(完整word版)数学史与数学教育

合集下载

新课程理念下的数学史与数学教育

新课程理念下的数学史与数学教育

新课程理念下的数学史与数学教育新课程理念下的数学史与数学教育数学是一门古老而重要的学科,它为人类文明的发展做出了巨大的贡献。

在新课程理念的指导下,数学史可以成为一种全新的教学方式,可以帮助学生更好地理解数学的本质,并提高他们的数学思维能力。

本文将探讨新课程理念下的数学史与数学教育。

首先,数学史可以帮助学生更好地理解数学的发展历程和数学知识的本质。

通过学习数学史,学生可以了解到数学的起源、发展和变革,了解到数学的各个分支和应用领域。

这种全面而系统的知识结构可以帮助学生建立完整的数学知识体系,从而更好地理解数学的本质和规律。

同时,通过学习数学史,学生还可以了解到不同数学家和文化背景对数学发展的影响,从而理解到数学知识的多样性和丰富性。

这不仅可以提高学生的学习兴趣,还可以培养他们的跨学科思维和文化意识。

其次,数学史可以帮助学生培养数学思维和解决问题的能力。

数学是一门极具逻辑性和抽象性的学科,需要学生通过观察、推理和归纳等思维方式来解决问题。

而学习数学史可以帮助学生了解数学家们是如何进行思考和研究的,了解到他们是如何发现和证明数学定理的。

通过反思数学家们的思维方式和解决问题的方法,学生可以提高自己的数学思维和解决问题的能力。

而且,数学史中的一些经典问题和猜想可以成为学生进行探究式学习的素材,可以锻炼他们的问题意识和独立思考能力。

第三,数学史可以帮助学生将数学知识与日常生活联系起来。

现实生活中有很多与数学相关的问题,学生通常很难将课堂上学到的数学知识与实际应用联系起来。

而通过学习数学史,可以让学生了解到数学在各个领域中的应用和价值。

例如,学生可以通过了解数学在物理学、经济学和艺术等领域中的应用,从而理解到数学在日常生活中的重要性和实际意义。

这可以帮助学生提高数学学习的动机和兴趣,并激发他们对数学的实际应用的探索和创新。

最后,数学史可以帮助学生培养创新意识和团队合作精神。

数学是一门富有创造性和探索性的学科,需要学生具备创新思维和团队合作的能力。

(完整版)数学史与数学教育答案

(完整版)数学史与数学教育答案

数学史与数学教育绪言(一)1【单选题】(A)于1758年出版的著作《数学史》是世界上第一部数学史经典著作。

A、蒙蒂克拉B、阿尔弗斯C、爱尔特希D、傅立叶2【单选题】首次使用幂的人是(C)。

A、欧拉B、费马C、笛卡尔D、莱布尼兹3【单选题】康托于(B)年起开始出版的《数学史讲义》标志着数学史成了一门独立的学科。

A、1870B、1880C、1890D、19004【判断题】历史上最早的数学史专业刊物是1755年起开始出版的《数学历史、传记与文献通报》。

X5【判断题】公元前5世纪的《希腊选集》中记载了关于丢番图年龄的诗文。

(X)数学史与数学教育绪言(二)1【单选题】卡约黎的著作《数学的历史》出版于(B)年。

A、1890B、1894C、1898D、19022【单选题】史密斯的著作《初等数学的教学》出版于(A)。

A、1900B、1906C、1911D、19133【单选题】(D)数学史教授卡约黎倡导为教育而研究数学史。

A、德国B、法国C、英国D、美国4【判断题】四等分角以及倍立方问题同属于三大几何难题,是被证明无法用尺规做出的。

(X)5【判断题】史密斯倡导建立了ICMI。

(V)数学史与数学教育绪言(三)1【单选题】Haeckel的生物发生定律应用于数学史中即为(C)。

A、基础重复原理B、往复创新原理C、历史发生原理D、重构升华原理2【单选题】史密斯的数学史课程最早开设于(C)年。

A、1889B、1890C、1891D、18923【单选题】《如何解题》、《数学发现》的作者是(C)。

A、庞加莱B、弗赖登塔尔C、波利亚D、克莱因4【判断题】M.克莱因认为学生学习中遇到的困难也是数学家历史上遇到的困难,数学史可以作为数学教育的指南。

(V)5【判断题】18世纪欧洲主流学术观点不承认负数为数。

(V)数学史与数学教育绪言(四)1【单选题】HPM的研究内容不包括(D)。

A、数学教育取向的数学史研究B、基于数学史的教学设计C、历史相似性研究D、数学史融入数学科研的行动研究2【单选题】HPM的主要目标是促进三方面的国际交流与合作,其中不包括。

(完整word版)数学教育概论知识点

(完整word版)数学教育概论知识点

乔治?波利亚是美籍匈牙利数学家。

他有著名的三本书:《怎样解题》(1944)、《数学的发现》(1954)、《数学与猜想》(1961)。

其中《怎样解题》一书被译成17种文字。

波利亚提供的“怎样解题”表(第48-49页)分四步:1.了解问题;2.拟订计划;3.实行计划;4.回顾。

弗赖登塔尔认识的数学教育有五个主要特征1.情境问题是教学的平台;2.数学化是数学教育的目标;3.学生通过自己努力得到的结论和创造是教育内容的一部分;4.“互动”是主要的学习方式;5.学科交织是数学教育内容的呈现方式。

这些特征可以用三个词来概括——现实、数学化、再创造。

数学化:人们在观察、认识和改造客观世界的过和中,运用数学的思想和方法来分析和研究客观世界的种种现象并加以整理和组织的过程。

再创造:强调学生学习数学是一个经验、理解和反思的过程,是以学生为主体的学习,其核心过程是数学过程再现。

高等师范院校面临新挑战答:高中的新课程标准让广大的高中数学教师有些望而生畏,他们感到许多选修课的内容他们并没有学过,许多课程他们没法开设。

比如,高中选修课系列3涉及高等数学,包括数学史选讲,信息安全与密码,球面上的几何,对称与群,欧拉公式与闭曲面分类,三等分角与数域扩充等。

由于新一轮的课程改革强调要让学生主动参与教学,要鼓励学生积极展开讨论,探索数学知识的来龙去脉和提出问题,因此学生提出的问题中,有许多使教师感到难堪,有的他们没法回答,有的他们回答不清楚。

基本活动经验的类型1.直接数学活动经验;3.间接数学活动经验;3.专门设计的数学活动经验;4.意境联结性数学活动经验。

基础教育部分一.“标准”有哪些改革目标?1.指导思想:以邓小平同志的“教育要面向现代化,面向世界,面向未来”和江泽民同志“三个代表”重要思想为指导。

2.教育目标方面:培养爱国精神和“四有新人”等。

3.课程内容:改变课程内容“难、繁、偏、旧”和过于注重书本知识的现状。

4.课程结构方面:改变过于强调学科本位、科目过多和缺乏整合的现状,设置综合课程。

数学史与数学教育

数学史与数学教育
x 10,求这两个正方形的边长.设较大的正方形的边长为 ,则另一正
方形的边长为 2 x 10 ,故只需解二次方程
3
x2 ( 2 x 10)2 1000 3
• 古巴比伦人将这一解法所需的步骤简单地叙述为“平方10,得100;1000 减去100,就得900,开平方得30”,求得该正方形的边长为30,另一个 正方形边长为10.这就是说,古巴比伦人那时可能已经知道某些类型的 一元二次方程的求根公式.由于他们没有负数的概念,二次方程的负根 不予考虑.至于他们是如何得到上述这些解法的,泥板书上没有具体说 明.他们还讨论了某些三次方程和双二次方程的解法.在一块泥板上, 他们给出这样的数表,它不仅包含了从1到30的整数的平方和立方,还包
16,8和4相加得28,取6的三分之一为2,取28的二倍为56,则它的体积 就是这个数.由此我们可以看出,古埃及人是通过具体问题说明了高为h、 底边长为a和b的正四棱台的体积公式是
V 1 (a2 ab b2 )h 3
古巴比伦的数学
• 古巴比伦,又称美索波达米亚,位于亚洲西部的幼发拉底与底格 里斯两河流域,大体上相当于今天的伊拉克。大约是在公元前 3000年左右,古巴比伦人在这里建立起了自己的奴隶制王国。在 过去相当长的一段时间内,人们对于古巴比伦数学的认识是通过 古希腊文化中的零星资料得到的。
古巴比伦的天文学
• 在公元前5000年到公元前4000年间,古巴比伦人就已开始使用年、 月、日的天文历法,他们的年历是从春分开始的,一年有12个月, 第一个月是以“金牛座”命名的,每月有30天,每6年加上第13 个月作为闰月.一个星期有7天,这7天是以太阳、月亮和金、木、 水、火、土七星来命名的,每个星神主管一天,如太阳神主管星 期日.因此,所谓“星期”也就是指星的日期,我们现在的“星 期制”就是在古巴比伦时代所创立的,这种表示方法在今天的英 语单词中还能找到一些痕迹.此外,圆周分为360度,每度60分, 每分60秒,1小时60分,1分60秒的记法,也是来自古巴比伦.

2022数学史与数学教育研究综述

2022数学史与数学教育研究综述

数学史与数学教育研究综述12世纪时,有关古希腊和中世纪阿拉伯的数学书籍就作为一种数学古籍和数学研究的形式流传入西欧,对西欧数学发展产生了影响。

近代以蒙蒂克拉出版的经典著作《数学史》为代表,数学史走入人们的视野,但早期的数学史学者包括蒙蒂克拉、康托尔并未关注数学史与数学教育二者的联系。

1855年,《数学历史、传记与文献通报》诞生于法国,这也是历史上第一种数学史专业刊物。

随着数学史研究愈发细化,许多学者渐渐认识到,史料性质的数学史有着多样的教育价值,如英国数学家德摩根(A.De Morgan)指出,研究数学知识的发展进程和历史次序,能够给数学教育带来思考和帮助。

1972年第二届国际数学教育大会上,数学史与数学教育(HPM)理论应运而生,HPM的研究工作涉及到教师、学生、教学等多个方面,从“为教育的数学史”材料出发,研究历史相似性的相关规律,探索数学史如何融入教学实践,HPM与教师专业发展又有何联系等等。

本文主要关注“融入数学史的教学实践研究”。

HPM理论最终指向实践教学,阐释了在数学教学中,如何以数学史视角进行切入与设计,探讨了融入数学史作为一种数学教学方法,有何效果,又如何实现。

随着我国教育改革的步伐和数学课程标准对数学史的持续关注,HPM理论开始走进一线数学教师的视野,数学史也渐渐走进一线的数学课堂。

一、数学史与数学教育关系的沿革国际上将专门研究数学史与数学关系的组织成为HPM。

数学史与数学教学和学习之间的关系很早就引起了数学家,数学史家和数学教育家的关注,在19世纪初就有一些数学家关注到了数学史与数学学习的关系,如阿贝尔(Niels Henrik Abel,1802-1829)就认为学生“在数学上取得进展,应该向大师学习而不是他们的学生”。

1896年,卡约黎(Florianeaj Cajori, 1859-1930)在《A history ofelementary mathematics with hints on methods of teaching》中写到:“儿童的教育必须要考虑目前的与历史上人类的教育相一致的方式安排,换句话说,个体的知识发生要遵循种族的知识发生所经历的相同过程”。

数学史对数学教育的启示

数学史对数学教育的启示

数学史对数学教育的启示数学教育作为教育体系中的重要组成部分,一直以来都备受关注。

数学史作为数学教育的重要背景,对数学教育的发展和改革具有深远的影响。

本文将从数学史的角度出发,探讨其对数学教育的启示,并提出一些可行的改进措施。

一、数学史与数学教育的关系数学史是一门研究数学发展过程及其规律的学科,它通过追溯数学知识的起源、演变和发展,揭示了数学知识的本质和价值。

数学教育则是培养和提高人们数学素养和运用数学知识解决实际问题的教育活动。

数学史与数学教育的关系密切,数学史为数学教育提供了丰富的素材和背景知识,有助于提高数学教育的质量和效果。

二、数学史对数学教育的启示1.尊重历史,传承文化数学史是数学文化的重要组成部分,它记录了数学知识的起源、演变和发展过程。

在数学教育中,我们应该尊重历史,传承数学文化,引导学生了解数学知识的发展历程,体会数学家的思维方式和探索精神。

这有助于培养学生的数学素养和独立思考能力,增强学生的综合素质。

2.树立正确的数学观数学不仅仅是数字、公式和图形,更是一种思维方式和解决问题的工具。

在数学教育中,我们应该树立正确的数学观,让学生了解数学的广泛应用和实际价值,激发学生对数学的兴趣和热爱。

同时,我们应该注重培养学生的数学思维能力和解决问题的能力,让学生学会用数学的眼光看待问题,用数学的方法解决问题。

3.关注历史人物和事件数学史中有很多著名的人物和事件,它们对数学的发展产生了深远的影响。

在数学教育中,我们应该关注这些历史人物和事件,让学生了解他们的贡献和影响,激发学生的探索精神和创新精神。

同时,我们应该注重培养学生的团队合作精神和交流能力,让学生学会与他人合作、交流和分享数学知识。

三、改进措施与建议1.加强数学史教育在数学教育中,我们应该加强数学史教育,让学生了解数学知识的发展历程和重要人物和事件。

可以通过开设数学史课程、组织专题讲座等形式,让学生深入了解数学史知识。

同时,在教材编写和课堂教学过程中,也应该注重融入数学史知识,提高学生的学习兴趣和综合素质。

(完整版)数学教师学习数学史的意义

数学教师学习数学史的意义摘要:本文着重介绍了学习数学史的意义,阐述了数学教师通过学习数学史不仅可以提高的数学素养,还可以提高数学课堂的吸引力。

每位数学教师都应注重数学知识的积累,把数学史的相关内容应用到课堂中去,从而提高授课水平和授课效果。

关键词:数学史;教师素质;数学素养著名数学家吴文俊曾说过:“数学教育和数学史是分不开的。

”陈省身先生也说过:“了解历史的变化是了解这门科学的一个步骤。

”数学史是一门交叉学科,它的研究领域是数学和史学相重叠的部分,数学史在数学教学中有重要的作用。

作为一名数学教师更需要对数学史有一定程度的了解,只有这样,才能了解数学概念的背景材料,以便对数学思想、数学方法有一个全面的了解,而不是仅仅传授给学生一些支离破碎的数学知识。

认真探索先人的数学思想,往往比仅仅掌握由此而得出的结论更为重要。

学习数学史,至少有以下三个方面的意义。

一、学习和研究数学史,有助于加深对数学知识本身的理解学习和研究数学史,可以追溯根源培养史学观念,有助于全面深刻地理解数学知识、数学中的各个基本概念、基本定理和基本理论。

只有了解它们的产生、形成和发展过程,才能深刻掌握它们的本质。

任何一部分数学知识的获得,都是一个运动的、历史的过程,都是前人长期探索的结果,它们都处于不断更新的永恒流动中。

回顾历史,就会使人们消除对已有数学知识来源的神秘敢,消除对已有知识的僵化认识。

例如,自然对数的底;为什么把这么复杂的极限作为自然对数的底呢?回答这个问题,只能从对数发展史中获得。

直角坐标系可以形象的描述代数方程。

笛卡尔是怎样提出直角坐标系的概念的呢?据说有一天,笛卡尔卧病在床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。

(完整word版)数学史复习资料

《数学史》复习资料1、名词解释:2、可公度量:对于任何两条给定的线段, 总能找到某第三线段, 以它为单位线段能将给定的两条线段划分为整数段。

这样的两条线段为“可公度量”, 即有可公度量的度量单位。

这是古希腊毕达哥拉斯学派对世界任何量都能表示成两个整数比信念的反应。

3、出入相补原理: 一个几何图形(平面或立方体的)被分割成若干部分后, 面积或体积总保持不变。

4、费马大定理: 关于X、Y、Z的不定方程Xn+Yn =Zn , 对于任意大于2的自然数n无非零整数解。

大数定律: 概率论历史上第一个极限定理属于伯努利, 后人称之为“大数定律”。

概率论中讨论随机变量序列的算术平均值向常数收敛的定律。

P128 帕斯卡曾提出的n为正数时的二项式定理, 得到所谓伯努利定理: 若p是某一事件单独出现一次的概率, q是不出现该事件的概论, 则在n次试验中, 该事件至少出现m次的概率等于二项式(p+q)n 的展式中的从pn 项到pm qn-m 项的各项之和。

容易看出, 这实际上就是概率论中最重要的定律之一——“大数定律”的最早表现形式。

倍立方体:就是已知一立方体, 求作另一立方体, 使它的体积等于已知立方体的两倍。

也即求作一立方体的边, 使该立方体的体积为给定立方体的两倍。

祖氏原理:P65“幂势既同, 则积不容异”, 即夹在两个平行平面间的两个几何体, 被平行于这两个平面的任意平面所截, 若所得截面总相等, 则此二几何体积相等。

它被称为“祖暅原理”。

1.简述古希腊数学的特点。

答案二: (1)追求理性和唯理的论证数学特点;(2)欧氏几何开创了公理化理论体系;(3)欧式几何形成了演绎思维的特征;总之, 希腊数学是追求理性, 主要以演绎几何为特征的数学。

2.简述欧几里得《原本》中所确立的公理化思想。

答:公理化思想是古希腊时期在欧氏几何中确立数学演绎范式。

这种范式要求一门学科中的每个命题必须是在它之前已建立的一些命题的逻辑结论, 而所有这样的推理链的共同出发点, 就是一些基本定义和被认为不证自明的基本原理——公理或公设。

数学史融入数学教学:意义与方式-教育文档资料

数学史融入数学教学:意义与方式将数学史融入数学教学,是对传统教学理念的一次革新,同时也是一次考验,如果做得好,选择的方式恰当并且合理,不仅能提高学生对数学的了解程度,同时还有利于培养民族自豪感,因此必须明确数学史对于数学教学的意义,才能更好的指导教育者的教学,必须选择合适的方式,才能达到预期的教学目标。

一、数学史的概念数学史,换言之就是数学这门学科从古至今经历了什么,这些经历的事情聚集起来称为史,一门学科的产生必然离不开当时的社会背景,人们的思想境界,一门学科的发展必然也伴随坎坷才能延续至今。

数学也不例外,而数学史就是研究探寻这些坎坷的一门学科,主要内容有数学学科对人类不同时期的发展所做出的贡献,具体的数学内容,以及对整个社会文明带来的影响,这其中涉及了文学、哲学、历史等方面的内容,所以数学史又是一个综合多方面得领域。

就是数学史既归属于科学领域又归属于文学领域。

通过这一鲜明的特征,经过思考不难发现,站在现代科学的角度,运用数理分析可以做到对历史的重新拼凑,还原历史真相,同时也就引出了?笛?史的第二个特征,联系古今。

二、数学史融入数学教学的意义1.提高数学教育影响力作为数学教学中教育者的角色:老师对学生影响力的大小直接影响着学生对数学这门学科接收程度,而接收程度的高低决定着学生对数学理解和应用,青少年是祖国未来的中流砥柱,最终反馈到社会国家就是建设能力,这一能力无疑就是数学教育影响力的体现,在教育教学中,老师同过合理的方式引入数学史,可以大大提高自身影响力,进一步提高数学教育影响力,如前文所述,数学史的综合性极强,知识覆盖面广,是古今的联系,将数学史融入数学教育有利于学生更好的了解祖国的发展,培养学生的民族自豪感,更好的学习数学。

2.提高学生应用能力通过了解数学在历史上,再到现在,对社会国家做出贡献,了解其中包含的深刻内涵,有助于学生积累相关数学应用的知识,不断积累,从量变到质变,从而提升自身的应用能力。

数学史对数学教育的重要性的论文

数学史对数学教育的重要性的论文数学史对数学教育的重要性的论文数学是研究空间的形式和数量关系的科学,是一门历史性很强的学科,是刻画自然规律和社会规律的科学语言和有效工具。

数学教育就是教育者向受教育者传授数学知识、培养他们的数学能力与数学素养。

数学史是研究数学发展进程及其规律的学科,即研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系的一门学科。

数学史对数学教育的意义和作用已经越来越为许多数学家和数学教育家所关注。

数学史与数学教育的有机结合早已成为当今教育界的热点问题。

现代微分几何的奠基人陈省身曾经说过:“了解历史的变化是了解这门科学的一个步骤。

”学习数学史应该成为数学教育的一个部分,帮助润色与提升数学教育。

所以在数学教育中,我们可以考虑将适量的适合的数学史知识较为系统地引入数学课堂,助于数学学习,贯穿日常生活。

一、数学史在数学教育中的重要意义与作用列宁指出:“一种科学的历史是那门科学最宝贵的一部分,科学只能给我们知识,而历史却能给我们以智慧。

”(一)学习数学史是以“素质教育”为目标的数学教育的内在要求我国著名的数学家吴文俊院士曾说过:“数学教育和数学史是分不开的。

”随着数学教育改革的深入,人们对数学教育的本质有了越来越清晰的认识。

数学教育作为教育的组成部分,对学生的其他课程的学习具有奠基性意义,对学生的整体和长远发展具有不可替代的作用。

同时,素质教育要求学生学会学习、学会做人和学会发展,使之培养成为“会认识、会做事、会做人”的合格公民。

由此可见,教师在传授数学知识的同时,应培养学生的数学素养。

具有数学素养的人善于把数学中的概念结论和处理方法推广应用于认识一切客观事物。

对于数学中的抽象概念和理论,学生如果知道它的来龙去脉,就会对其有更深入的认识。

而数学史的学习会使学生认识到某些知识的产生、发展与问题解决的过程,体会到数学在人类发展中的作用与价值,知道数学不是子虚乌有的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节数学史与数学教育数学是历史地形成的。

只有懂得历史,才能深刻理解数学。

法国伟大的数学家亨利·庞加莱曾说:“如果我们想要预测数学的未来,那么适当的途径是研究这门学科的历史和现状。

”近几年来,我国数学教育改革中,强调数学的文化价值,致使数学史知识得到广泛的关注。

《高中数学课程标准》把“数学史选讲”作为一门选修课加以开设,进一步推动数学史和数学教学的融合。

一、数学史对数学教育的作用经过几十年的不懈努力,在数学教学中使用数学史,现在已经相当普及。

各种教材都有关于数学史的材料。

数学史对数学教育的作用主要有以下四个方面。

第一、帮助理解数学。

数学家发现数学的时候,是火热地思考着的。

一旦研究完毕,呈现在我们面前的则是冰冷的美丽形式。

教师的工作是要揭开这层形式化外衣来显现数学本质,让学生体会到数学的内涵。

当然,完成这项工作有许多途径,应该说所有这些途径都属于教学方法范畴之内。

但从数学历史的角度来把握数学本质也是其中的一种有效的途径。

正如医生给病人看病,询问病人的病史是一个不可或缺的环节一样,理解数学也要知道它的发生、变化和发展的历史全过程,才能透析出隐藏于其中的数学内涵。

一个明显的例子是古希腊的演绎几何。

为什么古希腊人要用公理化方法展开数学?他们所处的时代背景如何?中国古代数学的特点和古希腊数学的特征有何不同?弄清这些问题,对学生理解古希腊的演绎几何学,体会其中的理性精神和人文主义价值十分重要。

再如,西周时期的商高在解释勾股定理的来源时,提到“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。

”其中明确地指出“矩”是一个最为根本的数学概念,它可以产生“方”(正方形),进一步可以产生与圆有关的数学知识(古代有“环矩以为圆”的说法),所以他认为只要对“矩”加以不同方式的变形(即折矩)就能衍生出新的数学关系(如勾股定理)。

这是一个把握中国古代数学思想的典型例子。

因此,如若我们经常仔细品思这些数学历史素材,则定会“遂悟其意”,进而更为深刻地理解数学本质,形成全面、正确的数学观。

第二、提高数学的宏观认识。

数学教师的任务不仅要把书本上的东西说清楚,还要对数学发展的来龙去脉有清楚的认识。

一个优秀的教师,不仅要授人以业,还要授人以法,进而授人以道。

教师要掌握这些“法”和“道”,必须宏观地理清数学发展的脉络,深入数学的本质。

对于进行数学创新来说,数学史研究更具有指引的作用。

数学史中记载了许多数学家发明发现的生动过程,向学生介绍这些过程,有助于学生理解掌握创造的方法、技巧,从而增强其创造力。

如公元263年,刘徽对我国古籍《九章算术》的注释中提出了计算圆周长的“割圆”思想,刘徽本人精辟的论述:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣!”这些生动的描写,对后人是一种创新激励。

第三、数学史能够为数学教学设计提供一定的指导数学历史可以把古人的思维与现今学生的思维作一番比较,共通的规律是什么?不同的特点又是什么?进而帮助设计数学教学。

例如,商高对矩形加以折叠(或者分割),叫做折矩(或者割矩),即把矩形沿对角线分割。

然后“环而共盘”,叫做拼盘。

如此一割一拼,不仅道出了复杂(直角三角形边的关系)源于简单(矩形)的深刻道理,同时给出了勾股定理的一个巧妙而简洁的证明。

上述方法可直接用于勾股定理的教学,更重要的是其中蕴涵的思想(如简单与复杂的辨证关系,追求简洁的表达形式,讲究策略与方法等)对数学教学具有重要的启示意义。

第四、数学历史能够凸现数学的文化价值数学教材内容中的一个数学定理,或一个数学公式,其背后就是一位人物、一种思想、一种品格或一种精神。

前者是静态的,是“冰冷的美丽”,后者是活生生的,是“火热的思考”。

但要想透过“冰冷的美丽”,看到“火热的思考”背后的精神动态,数学历史便是最好的选择。

笛卡儿主张“我思故我在”,打破欧氏几何的局限,创立解析几何的故事;欧拉著作等身,勤奋创作的精神,费马创立微分学思想、研究概率论、提出数论中的“费马大定理”,到300年后才完满解决。

这些绚丽多彩历史故事,永远是激励后人进行数学创新的动力。

我们常说,读历史其实就是读人物,就是读人物的内心世界,品人物的人格魅力和精神风范。

一个数学历史人物的事迹也许会让某一个人因此而喜欢上了数学,甚至走上了探索数学奥秘之路。

充分介绍中国现代数学家的贡献,激励意义更为直接。

华罗庚、陈景润、苏步青等名家的事迹对青少年是很大的鼓舞。

此外对当代世界数学有重大贡献的华裔数学大师陈省身等的名字也应该在中学数学课程中出现。

感人至深的包头五中物理教师陆家羲的数学献身精神,同样是进行思想教育的良好材料。

当我们品味出数学之中人文精神的底蕴,触摸到数学历史人物的情感、操行、思想和精神,并与之在思想上、精神上进行交流与汇合的时候,将会感召我们的心灵、激励我们的行动。

此时,学生的人文感怀也就油然而生。

二、培养数学历史素养的途径要想实现数学历史的数学教育价值,挖掘数学历史的数学教育功能,首先要提高教学设计者的数学历史素养,能够从简约的数学史叙述中看到其中的科学价值与人文精神。

首先,数学史要宏观把握。

常常看到一些教材中的数学史介绍,只是提供一位数学家的画像,配以简历,说明做了“伟大”贡献就结束。

这就太潦草了。

宏观地把握各个时代的文化特征,才能起到教育作用。

以勾股定理来说,如果仅仅了解它是什么时候发现的,由谁发现的,在中国叫商高定理,而在西方叫毕达哥拉斯定理等等,那就只看到了一些皮毛。

只有进行东西方数学文化的比较,看到古人的思考过程和理性精神,那才能感染学生。

其次,数学史知识要运用细节。

运用数学史知识进行数学教学,如能关注数学历史发展中的细微之处,往往可以探得数学文化之精妙。

例如,勾股定理为什么曾经又被称为陈子定理呢?因为《周髀算经》记载了陈子用勾股定理推算地球与太阳的距离以及太阳的直径。

这就表明中国古代数学文化的一大特色是追求实用价值。

数学教学应该继续发扬这种精神,但是也要防止以实用为唯一追求的狭隘做法。

又如,“勾广三,股修四,径隅五”(或“勾三,股四,弦五”),反映了中国古代数学形式化、符号化进程缓慢的特点。

相比于古希腊,毕达哥拉斯虽然也是从古埃及的“黄金三角形”(即边长分别为3,4,5或6,8,10的直角三角形)发现勾股定理的,但很快过度到符号化的一般表示。

此外,毕达哥拉斯也可能是受启于古巴比伦的勾股数(即一组可以构成直角三角形三边的数,现在我们也称勾股数3,4,5为毕氏三数)。

从3,4,5到勾股数是一个重要的数学进展。

再次,数学史知识要适当引申。

数学是一种文明,要从数学历史中获得联系性的启示,融会贯通,才能充分发挥教育效能。

仍以勾股定理为例,要从早先的勾股定理,延伸到刘徽、赵爽的“勾股术”并引申到费尔马大定理;既要看到商高的证明,也要看到刘徽的证明,还要看到欧几里得的证明以及美国总统加菲尔德对勾股定理的多种证明;既要看到“环而共盘”,又要看2002年第24届国际数学家大会的会标图案;既要看到“222+=”,又要看人们预想的太空语言的表达方式等等。

a b c三、数学史教育的原则数学史教育应遵循以下四个原则:科学性、实用性、趣味性、广泛性。

第一、科学性是第一位的原则。

教师向学生传授的数学史知识必须是正确的。

我们应该尊重历史,尊重事实,既不可随意编造,也不能无端拔高,更不可艺术加工,把数学史当作故事,随意虚构。

特别在讲授中国的数学史时,实事求是更能激发民族自尊心和爱国主义热情。

第二、实用性是指所讲的数学史对学生的数学学习及将来工作有直接帮助作用。

限于时间、授课计划,应有所侧重,例如初等数学中的数的起源与记法、无理数的导入与确立、圆周率、勾股定理、笛卡尔对直角坐标系的贡献等,高等数学中的微积分的概念、函数的概念、非欧几何的创立,不仅史料丰富,而且内容精彩,非常适合于课堂教学,对学生理解所学的知识有很大的帮助。

第三、趣味性指课堂教学要有趣味。

题材的典型,情节的生动,发展的曲折,数学史上惊心动魄,引人入胜的例子不胜枚举,教者应恰当选材,能使课堂教学娓娓动听。

讲授时要合理地运用语言,全身心地投入表达,语调同情节配合,知识性与趣味性共生,应避免照本宣科或哗众取宠,要寓教于乐,以教为本。

第四、广泛性是指选取的数学史知识要不分年代、国家。

数学是几千年来全人类孜孜以求、不断探索、历尽千辛万苦共同取得的财富。

在整个数学科学发展长河中,数学是在人类社会变革推动之下,各国数学家相互交流,学习共同探索的结果。

因此在进行数学史教学时注意选择不同时期、不同国度的史料,不能仅局限于中国的数学史。

这样才能全面地、真正地、准确地展示数学史的全貌。

四、数学历史与数学教育结合中的一些注意问题从目前来看,数学历史与数学教育相结合的实践过程,确实发生了一些可喜的变化,但存在的问题依然不少。

以下是几个应注意的问题:首先,数学历史与数学教育要在深层次结合,避免表面化。

例如,只提及历史上有那么个人,有那么回事,没有切入到更深层次的联系界面中,因而不能发挥数学历史的启示和引导作用。

其次,数学历史与教学内容要融合,不要割裂。

这就是说,不要介绍一段数学历史,然后接着讲课程内容,前后没有任何联系,不作任何衔接,给人一种断裂感,学生在思想上不能得到启发。

再次,运用数学史知识要客观,不要片面拔高。

例如,对于到底是商高定理出现早,还是毕达哥拉斯定理出现早的问题,应该根据史实客观地叙说,多一些谦逊的态度、欣赏的目光,不要带有狭隘的民族主义情绪。

事实上,在勾股定理的发现上中国人是否走到了前面至今没有定论。

目前比较倾向于古巴比伦的勾股数为勾股定理的最早原形。

至少是知道勾股数的时间,比起我国公元前1000年的《周髀算经》中描述的勾股定理要早几百年的时间。

最后,数学史用于教育,要把爱国主义和国际意识统一起来,不要局限于发现的迟早。

数学是全人类的共同财富。

在科学发现上,各个国家和各个民族应该彼此借鉴,互相学习,共同提高。

不能以己之长,说人之短,借以提高自己的信心。

相反,要实行拿来主义,把外国的一切优秀文化,包括数学成就都充分尊重,吸收过来。

“洋为中用”,为中国的建设服务,这是爱国主义的精粹。

我们注意到,许多国家的数学教学大纲中,并没有直接提到“爱国主义”的字样,但是他们强调联系现实生活,努力吸收世界上的一切优秀数学成果,为发展本国科学事业服务,实际上也是爱国主义教育。

数学上的成就不能只论迟早,不可用比别人早多少年作为衡量数学成就的标准。

人类的数学文明最早起源于巴比仑,其次是埃及。

巴比伦的泥板、埃及的纸草书上的数学记载都在公元前1000年以上。

即便是后来的古希腊的数学文明也远早于中国。

中国古代数学虽然出现得比地中海文明要迟许多,但是具有自己的特点,同样为人类作出了重要贡献。

我国著名数学家,2001年获得首届国家最高科学奖的吴文俊教授,曾经十分深刻地指出,中国古代数学的优秀传统是“算法数学”。

相关文档
最新文档