∠AOD,∠AOC=60°,∠BOD=3∠DOE,求∠DOE的度数.【解答】解:∵OC平分∠AOD,∠AOC=60°,∴∠AOD=120°,∵∠AOD+∠BOD=180°,∴∠BOD=60°,∵∠BOD=3∠DOE,∴∠DOE=60°=20°.27.(一中)如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC的度数;(2)过点O作射线OD,若∠AOD=∠AOB,求∠COD的度数.【解答】解:(1)∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=∠AOB=×120°=40°;(2)∵∠AOD=∠AOB,∴∠AOD=60°,当OD在∠AOB内时,∠COD=∠AOD﹣∠AOC=20°,当OD在∠AOB外时,∠COD=∠AOC+∠AOD=100°.故∠COD的度数为20°或100°.28.(明德)如图,O是直线AB上一点,∠DOB=90°,∠EOC=90°.(1)如果∠DOE=50°,求∠BOC的度数;(2)若OE平分∠AOD,求∠BOE.【解答】解:(1)∵∠EOC=90°,∠DOE=50°,∴∠DOC=40°,∵∠DOB=90°,∴∠BOC=50°;(2)∵∠DOB=90°,∴∠DOA=90°,∵OE平分∠AOD,∴∠AOE=45°,∴∠BOE=135°.29.(长郡)如图,O为直线AB上一点,∠DOE=90°,OD是∠AOC的角平分线,若∠AOC=70°.(1)求∠BOD的度数.(2)试判断OE是否平分∠BOC,并说明理由.【解答】解:(1)∵OD是∠AOC的角平分线(已知),∠AOC=70°∴∠AOD=∠COD=∠AOC=×70°=35°(角平分线定义),∵∠AOD+∠BOD=180°∴∠BOD=180°﹣∠AOD=180°﹣35°=145°;(2)答:OE平分∠BOC.理由∵∠COE+∠COD=∠DOE,∠DOE=90°,∴∠COE=∠DOE﹣∠COD =90°﹣35°=55°.∵∠AOD+∠DOE+∠BOE=180°∴∠BOE=180°﹣∠AOD﹣∠DOE=180°﹣35°﹣90°=55°,∴∠COE=∠BOE=55°,∴OE平分∠BOC.30.(雅礼)如图,∠AOB=40°,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠DOE=10°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,求∠COE的度数.【解答】解:(1)∵∠AOB=40°,OB是∠AOC的平分线,∴∠BOC=∠AOB=40°,∵OD是∠COE的平分线,∠DOE=10°,∴∠COD=∠DOE=10°,∴∠BOD=∠BOC+∠COD=40°+10°=50°;(2)∵∠AOB=40°,OB是∠AOC的平分线,∴∠AOC=2∠AOB=80°,∠BOC=∠AOB=40°,∵∠AOD与∠BOD互补,∴∠AOD+∠BOD=180°,∴80°+∠COD+40°+∠COD=180°,解得∠COD =30°,∵OD是∠COE的平分线,∴∠COE=2∠COD=60°.题型六:方程方法求角度31.(中雅)如图所示,已知2∠=∠,∠AOC的余角比∠BOC小30°.AOC BOC(1)求∠AOB的度数;(2)过点O作射线OD,使得4∠=∠,请你求出∠COD的度数.AOC AOD【解答】解:(1)设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣30°,解得:x=40°,即∠AOB=40°.(2)由(1)得,∠AOC=80°,①当射线OD在∠AOC内部时,∠AOD=20°,则∠COD=∠AOC﹣∠AOD=60°;②当射线OD 在∠AOC 外部时,∠AOD =20°,则∠COD =∠AOC +∠AOD =100°.32.(长郡)角度计算题:如图,已知O 为AD 上一点,AOB ∠与AOC ∠互补,ON 平分AOB ∠,OM 平分AOC ∠,若是42MON ∠= ,求AOB ∠与AOC ∠的度数.【解答】解:设∠AOB =x °,因为∠AOC 与∠AOB 互补,则∠AOC =180°﹣x °.由题意,得﹣=42.∴180﹣x ﹣x =84,∴﹣2x =﹣96,解得x =48,故∠AOB =48°,∠AOC =132°.33.(长郡)已知:如图,AOB ∠被分成::2:3:4AOC COD DOB ∠∠∠=,OM 平分AOC ∠,ON 平分DOB ∠,且90MON ∠=︒,求AOB ∠的度数.【解答】解:设∠AOC =2x ,∠COD =3x ,∠DOB =4x ,则∠AOB =9x ,则∵OM 平分∠AOC ,ON 平分∠DOB ,∴∠MOC =x ,∠NOD =2x ,∴∠MON =x +3x +2x =6x ,又∵∠MON =90°,∴6x =90°,∴x =15°,∴∠AOB =135°.34.(广益)已知,如图,∠AOB :∠BOC =3:2,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,且∠BOE =16°.(1)求∠DOE 的度数;(2)求∠AOC 的度数.【解答】解:(1)设∠AOB =3x ,∠BOC =2x .则∠AOC =∠AOB +∠BOC =5x .∵OE是∠AOC的平分线,∴∠AOE=∠AOC =x,∴∠BOE=∠AOB﹣∠AOE=3x−x =x,∵∠BOE=16°,∴x=16°,解得,x=32°,∵OD是∠BOC的平分线,∴∠BOD=∠BOC=x=32°,∴∠DOE=∠DOB+∠BOE=32°+16°=48°.(2)∠AOC=∠AOB+∠BOC=5x=160°35.(长郡)如图,点O在直线AB上,∠AOC与∠COD互补,OE平分∠AOC.(1)若∠BOC=40°,则∠DOE的度数为;(2)若∠DOE=15°,求∠BOD的度数.【解答】解:(1)因为点O在直线AB上,∠BOC=40°,所以∠AOC=140°,又∠AOC与∠COD互补,故∠COD=40°,因为OE平分∠AOC,所以∠EOC=70°,∴∠DOE=30°.故答案为:30°.(2)因为点O在直线AB上,所以∠AOC与∠BOC互补,又∠AOC与∠COD互补,所以∠BOC=∠COD,因为OE平分∠AOC,则∠AOE=∠EOC,设∠BOC为x,可得:2(15°+x)+x=180°,解得:x=50°,所以∠BOD=2∠BOC=100°.11。
【浙教版】2022年九年级(上)期末复习培优提分专项训练:解直角三角形的应用(方位角问题)(原卷)

【浙教版】2022年九年级(上)期末复习培优提分专项训练解直角三角形的应用(方位角问题)1.(2022·浙江宁波·一模)如图,某渔船沿正东方向以10海里/小时的速度航行,在A处测得岛C在北偏东60°方向,1小时后渔船航行到B处,测得岛C在北偏东30°方向,已知该岛周围9海里内有暗礁.参考数据:√3≈1.732,sin75°≈0.966,cos75°≈0.259.(1)B处离岛C有多远?如果渔船继续向东航行,有无触礁危险?(2)如果渔船在B处改为向东偏南15°方向航行,有无触礁危险?2.(2022·浙江宁波·九年级专题练习)我国海域辽阔,渔业资源丰富,如图,现有渔船以18√2km/ℎ的速度在海面上沿正东方向航行,当行至A处时,发现它的东南方向有一灯塔B,船续向东航行30min后达到C处,发现灯塔B在它的南偏东15°方向.(1)求此时渔船与灯塔B的距离.(2)若渔船继续向东行驶,还要行驶多少千米与B的距离达到最小值.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)3.(2022·浙江宁波·一模)如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向.(1)直接写出∠ACB的度数是;(2)测量发现∠BAC=20°,A岛与C岛之间的距离AC=20海里,求A岛与B岛之间的距离.(结果精确到0.1海里)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)4.(2021·浙江丽水·一模)如图,某海岸边有B,C两个码头,C码头位于B码头的正东方向,距离B码头60海里.甲、乙两船同时从A岛出发,甲船向位于A岛正北方向的B码头航行,乙船向位于A岛北偏东30°方向的C码头航行,当甲船到达距离B码头45海里的E 处时,乙船位于甲船北偏东60°方向的D处,求此时乙船与C码头之间的距离.(结果保留根号)5.(2022·浙江·一模)小明在A点测得C点在A点的北偏西75°方向,并由A点向南偏西45°方向行走到达B点测得C点在B点的北偏西45°方向,继续向正西方向行走2km后到达D 点,测得C点在D点的北偏东22.5°方向,求A,C两点之间的距离.(结果保留0.1km.参数数据√3≈1.732)6.(2022·浙江金华·一模)某海域有A,B两个岛屿,B岛在A岛北偏西30°方向上,距A岛120海里.有一艘船从A岛出发,沿东北方向行驶一段距离后,到达位于B岛南偏东75°方向的C处.(1)求∠BCA的度数.(2)求BC的长.7.(2022·浙江宁波·九年级期末)如图,某渔船向正东方向以14海里/时的速度航行,在A处测得小岛C在北偏东70∘方向,2小时后渔船到达B处,测得小岛C在北偏东45∘方向,已知该岛周围20海里范围内有暗礁.(参考数据:sin70∘≈0.94,cos70∘≈0.34,tan70∘≈2.75,√2≈1.41)(1)求B处距离小岛C的距离(精确到0.1海里);(2)为安全起见,渔船在B处向东偏南转了25∘继续航行,通过计算说明船是否安全?8.(2021·浙江·杭州外国语学校九年级阶段练习)阅读下列材料,并解决问题.如图(1),在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c,过点A作AD∠BC于点D,则sinB=ADc ,sinC=ADb,即AD=c sin B,AD=b sin C.于是c sin B=b sin C,即bsinB=csinC.同理有:csinC =asinA,asinA=bsinB,所以asinA=bsinB=csinC.即在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论就可以求出其余三个未知元素.(1)如图(2),一货轮在B处测得灯塔A在货轮的北偏东15°的方向上,随后货轮以80海里/时的速度向正东方向航行,半小时后到达C处,此时又测得灯塔A在货轮的北偏西30°的方向上,求此时货船距灯塔A的距离AC.(2)在(1)的条件下,试求75°的正弦值.(结果保留根号)9.(2020·浙江衢州·九年级期末)某社会实践活动小组实地测量河两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走50m 到达C点,测得点B在点C的北偏东60°方向,如图.(1)求∠CBA的度数;(2)求这段河的宽度.(结果精确到1m)10.(2022·重庆·四川外国语大学附属外国语学校九年级期中)期中测试临近学生都在紧张的复习中,小甘和小西相约周末去图书馆复习,如图,小甘从家A地沿着正东方向走900m 到小西家B地,经测量图书馆C地在B地的北偏东15°,C地在A地的东北方向.(1)求AC的距离:(2)两人准备从B地出发,实然接到疾控中心通知,一名确诊的新冠阳性患者昨天经过了C 地,并沿着C地南偏东22°走了1800m到达D地,根据相关要求,凡是确诊者途径之处800m 区域以内都会划为管控区,问:小西家会被划为管控区吗?请说明理由(参考数据:√3≈1.73,√2≈1.41,√6≈2.45,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).11.(2021·河南·辉县市太行中学九年级期中)如图,一位自行车爱好者沿宿鸭湖湖边正东方向笔直的公路BC骑行,在B地测得湖中小岛上某建筑物A在北偏东45°方向,行驶12min 后到达C地,测得建筑物A在北偏西60°方向,如果此自行车爱好者的速度为60km/h,求建筑物A到公路BC的距离.(结果保留根号)【分母有理化:√3+1=√3−1(√3+1))(√3-−1)=√3−12】12.(2022·上海市民办新复兴初级中学九年级期中)如图,一艘海岸巡逻快艇在基地A的正东方向,且距A地13海里的B处巡逻.突然接到基地A命令,要该快艇前往C岛,接送一名病人到基地A的医院救治.已知C岛在基地A的南偏东α的方向,且在B处南偏东β的方向,巡逻快艇从B处出发,平均每小时行驶30海里,需要多少时间才能把病人送到基地A的医院?(参考数据:tanα=158,sinβ=45)13.(2022·山东青岛·九年级期中)九年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了220米,到达菜园B处锄草,再从B处沿正西方向走了200米,到达果园C处采摘水果,再向南偏东37°方向走了200米,到达手工坊D处进行手工制作,最后从D处回到门口A处.(1)求从手工坊D处回到门口A处的距离.(2)求从手工坊D处回到门口A处的方位角.[参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75]14.(2022·重庆一中九年级阶段练习)公园大门A的正东方向原本有一条通往湖心小岛B的景观步道AB,但为了让市民朋友多角度欣赏公园景色,市政府决定新修一条景观步道通往湖心小岛B,新步道从A出发通向C地,C位于A的北偏西45°方向,AC=800米,再从C 地到达湖心小岛B,其中C位于B的北偏西60°方向,甲工程队以每天60米的速度进行单独施工,2天后,为了加快工程进度,乙工程队以每天90米的速度加入项目建设,直到两队起完成景观步道的修建.(参考数据:√2≈1.4)(1)求A、B两地的距离(结果保留根号);(2)新的景观步道能否在15天内完成?请说明理由.15.(2022·山东·济南市大学城实验学校九年级阶段练习)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:√2≈1.4,√3≈1.7)16.(2022·上海·九年级专题练习)如图,在东西方向的海岸线l上有长为300米的码头AB,在码头的最西端A处测得轮船M在它的北偏东45°方向上;同一时刻,在A点正东方向距离100米的C处测得轮船M在北偏东22°方向上.(参考数据:sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,√3≈1.732.)(1)求轮船M到海岸线l的距离;(结果精确到0.01米)(2)如果轮船M沿着南偏东30°的方向航行,那么该轮船能否行至码头AB靠岸?请说明理由.17.(2022·上海·九年级专题练习)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(参考数据:√3≈1.73,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).18.(2022·重庆八中九年级阶段练习)如图,在竖直的海岸线上有长为68米的码头AB,现有一艘货船在点P处,从码头A处测得货船在A的东南方向,若沿海岸线向南走30米后到达点C,在C处测得货船在C的南偏东75°方向.(参考数据:√2≈1.41,√3≈1.73,√6≈2.45)(1)求货船到A的距离(结果精确到1米);(2)若货船从点P出发,沿着南偏西60°的方向行驶,请问该货船能否行驶到码头所在的线段AB上?请说明理由.19.(2022·四川·仁寿县黑龙滩镇光相九年制学校九年级期末)小明周未与父母一起到眉山湿地公园进行数学实践活动,在A处看到B,C处各有一棵被湖水隔开的银杏树.他在A处测得B在西北方向,C在北偏东30°方向.他从A处走了20米到达B处,又在B处测得C在北偏东60°方向.(1)求∠C的度数;(2)求两棵银杏树B,C之间的距离.(结果保留根号)20.(2022·广东·广州市越秀区育才实验学校二模)如图,我国一艘海监执法船在南海海域进行常态化巡航,在A处测得北偏东30°方向距离为40海里的B处有一艘可疑船只正在向正东方向航行,我海监执法船便迅速沿北偏东75°方向前往监视巡查,经过一段时间在C处成功拦截可疑船只.求我海监执法船前往监视巡查的过程中行驶的路程(即AC长)?(结果精确到0.1海里,√3≈1.732,√2≈1.414,√6≈2.449)21.(2021·山东·泰安市泰山区大津口中学九年级阶段练习)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)22.(2022·湖南湘潭·八年级期末)如图,一艘渔船以30海里/h的速度由西向东追赶鱼群,在A处测得小岛C在船的北偏东60°方向;40min后,渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里以内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?23.(2022·黑龙江·哈尔滨市风华中学校九年级阶段练习)如图,海中有一个小岛A,它周围8n mile 内有暗礁. 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60∘方向上,航行12n mile 到达D点,这时测得小岛A在北偏东30∘方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?24.(2022·黑龙江·大庆市祥阁学校九年级期中)为了维护我国海域安全,某巡逻艇从码头A 出发向东航行40海里后到达B处,再从B处沿北偏东30°方向行驶40海里到达C处,然后沿北偏西60°方向航行到D处,发现码头A在正南方向.求此时巡逻艇与码头A的距离.(结果保留根号)25.(2022·四川资阳·中考真题)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100√3米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)26.(2022·重庆市江津中学校八年级阶段练习)某海域有一小岛P,在以P为圆心,半径r 为10(3+√3)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20√5海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A、P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.27.(2022·重庆市第三十七中学校九年级阶段练习)海洋安全预警系统为海洋安全管理起到了巨大作用,某天海洋监控中心收到信息,在A的北偏西60°方向的120海里的C处,疑似有海盗船在沿CB方向行驶,C在B的北偏西30°方向上,监控中心向A正西方向的B处海警船发出指令,海警船立即从B出发沿BC方向行驶,在距离A为60√2海里的D处拦截到该可疑船只.(1)求点A到直线CB的距离;(2)若海警船的速度是30海里/小时,那么海警船能否在1小时内拦截到可疑船只?请说明理由.(结果保留一位小数,参考数据:√3≈1.73)28.(2021·河南·油田十中九年级阶段练习)如图,是学生小金家附近的一块三角形绿化区的示意图;为增强体质,他每天早晨都沿着绿化区周边小路AB,BC,CA跑步(小路的宽度不计),观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B 在点C的北偏西75°方向上,AC间距离为400米.小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(结果精确到1米,参考数据:√2≈1.4,√3≈1.7)29.(2022·贵州安顺·中考真题)随着我国科学技术的不断发展,5G移动通信技术日趋完善.某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G 基站塔AB ,小明在坡脚C 处测得塔顶A 的仰角为45°,然后他沿坡面CB 行走了50米到达D 处,D 处离地平面的距离为30米且在D 处测得塔顶A 的仰角53°.(点A 、B 、C 、D 、E 均在同一平面内,CE 为地平线)(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)求坡面CB 的坡度;(2)求基站塔AB 的高.30.(2022·辽宁丹东·中考真题)如图,我国某海域有A ,B ,C 三个港口,B 港口在C 港口正西方向33.2nmile (nmile 是单位“海里”的符号)处,A 港口在B 港口北偏西50°方向且距离B 港口40nmile 处,在A 港口北偏东53°方向且位于C 港口正北方向的点D 处有一艘货船,求货船与A 港口之间的距离.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)。
仰角、俯角和方位角
变式: 沿着坡角为30 °的斜坡前进300米到达D 点,在D点测得山顶A的仰角为600 ,求山高AB。
A
300
D 60° F x
E
30°
C
x
B
3、在山顶上D处有一铁塔,在塔顶B处测得地面上一 点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已 知塔高BD=30米,求山高CD。 B α
30米30°
①弄清已知条件及要求解的问题。 ②画图将实际问题转化为数学问题。 ③寻找解题途径。 ⑷解、答
(2)、如果图中无直角三角形,可适当地作垂 线等辅助线,“化斜为直”,“善于转化”为 解直角三角形问题。 (3)、解直角三角形的有关问题常通过设未知 数、列方程(组)来解,也比较容易。常常设 图形中具有“双重身份”的线段或者是两个三 角形联系密切的特殊线段为未知数。
·
F
·
12
11
10
30°
9
B
·
如图, 海上有一灯塔P, 在它周围3海里内有 暗礁. 一艘客轮以9海里/时的速度由西向东 航行, 行至A点处测得P在它的北偏东60度的 方向, 继续行驶20分钟后, 到达B处又测得 灯塔P在它的北偏东45度方向. 问客轮不改变 方向继续前进有无触礁的危险?
问题的本质:
?
C
B
被观测点
这个问题归结为: 在Rt△ABC中,已知∠A= 60°, 斜边AB=30,求AC的长
问题本质是 直线与圆的关系
例2.海中有一个小岛A,它的周围8海里范围内有暗礁, 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏 东60°方向上,航行12海里到达D点,这时测得小岛A 在北偏东30°方向上,如果渔船不改变航线继续向东 航行,有没有触礁的危险?
方位角计算公式
一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13) 上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算1 / 32测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。
设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式2 / 32=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。
二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
方位角计算公式.
一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。
设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。
二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
方位角角值范围__概述说明以及解释
方位角角值范围概述说明以及解释1. 引言1.1 概述方位角是指物体在平面坐标系中相对于参考方向的角度。
它广泛应用于导航、工程测量和天文学等领域,具有重要的实际意义。
方位角的定义和范围限制对于正确理解和应用该概念非常关键。
1.2 文章结构本文将从三个方面对方位角的角值范围进行概述和解释。
首先,我们将介绍方位角的定义以及其在不同领域的应用。
然后,我们将详细讨论方位角角值范围的含义,并解释为何需要对其进行限制。
最后,我们将通过实际案例分析来探讨方位角误差分析与优化方法,并讨论实际测量中对方位角范围要求的考虑因素。
1.3 目的本文旨在全面介绍和解释方位角的角值范围及其重要性。
通过深入了解该概念,在实际应用中能够正确使用和理解方位角,并能够有效地处理相关问题。
以上是“1. 引言”部分内容,请您根据需求进行修改和完善。
2. 方位角角值范围概述:2.1 定义:方位角是指以某一参考方向为基准,来描述事物或者位置相对于此参考方向的角度。
通常情况下,参考方向被设置为北方或地理坐标系中的正北方向。
方位角的定义可以根据使用场景的不同而有所差异,但总的原则是测量目标相对于参考方向的旋转角度。
2.2 应用领域:方位角在许多领域得到广泛应用。
其中包括地理定位、航海导航、天文观测、无人机导航等。
在这些领域中,需要确定和追踪目标位置或者导航路径,并将其与一个已知的基准位置进行比较和分析。
2.3 角度单位和表示方式:方位角可以使用度(°)、弧度(rad)或其他单位来表示。
最常见的单位是度数制,其中一圈360°等于一个完整的旋转。
在某些情况下,也可能会使用弧度来表示,并且很多计算机程序和算法在内部使用弧度作为默认单位。
表示方式上,通常采用0°到360°之间的连续取值范围来表示方位角。
也有一些特殊场景,如地图的表达方式,会将方位角映射到0°到180°或-180°到180°范围内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方位角1、一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).A .310海里/小时B . 30海里/小时C .320海里/小时D .330海里/小时 2、如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )A . 炎陵位于株洲市区南偏东约35°的方向上B . 醴陵位于攸县的北偏东约16°的方向上C . 株洲县位于茶陵的南偏东约40°的方向上D . 株洲市区位于攸县的北偏西约21°的方向上3、如图1,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为 ( )A .40海里B .60海里C .70海里D .80海里4、A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C 处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB 两市的高速公路.问连接AB 高速公路是否穿过风景区,请说明理由.5、钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)6、如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.7、如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30ο的方向上,随后渔政船以80海里小时的速度向北偏东30ο的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60ο的方向上,求此时渔政船距≈)钓鱼岛A的距离AB 1.7329、如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)10、如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)11、如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为(取,结果精确到0.1海里).12、如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1)13、钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)14、钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)15、在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.16、高考英语听力测试期间,需要杜绝考点周围的噪音。
如图,点A 是某市一高考考点,在位于A 考点南偏西15°方向距离125米的C 点处有一消防队。
在听力考试期间,消防队突然接到报警电话,告知在位于C 点北偏东75°方向的F 点处突发火灾,消防队必须立即赶往救火。
已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶。
试问: 消防车是否需要改道行驶?说明理由.取1.732)17、如图,公路AB 为东西走向,在点A 北偏东36.5°方向上,距离5千米处是村庄M ;在点A 北偏东53.5°方向上,距离10千米处是村庄N (参考数据:sin 36.5°=0.6,cos 36.5°=0.8,tan 36.5°=0.75). (1)求M ,N 两村之间的距离;(2)要在公路AB 旁修建一个土特产收购站P ,使得M ,N 两村到P 站的距离之和最短,求这个最短距离。
18、如图所示,一条自西向东的观光大道l 上有A 、B 两个景点,A 、B 相距2km ,在A 处测得另一景点C北 A15°75°F北C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l 的距离.(结果精确到0.1km)19、钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)20、钓鱼岛自古以来就是中国领土。
中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测。
如图,E、F为钓鱼岛东西两端。
某日,中国一艘海监船从A点向正北方向巡航,其航线距离钓鱼岛最近距离CF=在A点测得钓鱼岛最西端F在最东端E的东北方向(C、F、E在同一直线上)。
求钓鱼岛东西两端的距离。
≈ 1.731.41≈,结果精确到0.1)方位角1、一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( D ).A .310海里/小时B . 30海里/小时C .320海里/小时D .330海里/小时 2、如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( C )A . 炎陵位于株洲市区南偏东约35°的方向上B . 醴陵位于攸县的北偏东约16°的方向上C . 株洲县位于茶陵的南偏东约40°的方向上D . 株洲市区位于攸县的北偏西约21°的方向上3、如图1,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为 ( D )A .40海里B .60海里C .70海里D .80海里4、A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C 处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB 两市的高速公路.问连接AB 高速公路是否穿过风景区,请说明理由.高速公路AB 不穿过风景区5、钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)56、如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(3)求船P到海岸线MN的距离(精确到0.1海里);(4)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.B船先到达.7、如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30ο的方向上,随后渔政船以80海里小时的速度向北偏东30ο的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60ο的方向上,求此时渔政船距≈)6.9海里钓鱼岛A的距离AB 1.7329、如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)解:(1)如图,过点P作PD⊥AB于点D.设PD=xkm.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=xkm.在Rt△P AD中,∠ADP=90°,∠P AD=90°﹣60°=30°,∴AD=PD=xkm.∵BD+AD=AB,∴x+x=2,x=﹣1,∴点P到海岸线l的距离为(﹣1)km;(2)如图,过点B作BF⊥AC于点F.在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=AB=1km.在△ABC中,∠C=180°﹣∠BAC﹣∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴BC=BF=km,∴点C与点B之间的距离为km.10、如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)解:作AD⊥BC的延长线于点D.在Rt△ADB中,AD=AB•cos∠BAD=72×cos66°=72×0.4=28.8(海里),BD=AB•sin∠BAD=72×sin66°=72×0.9=64.8(海里).在Rt△ADC中,(海里),CD=AC•sin∠CAD=36×sin37°=36×0.6=21.6(海里).BC=BD﹣CD=64.8﹣21.6=43.2(海里).A岛上维修船需要时间(小时).B岛上维修船需要时间(小时).∵t A<t B,∴调度中心应该派遣B岛上的维修船.11、如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为(取,结果精确到0.1海里).:解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE﹣BE=x﹣x=25,解得:x=,故AB=25(+1)=67.5海里.12、如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1)解:过点B作BD⊥CA交CA延长线于点D,由题意得,∠ACB=60°﹣30°=30°,∠ABC=75°﹣60°=15°,∴∠DAB=∠DBA=45°,在Rt△ABD中,AB=12,∠DAB=45°,∴BD=AD=ABcos45°=6,在Rt△CBD中,CD==6,∴AC=6﹣6≈6.2(海里).13、钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)解:过点B作BD⊥AC于D.由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,∴∠ACB=180°﹣∠BAC﹣∠ABC=30°,在Rt△ABD中,BD=AB•sin∠BAD=20×=10(海里),在Rt△BCD中,BC===20(海里).14、钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)解:(1)过点E作圆A的切线EN,连接AN,则AN⊥EN,由题意得,CE=9×2=18海里,则AE=AC﹣CE=52﹣18=34海里,∵sin∠AEN==≈0.35,∴∠AEN=20.5°,∴∠NEM=69.5°,即必须沿北偏东至少转向69.5°航行,才能恰好避免进入钓鱼岛12海里禁区.(2)过点D作DH⊥AB于点H,由题意得,BD=2×12=24海里,在Rt△DBH中,DH=BD=12海里,BH=12海里,∵AF=12海里,∴DH=AF,∴DF⊥AF,此时海监船以最大航速行驶,海监船到达点F的时间为:==≈2.2小时;渔船到达点F的时间为:==2.4小时,∵2.2<2.4,∴海监船比日本渔船先到达F处.15、在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.解:(1)∵∠1=30°,∠2=60°,∴△ABC为直角三角形.∵AB=40km,AC=km,∴BC===16(km).∵1小时20分钟=80分钟,1小时=60分钟,∴×60=12(千米/小时).(2)作线段BR⊥x轴于R,作线段CS⊥x轴于S,延长BC交l于T.∵∠2=60°,∴∠4=90°﹣60°=30°.∵AC=8(km),∴CS=8sin30°=4(km).∴AS=8cos30°=8×=12(km).又∵∠1=30°,∴∠3=90°﹣30°=60°.∵AB=40km,∴BR=40•sin60°=20(km).∴AR=40×cos60°=40×=20(km).易得,△STC∽△RTB,所以=,,解得:ST=8(km).所以AT=12+8=20(km).又因为AM=19.5km,MN长为1km,∴AN=20.5km,∵19.5<AT<20.5故轮船能够正好行至码头MN靠岸.16、高考英语听力测试期间,需要杜绝考点周围的噪音。