九年级数学复习题
最新九年级中考数学专题复习: 最值问题-隐圆模型之瓜豆问题 课件

B
C
△BOC是等腰直角三角形,锐角顶点C的轨迹是以点A为圆
心,2为半径的圆,所以O点轨迹也是圆,以AB为斜边构造等
M
腰直角三角形,直角顶点M即为点O轨迹圆圆心.
连接AM并延长与圆M交点即为所求的点O,此时AO最大,
根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A
O
半径的比值,得到MO,相加即得AO.
E
MN
AD
B
当堂训练---轨迹之线段篇
3.如图,∠AOB=60º,OA=OB,动点C从点O出发,沿射线OB方向移动,
D
,D是定点,E点满足EO=2,故E点
轨迹是以O为圆心,2为半径的圆.
当DE⊥DF且DE=DF,故作DM⊥DO
且DM=DO,F点轨迹是以点M为圆心
,2为半径的圆.
连接OM,与圆M交点即为F点,此 E
时OF最小.可构造三垂直全等求
线段长,再利用勾股定理求得OM,
减去MF即可得到OF的最小值. B
O
C
M F
接得到M点的轨迹长为P点轨迹长一半,即可解 C
FB
决问题.
当堂训练---轨迹之圆篇
3.如图,正方形ABCD中,AB=2 5,O是BC边的中点,点E是正方形内一
动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90º得DF,连接AE、
CF.求线段OF长的最小值.5 2 - 2
【分析】E是主动点,F是从动点 A
连接DF.DF的最小值是_1___.
A
一个定点----垂线段最短
E
G
D
B
C
F
当堂训练---轨迹之线段篇
2.如图,已知等边三角形ABC的边长为8,点D为AB边上一动点,DE始
北师版九年级数学上册期末复习考题猜想 专题06 锐角三角函数(考题猜想,易错必刷30题7种题型)

专题06锐角三角函数(易错必刷30题7种题型专项训练)锐角三角函数的定义 特殊角的三角函数值 解直角三角形解直角三角形的应用 解直角三角形的应用-坡度坡角问题 解直角三角形的应用-仰角俯角问题 解直角三角形的应用-方向角问题一.锐角三角函数的定义(共5小题)1.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B.C.D.2.在Rt△ABC中,∠C=90°,若sin A=,AB=2,则AC长是()A.B.C.D.23.如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A的坐标为(0,3),tan∠ABO =,则菱形ABCD的周长为()A.6B.6C.12D.84.在Rt△ABC中,AC=8,BC=6,则cos A的值等于()A.B.C.或D.或5.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的正弦值是.二.特殊角的三角函数值(共1小题)6.△ABC中,∠A,∠B均为锐角,且(tan B﹣)(2sin A﹣)=0,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.有一个角是60°的三角形三.解直角三角形(共9小题)7.将一副三角板如图摆放在一起,组成四边形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,连接BD,则tan∠CBD的值等于()A.B.C.D.8.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,下列结论正确的是()A.sin C=B.sin C=C.sin C=D.sin C=9.如图,在Rt △ABC 中,∠ACB =90,CD ⊥AB ,垂足为D ,若AC =,BC =2.则sin ∠ACD 的值为()A .B .C .D .10.在△ABC 中,AB =4,BC =5,sin B =,则△ABC 的面积等于()A .15B .C .6D .11.在△ABC 中,AB =3,AC =6,∠B =45°,则BC =.12.我们给出定义:如果两个锐角的和为45°,那么称这两个角互为半余角.如图,在△ABC 中,∠A ,∠B 互为半余角,且,则tan A =.13.在△ABC 中,∠C =90°,∠A =30°,BC =4,D 为直线AB 上的一点,若AD =2,则tan ∠BDC 的值为.14.如图,在△ABC 中,∠ABC =45°,∠ACB =30°,AB =4,则AC =.15.如图,△ABC 中,AB =AC =3cm ,BC =4cm ,点P 从点B 出发,沿线段BC 以2cm /s 的速度向终点C 运动,点Q 从点C 出发,沿着C →A →B 的方向以3cm /s 的速度向终点B 运动,P ,Q 同时出发,设点P 运动的时间为t (s ),△CPQ 的面积为S (cm 2).(1)求sin B ;(2)求S 关于t 的函数关系式,并直接写出自变量t 的取值范围.四.解直角三角形的应用(共5小题)16.如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm17.胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB 垂直于桥面BC于点B,其中两条斜拉索AD、AC与桥面BC的夹角分别为60°和45°,两固定点D、C之间的距离约为33m,求主塔AB的高度(结果保留整数,参考数据:≈1.41,≈1.73).18.学科综合我们在物理学科中学过:光线从空气射入水中会发生折射现象(如图1),我们把n=称为折射率(其中α代表入射角,β代表折射角).观察实验为了观察光线的折射现象,设计了图2所示的实验,即通过细管MN可以看见水底的物块C,但不在细管MN所在直线上,图3是实验的示意图,四边形ABFE为矩形,点A,C,B在同一直线上,测得BF =12cm,DF=16cm.(1)求入射角α的度数.(2)若BC=7cm,求光线从空气射入水中的折射率n.(参考数据:,,)19.如图1,图2分别是网上某种型号拉杆箱的实物图与示意图,根据商品介绍,获得了如下信息:滑杆DE、箱长BC、拉杆AB的长度都相等,即DE=BC=AB,点B、F在线段AC上,点C在DE上,支杆DF=40cm,CE:CD=1:4,∠DCF=45°,∠CDF=37°.请根据以上信息,解决下列问题:(1)求滑竿DE的长度;(2)求拉杆端点A到水平滑杆ED的距离(结果精确到0.1).参考数据:sin37°≈,cos37°≈,tan37°≈,≈1.414.20.如图①是某市地铁站的一组智能通道闸机,当行人通过智能闸机时会自动识别行人身份,识别成功后,两侧的圆弧翼闸会自动收回到机箱内,行人即可通行.图②是一个智能通道闸机的截面图,已知∠ABC =∠DEF=28°,AB=DE=60cm,点A、D在同一水平线上,且A、D之间的距离是10cm.(1)试求闸机通道的宽度(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(2)实验数据表明,一个智能闸机通道平均每分钟检票通过的人数是一个人工检票口通过的人数的2倍.若有240人的团队通过同一个人工检票口比通过同一个智能闸机检票口多用4分钟,求一个人工检票口和一个智能闸机通道平均每分钟检票各通过多少人?五.解直角三角形的应用-坡度坡角问题(共1小题)21.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosαB.C.5sinαD.六.解直角三角形的应用-仰角俯角问题(共7小题)22.数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为.(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)23.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.(结果精确到0.1m,参考数据:≈1.732)24.图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别?(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别,社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)25.如图,某校无人机兴趣小组为测量教学楼的高度,在操场上展开活动.此时无人机在离地面30m的D 处,操控者从A处观测无人机D的仰角为30°,无人机D测得教学楼BC顶端点C处的俯角为37°,又经过人工测量测得操控者A和教学楼BC之间的距离AB为60m,点A,B,C,D都在同一平面上.(1)求此时无人机D与教学楼BC之间的水平距离BE的长度(结果保留根号);(2)求教学楼BC的高度(结果取整数)(参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).26.《海岛算经》是中国古代测量术的代表作,原名《重差》.这本著作建立起了从直接测量向间接测量的桥梁.直至近代,重差测量法仍有借鉴意义.如图2,为测量海岛上一座山峰AH的高度,直立两根高2米的标杆BC和DE,两杆间距BD相距6米,D、B、H三点共线.从点B处退行到点F,观察山顶A,发现A、C、F三点共线,且仰角为45°;从点D处退行到点G,观察山顶A,发现A、E、G三点共线,且仰角为30°.(点F、G都在直线HB上)(1)求FG的长(结果保留根号);(2)山峰高度AH的长(结果精确到0.1米).(参考数据:≈1.41,≈1.73)27.如图,小山的顶部是一块平地,在这块平地上有一座古塔CD.小山斜坡AB的坡度为i=1:2.4,坡长AB为39米,在小山的坡底A处测得该塔的塔顶C的仰角为45°,在坡顶B处测得该塔的塔顶C的仰角为74°.(1)求坡顶B到地面AH的距离BH的长;(2)求古塔CD的高度(结果精确到1米).(参考数据:sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)28.某市在地铁施工期间,相关部门在施工路段设立了矩形安全警示牌ABCD(如图所示),小东同学在距离安全警示牌8米(EF的长)远的建筑物上的窗口P处,测得安全警示牌顶端A点和底端B点的俯角分别是30°和45°,求安全警示牌宽AB的值.(结果保留根号)七.解直角三角形的应用-方向角问题(共2小题)29.如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西60°的方向,从B处测得渔船在其东北方向,且测得B,P两点之间的距离为20海里.(1)求观测站A,B之间的距离(结果保留根号);(2)渔船从点P处沿射线AP的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西15°的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C处,请问补给船能否在83分钟之内到达C处?(参考数据:≈1.73)30.为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A点为出发点,途中设置两个检查点,分别为B点和C点,行进路线为A→B→C→A.B点在A点的南偏东25°方向3km处,C点在A点的北偏东80°方向,行进路线AB和BC所在直线的夹角∠ABC为45°.(1)求行进路线BC和CA所在直线的夹角∠BCA的度数;(2)求检查点B和C之间的距离(结果保留根号).专题06锐角三角函数(易错必刷30题7种题型专项训练)锐角三角函数的定义 特殊角的三角函数值 解直角三角形解直角三角形的应用 解直角三角形的应用-坡度坡角问题 解直角三角形的应用-仰角俯角问题 解直角三角形的应用-方向角问题一.锐角三角函数的定义(共5小题)1.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B.C.D.【答案】B【解答】解:如图,C为OB边上的格点,连接AC,根据勾股定理,AO==2,AC==,OC ==,所以,AO2=AC2+OC2=20,所以,△AOC是直角三角形,cos∠AOB ===.故选:B.2.在Rt△ABC中,∠C=90°,若sin A=,AB=2,则AC长是()A.B.C.D.2【答案】A【解答】解:∵∠C=90°,sin A=,AB=2,∴BC=AB×sin A=2×=,由勾股定理得:AC==.故选:A.3.如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A的坐标为(0,3),tan∠ABO=,则菱形ABCD的周长为()A.6B.6C.12D.8【答案】D【解答】解:∵点A的坐标为(0,3),∴AO=3,∵tan∠ABO=,∴=,∴=,∴BO=,∵△AOB是直角三角形,∴AB====2,∵菱形的四条边相等,∴菱形ABCD的周长为2×4=8.故选:D.4.在Rt△ABC中,AC=8,BC=6,则cos A的值等于()A.B.C.或D.或【答案】C【解答】解:当△ABC为直角三角形时,存在两种情况:①当AB为斜边,∠C=90°,∵AC=8,BC=6,∴AB===10.∴cos A===;②当AC为斜边,∠B=90°,由勾股定理得:AB===2,∴cos A==;综上所述,cos A的值等于或.故选:C.5.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的正弦值是.【答案】见试题解答内容【解答】解:由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴sin∠ABC==.故答案为:.二.特殊角的三角函数值(共1小题)6.△ABC中,∠A,∠B均为锐角,且(tan B﹣)(2sin A﹣)=0,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.有一个角是60°的三角形【答案】D【解答】解:∵△ABC中,∠A,∠B均为锐角,且(tan B﹣)(2sin A﹣)=0,∴tan B﹣=0或2sin A﹣=0,即tan B=或sin A=.∴∠B=60°或∠A=60°.∴△ABC有一个角是60°.故选:D.三.解直角三角形(共9小题)7.将一副三角板如图摆放在一起,组成四边形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,连接BD,则tan∠CBD的值等于()A.B.C.D.【答案】D【解答】解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°∴∠DCE=45°,∵DE⊥CE∴∠CED=90°,∠CDE=45°∴设DE=CE=1,则CD=在Rt△ACD中,∵∠CAD=30°,∴tan∠CAD=,则AC=,在Rt△ABC中,∠BAC=∠BCA=45°∴BC=,∴在Rt△BED中,tan∠CBD===故选:D.8.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,下列结论正确的是()A.sin C=B.sin C=C.sin C=D.sin C=【答案】C【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADC中,cos C=,tan C=,故A、B不符合题意;在Rt△BAC中,sin C=,故C符合题意;∵∠B+∠BAD=90°,∠B+∠C=90°,∴∠C=∠BAD,在Rt△BAD中,cos∠BAD=,∴cos C=cos∠BAD=,故D不符合题意;故选:C.9.如图,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足为D,若AC=,BC=2.则sin∠ACD的值为()A.B.C.D.【答案】C【解答】解:∵在Rt△ABC中,∠ACB=90,AC=,BC=2,∴AB===3,∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B,∴sin∠ACD=sin∠B==.故选:C.10.在△ABC中,AB=4,BC=5,sin B=,则△ABC的面积等于()A.15B.C.6D.【答案】D【解答】解:过点A作AD⊥BC,垂足为D,在△ABD中,AB=4,sin B=,∴AD=AB sin B=4×=3,∴△ABC的面积=BC•AD=×5×3=,故选:D.11.在△ABC中,AB=3,AC=6,∠B=45°,则BC=3+3或3﹣3.【答案】3+3或3﹣3.【解答】解:①当△ABC为锐角三角形时,过点A作AD⊥BC于点D,如图,∵AB=3,∠B=45°,∴AD=BD=AB•sin45°=3,∴CD==3,∴BC=BD+CD=3+3;②当△ABC为钝角三角形时,过点A作AD⊥BC交BC延长线于点D,如图,∵AB=3,∠B=45°,∴AD=BD=AB•sin45°=3,∴CD==3,∴BC=BD﹣CD=3﹣3;综上,BC的长为3+3或3﹣3.12.我们给出定义:如果两个锐角的和为45°,那么称这两个角互为半余角.如图,在△ABC中,∠A,∠B互为半余角,且,则tan A=.【答案】.【解答】解:过点B作BD⊥AC,交AC的延长线于点D,∵,∴设BC=2a,AC=3a,∵∠A,∠B互为半余角,∴∠A+∠B=45°,∴∠DCB=∠A+∠B=45°,在Rt△CDB中,BD=BC sin45°=2a•=2a,CD=BC cos45°=2a•=2a,∵AC=3a,∴AD=AC+CD=3a+2a=5a,在Rt△ABD中,tan A===,故答案为:.13.在△ABC中,∠C=90°,∠A=30°,BC=4,D为直线AB上的一点,若AD=2,则tan∠BDC的值为或.【答案】见试题解答内容【解答】解:作CE⊥AB于点E,∵∠ACB=90°,∠BAC=30°,BC=4,∴AB=2BC=8,∠B=60°,∴BE=BC=2,CE=2,①如图1,点D在AB边上时,∵AD=2,BE=2,AB=8,∴DE=AB﹣BE﹣AD=4,∴在Rt△DCE中,tan∠BDC===;②如图2,点D在BA延长线上时,DE=AE+AD=AB﹣BE+AD=8﹣2+2=8,在Rt△DCE中,tan∠BDC===.综上所述:tan∠BDC的值为或.故答案为:或.14.如图,在△ABC中,∠ABC=45°,∠ACB=30°,AB=4,则AC=4.【答案】4.【解答】解:过点A作AD⊥BC,垂足为D,在Rt△ABD中,∠ABC=45°,AB=4,∴AD=AB•sin45°=4×=2,在Rt△ADC中,∠ACB=30°,∴AC=2AD=4,故答案为:4.15.如图,△ABC中,AB=AC=3cm,BC=4cm,点P从点B出发,沿线段BC以2cm/s的速度向终点C 运动,点Q从点C出发,沿着C→A→B的方向以3cm/s的速度向终点B运动,P,Q同时出发,设点P 运动的时间为t(s),△CPQ的面积为S(cm2).(1)求sin B;(2)求S关于t的函数关系式,并直接写出自变量t的取值范围.【答案】(1);(2)S=.【解答】解:(1)过点A作AD⊥BC,垂足为D,∵AB=AC=3cm,AD⊥BC,∴BD=BC=2cm,在Rt△ABD中,AB=3cm,BD=2cm,∴AD===,∴sin B==;(2)过点Q作QE⊥BC,垂足为E,∵AB=AC,∴∠B=∠C,∴sin B=sin C=,分两种情况:当0<t≤1时,由题意得:CQ=3t,BP=2t,∴CP=BC﹣BP=4﹣2t,在Rt△CQE中,QE=CQ sin C=3t•=t,∴S=CP•QE=•(4﹣2t)•t=2t﹣t2=﹣t2+2t,当1<t<2时,由题意得:CA+AQ=3t,BP=2t,∴CP=BC﹣BP=4﹣2t,BQ=AB+AC﹣(CA+AQ)=6﹣3t,在Rt△BQE中,QE=BQ sin B=(6﹣3t)•=2﹣t,∴S=CP•QE=•(4﹣2t)•(2﹣t)=t2﹣4t+4,∴S=.四.解直角三角形的应用(共5小题)16.如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm【答案】B【解答】解:∵AB=AC,BC=44cm,∴BD=CD=22cm,AD⊥BC,∵∠ABC=27°,∴tan∠ABC=≈0.51,∴AD≈0.51×22=11.22cm,故选:B.17.胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB垂直于桥面BC于点B,其中两条斜拉索AD、AC与桥面BC的夹角分别为60°和45°,两固定点D、C之间的距离约为33m,求主塔AB的高度(结果保留整数,参考数据:≈1.41,≈1.73).【答案】78m.【解答】解:在Rt△ADB中,∠ADB=60°,tan∠ADB=,∴BD==,在Rt△ABC中,∠C=45°,tan∠C=,∴BC==AB,∵BC﹣BD=CD=33m,∴AB﹣=33,∴AB=≈78(m).答:主塔AB的高约为78m.18.学科综合我们在物理学科中学过:光线从空气射入水中会发生折射现象(如图1),我们把n=称为折射率(其中α代表入射角,β代表折射角).观察实验为了观察光线的折射现象,设计了图2所示的实验,即通过细管MN可以看见水底的物块C,但不在细管MN所在直线上,图3是实验的示意图,四边形ABFE为矩形,点A,C,B在同一直线上,测得BF =12cm,DF=16cm.(1)求入射角α的度数.(2)若BC=7cm,求光线从空气射入水中的折射率n.(参考数据:,,)【答案】见试题解答内容【解答】解:(1)如图:过点D作DG⊥AB,垂足为G,由题意得:四边形DGBF是矩形,∴DG=BF=12cm,BG=DF=16cm,在Rt△DGB中,tan∠BDG===,∴∠BDG=53°,∴∠PDH=∠BDG=53°,∴入射角α的度数为53°;(2)∵BG=16cm,BC=7cm,∴CG=BG﹣BC=9(cm),在Rt△CDG中,DG=12cm,∴DC===15(cm),∴sinβ=sin∠GDC===,由(1)得:∠PDH=53°,∴sin∠PDH=sinα≈,∴折射率n===,∴光线从空气射入水中的折射率n约为.19.如图1,图2分别是网上某种型号拉杆箱的实物图与示意图,根据商品介绍,获得了如下信息:滑杆DE、箱长BC、拉杆AB的长度都相等,即DE=BC=AB,点B、F在线段AC上,点C在DE上,支杆DF=40cm,CE:CD=1:4,∠DCF=45°,∠CDF=37°.请根据以上信息,解决下列问题:(1)求滑竿DE的长度;(2)求拉杆端点A到水平滑杆ED的距离(结果精确到0.1).参考数据:sin37°≈,cos37°≈,tan37°≈,≈1.414.【答案】见试题解答内容【解答】解:(1)过点F作FG⊥CD,垂足为G,在Rt△DFG中,∠CDF=37°.DF=40cm,∴FG=DF•sin37°≈40×=24(cm),DG=DF•cos37°≈40×=32(cm),在Rt△CFG中,∠DCF=45°,∴CG==24(cm),∴DC=CG+DG=24+32=56(cm),∵CE:CD=1:4,∴CE=CD=14(cm),∴DE=CE+CD=70(cm),∴滑竿DE的长度约为70cm;(2)过点A作AH⊥CD,交CD的延长线于点H,∵DE=BC=AB=70cm,∴AC=AB+BC=140(cm),在Rt△ACH中,∠ACH=45°,∴AH=AC•sin45°=140×=70≈99.0(cm),∴拉杆端点A到水平滑杆ED的距离约为99.0cm.20.如图①是某市地铁站的一组智能通道闸机,当行人通过智能闸机时会自动识别行人身份,识别成功后,两侧的圆弧翼闸会自动收回到机箱内,行人即可通行.图②是一个智能通道闸机的截面图,已知∠ABC =∠DEF=28°,AB=DE=60cm,点A、D在同一水平线上,且A、D之间的距离是10cm.(1)试求闸机通道的宽度(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(2)实验数据表明,一个智能闸机通道平均每分钟检票通过的人数是一个人工检票口通过的人数的2倍.若有240人的团队通过同一个人工检票口比通过同一个智能闸机检票口多用4分钟,求一个人工检票口和一个智能闸机通道平均每分钟检票各通过多少人?【答案】(1)闸机通道的宽度是66.4cm;(2)一个人工检票口每分钟检票通过30人,一个智能闸机检票口每分钟通过60人.【解答】解:(1)过点A作AM⊥BC于点M,过点D作DN⊥EF于点N,如图:在Rt△AMB中,AB=60cm,∠ABM=28°,∴sin28°=,∴AM=AB×sin28°=0.47×60=28.2(cm),同理DN=28.2cm,∴闸机通道的宽度BE=AM+AD+DN=28.2×2+10=66.4(cm);答:闸机通道的宽度是66.4cm;(2)解:设一个人工检票口每分钟检票通过的人数为x人,则一个智能闸机检票口每分钟通过的人数为2x人,由题意得:﹣=4,解得:x=30,经检验:x=30是原方程的解,∴2x=2×30=60(人),答:一个人工检票口每分钟检票通过30人,一个智能闸机检票口每分钟通过60人.五.解直角三角形的应用-坡度坡角问题(共1小题)21.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A .5cos αB .C .5sin αD .【答案】B 【解答】解:如图,过点B 作BC ⊥AF 于点C .∵BC =5米,∠CBA =∠α.∴AB ==.故选:B .六.解直角三角形的应用-仰角俯角问题(共7小题)22.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为37m .(精确到1m .参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)【答案】37m【解答】解:由题意得:AB ⊥BC ,CD =70m ,设BD =x m ,则BC =CD +BD =(x +70)m ,在Rt △ABD 中,∠ADB =58°,∴AB =BD •tan58°≈1.6x (m ),在Rt △ABC 中,∠ACB =22°,∴AB =BC •tan22°≈0.4(x +70)m ,∴1.6x =0.4(x +70),解得:x=,∴AB=1.6x≈37(m),故答案为:37m.23.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.(结果精确到0.1m,参考数据:≈1.732)【答案】建筑物的高度AB约为31.9米.【解答】解:过点D作DE⊥AC,垂足为E,过点D作DF⊥AB,垂足为F,则DE=AF,DF=AE,在Rt△DEC中,tanθ==,设DE=3x米,则CE=4x米,∵DE2+CE2=DC2,∴(3x)2+(4x)2=400,∴x=4或x=﹣4(舍去),∴DE=AF=12米,CE=16米,设BF=y米,∴AB=BF+AF=(12+y)米,在Rt△DBF中,∠BDF=30°,∴DF===y(米),∴AE=DF=y米,∴AC=AE﹣CE=(y﹣16)米,在Rt△ABC中,∠ACB=60°,∴tan60°===,解得:y=6+8,经检验:y=6+8是原方程的根,∴AB=BF+AF=18+8≈31.9(米),∴建筑物的高度AB约为31.9米.24.图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别?(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别,社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】(1)小杜最少需要下蹲12.9厘米才能被识别;(2)踮起脚尖小若能被识别.【解答】解:(1)过C作OB的垂线分别交仰角、俯角线于点E,D,交水平线于点F,在Rt△AEF中,tan∠EAF=,∴EF=AF•tan15°≈130×0.27=35.1(cm),∵AF=AF,∠EAF=∠DAF,∠AFE=∠AFD=90°,∴△ADF≌△AEF(ASA),∴EF=DF=35.1cm,∴CE=160+35.1=195.1(cm),∴小杜最少需要下蹲208﹣195.1=12.9厘米才能被识别;(2)如图2,过B作OB的垂线分别交仰角、俯角线于M.N.交水平线于P,在Rt△APM中,tan∠MAP=,∴MP=AP•tan20°≈150×0.36=54.0(cm),∵AP=AP,∠MAP=∠NAP,∠APM=∠APN=90°,∴△AMP≌△ANP(ASA),∴PN=MP=54.0cm,∴BN=160﹣54.0=106.0(cm),∴小若踮起脚尖后头顶的高度为120+3=123(cm),∴小若头顶超出点N的高度为:123﹣106.0=17.0(cm)>15cm,∴踮起脚尖小若能被识别.25.如图,某校无人机兴趣小组为测量教学楼的高度,在操场上展开活动.此时无人机在离地面30m的D 处,操控者从A处观测无人机D的仰角为30°,无人机D测得教学楼BC顶端点C处的俯角为37°,又经过人工测量测得操控者A和教学楼BC之间的距离AB为60m,点A,B,C,D都在同一平面上.(1)求此时无人机D与教学楼BC之间的水平距离BE的长度(结果保留根号);(2)求教学楼BC的高度(结果取整数)(参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).【答案】(1)此时无人机D与教学楼BC之间的水平距离BE的长度为(60﹣30)m;(2)教学楼BC的高度约为24m.【解答】解:(1)在Rt△ADE中,∠A=30°,DE=30m,∴AE=DE=30(m),∵AB=60m,∴BE=AB﹣AE=(60﹣30)m,∴此时无人机D与教学楼BC之间的水平距离BE的长度为(60﹣30)m;(2)过点C作CF⊥DE,垂足为F,由题意得:CF=BE=(60﹣30)m,BC=EF,CF∥DG,∴∠DCF=∠CDG=37°,在Rt△DCF中,DF=CF•tan37°≈(60﹣30)×0.75=(45﹣22.5)m,∴EF=DE﹣DF=30﹣(45﹣22.5)=22.5﹣15≈24(m),∴BC=EF=24m,∴教学楼BC的高度约为24m.26.《海岛算经》是中国古代测量术的代表作,原名《重差》.这本著作建立起了从直接测量向间接测量的桥梁.直至近代,重差测量法仍有借鉴意义.如图2,为测量海岛上一座山峰AH的高度,直立两根高2米的标杆BC和DE,两杆间距BD相距6米,D、B、H三点共线.从点B处退行到点F,观察山顶A,发现A、C、F三点共线,且仰角为45°;从点D处退行到点G,观察山顶A,发现A、E、G三点共线,且仰角为30°.(点F、G都在直线HB上)(1)求FG的长(结果保留根号);(2)山峰高度AH的长(结果精确到0.1米).(参考数据:≈1.41,≈1.73)【答案】(1)FG的长为(4+2)米;(2)山峰高度AH的长约为10.2米.【解答】解:(1)由题意得:CB⊥FH,ED⊥HG,在Rt△FBC中,∠BFC=45°,BC=2,∴BF==2(米),在Rt△DEG中,∠G=30°,DE=2,∴DG===2(米),∵BD=6米,∴FG=BD+DG﹣BF=6+2﹣2=(4+2)米,∴FG的长为(4+2)米;(2)设AH=x米,在Rt△AHF中,∠AFH=45°,∴FH==x(米),∵FG=(4+2)米,∴HG=HF+FG=(x+4+2)米,在Rt△AHG中,∠G=30°,∴HG===AH,∴x+4+2=x,解得:x=5+3≈10.2,∴AH=10.2米,∴山峰高度AH的长约为10.2米.27.如图,小山的顶部是一块平地,在这块平地上有一座古塔CD.小山斜坡AB的坡度为i=1:2.4,坡长AB为39米,在小山的坡底A处测得该塔的塔顶C的仰角为45°,在坡顶B处测得该塔的塔顶C的仰角为74°.(1)求坡顶B到地面AH的距离BH的长;(2)求古塔CD的高度(结果精确到1米).(参考数据:sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】(1)坡顶B到地面AH的距离BH的长15米;(2)古塔CD的高度约为29米.【解答】解:(1)由题意得:BH⊥AH,∵斜坡AB的坡度为i=1:2.4,∴==,∴设BH=5x米,则AH=12x米,在Rt△ABH中,AB===13x(米),∵AB=39米,∴13x=39,解得:x=3,∴BH=15米.AH=36米,∴坡顶B到地面AH的距离BH的长15米;(2)延长CD交AN于点E,由题意得:BD=HE,BH=DE=15米,设BD=HE=x米,∵AH=36米,∴AE=AH+HE=(36+x)米,在Rt△AEC中,∠CAE=45°,∴CE=AE•tan45°=(36+x)米,在Rt△CBD中,∠CBD=74°,∴CD=BD•tan74°≈3.49x(米),∵DE+CD=CE,∴15+3.49x=36+x,解得:x≈8.4,∴CD=3.49x≈29(米),∴古塔CD的高度约为29米.28.某市在地铁施工期间,相关部门在施工路段设立了矩形安全警示牌ABCD(如图所示),小东同学在距离安全警示牌8米(EF的长)远的建筑物上的窗口P处,测得安全警示牌顶端A点和底端B点的俯角分别是30°和45°,求安全警示牌宽AB的值.(结果保留根号)【答案】安全警示牌宽AB的值为(8﹣)米.【解答】解:如图:延长BA交PH于点G,由题意得:EF=PG=8米,∠PGA=90°,在Rt△PAG中,∠GPA=30°,∴AG=PG•tan30°=8×=(米),在Rt△PGB中,∠GPB=45°,∴GB=PG•tan45°=8×1=8(米),∴AB=GB﹣GA=(8﹣)米,∴安全警示牌宽AB的值为(8﹣)米.七.解直角三角形的应用-方向角问题(共2小题)29.如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西60°的方向,从B处测得渔船在其东北方向,且测得B,P两点之间的距离为20海里.(1)求观测站A,B之间的距离(结果保留根号);(2)渔船从点P处沿射线AP的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西15°的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C处,请问补给船能否在83分钟之内到达C处?(参考数据:≈1.73)【答案】(1)观测站A,B之间的距离为(10+10)海里;(2)补给船能在83分钟之内到达C处,理由见解答.【解答】解:(1)过点P作PD⊥AB于D点,∴∠BDP=∠ADP=90°,在Rt△PBD中,∠PBD=90°﹣45°=45°,BP=20海里,∴DP=BP•sin45°=20×=10(海里),BD=BP•cos45°=20×=10(海里),在Rt△PAD中,∠PAD=90°﹣60°=30°,∴AD===10(海里),∴AB=BD+AD=(10+10)海里,∴观测站A,B之间的距离为(10+10)海里;(2)补给船能在83分钟之内到达C处,理由:过点B作BF⊥AC,垂足为F,∴∠AFB=∠CFB=90°由题意得:∠ABC=90°+15°=105°,∠PAD=90°﹣60°=30°,∴∠C=180°﹣∠ABC﹣∠PAD=45°,在Rt△ABF中,∠BAF=30°,∴BF=AB=(5+5)海里,在Rt△BCF中,∠C=45°,∴BC===(10+10)海里,∴补给船从B到C处的航行时间=×60=30+30≈81.9(分钟)<83分钟,∴补给船能在83分钟之内到达C处.30.为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A点为出发点,途中设置两个检查点,分别为B点和C点,行进路线为A→B→C→A.B点在A点的南偏东25°方向3km处,C点在A点的北偏东80°方向,行进路线AB和BC所在直线的夹角∠ABC为45°.(1)求行进路线BC和CA所在直线的夹角∠BCA的度数;(2)求检查点B和C之间的距离(结果保留根号).【答案】见试题解答内容【解答】解:(1)由题意得:∠NAC=80°,∠BAS=25°,∴∠CAB=180°﹣∠NAC﹣∠BAS=75°,∵∠ABC=45°,∴∠ACB=180°﹣∠CAB﹣∠ABC=60°,∴行进路线BC和CA所在直线的夹角∠BCA的度数为60°;(2)过点A作AD⊥BC,垂足为D,在Rt△ABD中,AB=3km,∠ABC=45°,∴AD=AB•sin45°=3×=3(km),BD=AB•cos45°=3×=3(km),在Rt△ADC中,∠ACB=60°,CD===(km),∴BC=BD+CD=(3+)km,∴检查点B和C之间的距离(3+)km.。
2023年九年级数学中考复习:旋转综合压轴题(角度问题)

2023年九年级数学中考复习:旋转综合压轴题(角度问题)1.如图①,在△ABC中,AB=AC=4,∠BAC=90°,AD⊥BC,垂足为D.(1)S△ABD =.(直接写出结果)(2)如图②,将△ABD绕点D按顺时针方向旋转得到△A′B′D,设旋转角为α (α<90°),在旋转过程中:探究一:四边形APDQ的面积是否随旋转而变化?说明理由;探究二:当α=________时,四边形APDQ是正方形.2.如图,在等腰Rt ABC和等腰Rt CDE中,90∠=∠=︒.ACB DCE(1)观察猜想:如图1,点E在BC上,线段AE与BD的关系是_________;(2)探究证明:把CDE△绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE==,5AC BC△绕点C在平面内转动一周,若10==,AE、BD交于点P时,CE CD连接CP,直接写出BCP最大面积_________.3.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,请判断线段PM与PN的数量关系和位置关系,并说明理由;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=3,AB=7,请直接写出△PMN面积的最大值.4.如图1,△ABC为等腰直角三角形,∠BAC=90°,AB=AC,点D在AB边上,点E在AC边上,AD=AE,连接DE,取BC边的中点O,连接DO并延长到点F,使OF=OD,连接CF.(1)请判断△CEF的形状,并说明理由;(2)将(1)中△ADE绕点A旋转,连接CE,(1)中的结论是否仍然成立,若成立,请仅就图2所示情况给出证明,若不成立,请说明理由;(3)若AB=6,AD=4,将△ADE由图1位置绕点A旋转,当点B,E,D三点共线时,请直接写出△CEF 的面积.5.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是AB 外一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE ,BC 与DE 交于点F ,且AB BD ⊥.(1)如图1,若CB =6CE =,求DE 的长;(2)如图2,若点H 、G 分别为线段CF 、AE 的中点,连接HG ,求证:12HG BF =;(3)如图3,在(2)的条件下,若CE =4CF =,将BDF 绕点F 顺时针旋转角3(060)αα︒<≤︒,得到B D F '',连接B G ',取B G '中点Q ,连接BQ ,当线段BQ 最小时,请直接写出BQB '的面积.6.如图1,矩形ABCD 中,15,20AB BC ==,将矩形ABCD 绕着点A 顺时针旋转,得到矩形BEFG .(1)当点E 落在BD 上时,则线段DE 的长度等于________; (2)如图2,当点E 落在AC 上时,求BCE 的面积;(3)如图3,连接AE CE AG CG 、、、,判断线段AE 与CG 的位置关系且说明理由,并求22CE AG +的值; (4)在旋转过程中,请直接写出BCE ABG S S +△△的最大值.7.在平面直角坐标系中,O 为原点,点(4,0)A -,点(0,3),B ABO 绕点B 顺时针旋转,得A BO ''△,点A O 、旋转后的对应点为A O ''、,记旋转角为α.(1)如图①,90α=︒,边OA 上的一点M 旋转后的对应点为N ,当1OM =时,点N 的坐标为_____; (2)90α=︒,边OA 上的一点M 旋转后的对应点为N ,当O M BN '+取得最小值时,在图②中画出点M 的位置,并求出点N 的坐标.(3)如图③,P 为AB 上一点,且:2:1PA PB =,连接PO PA ''、,在ABO 绕点B 顺时针旋转一周的过程中,PO A ''的面积是否存在最大值和最小值,若存在,请求出;若不存在,请说明理由.8.如图1,△ABC 和△DEC 均为等腰三角形,且∠ACB =∠DCE =90°,连接BE ,AD ,两条线段所在的直线交于点P .(1)线段BE 与AD 有何数量关系和位置关系,请说明理由. (2)若已知BC =12,DC =5,△DEC 绕点C 顺时针旋转, ①如图2,当点D 恰好落在BC 的延长线上时,求AP 的长; ②在旋转一周的过程中,设△P AB 的面积为S ,求S 的最值.9.如图,在菱形ABCD 中,2AB =,60BAD ∠=,过点D 作DE AB ⊥于点E ,DF BC ⊥于点F .()1如图1,连接AC 分别交DE 、DF 于点M 、N ,求证:13MN AC =; ()2如图2,将EDF 以点D 为旋转中心旋转,其两边'DE 、'DF 分别与直线AB 、BC 相交于点G 、P ,连接GP ,当DGP 的面积等于10.如图1,一副直角三角板满足AB=BC ,AC=DE ,∠ABC=∠DEF=90°,∠EDF=30°操作:将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q . 探究一:在旋转过程中,(1)如图2,当1CEEA =时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当CEm EA=时,EP 与EQ 满足的数量关系式为 ,其中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若2CEEA=且AC=30cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化,求出相应S 的值或取值范围.11.如图1,在△ABC中,∠BAC=90°,AB=AC,点D在边AC上,CD⊥DE,且CD=DE,连接BE,取BE的中点F,连接DF.(1)请直接写出∠ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中∠ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;②如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.12.已知点E是正方形ABCD的边AB上一点,AB=BE=2.以BE为边向右侧作正方形BEFG,将正方形BEFG绕点B顺时针旋转α度(0≤α≤90°),连结AE,CG(如图).(1)求证:△ABE ≌△CBG . (2)当点E 在BD 上时,求CG 的长.(3)当90AEB =︒∠时,正方形BEFG 停止旋转,求在旋转过程中线段AE 扫过的面积.(参考数据:sin 28︒≈sin 62︒tan 28︒,tan 62︒ 13.如图,矩形ABCD 中,5,6,==AB BC BCG 为等边三角形.点E ,F 分别为,AD BC 边上的动点,且EF AB ∥,P 为EF 上一动点,连接BP ,将线段BP 绕点B 顺时针旋转60︒至BM ,连接,,,PA PC PM GM .(1)求证:=GM PC ;(2)当,,PB PC PE 三条线段的和最小时,求PF 的长;(3)若点E 以每秒2个单位的速度由A 点向D 点运动,点P 以每秒1个单位的速度由E 点向F 点运动.E ,P 两点同时出发,点E 到达点D 时停止,点P 到达点F 时停止,设点P 的运动时间为t 秒. ①求t 为何值时,AEP △与CFP 相似; ②求BMP 的面积S 的最小值.14.如图1,在Rt ABC 中,90,5∠=︒==C AC BC ,点D 是边BC 上的一点,且BD =,过点D 做BC 边的垂线,交AB 边于点E ,将BDE 绕点B 顺时针方向旋转,记旋转角为()0360αα︒≤<︒.(1)【问题发现】当0α=︒时,AECD的值为________,直线,AE CD 相交形成的较小角的度数为________; (2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明; (3)【问题解决】当BDE 旋转至A ,D ,E 三点在同一条直线上时,请直接写出ACD △的面积.15.在中Rt ABC △中.90ABC ∠=︒,AB BC =,点E 在射线CB 上运动.连接AE ,将线段AE 绕点E 顺时针旋转90°得到EF ,连接CF .(1)如图1,点E 在点B 的左侧运动;①当2BE =,BC =EAB ∠=_________°; ②猜想线段CA ,CF 与CE 之间的数量关系为_________.(2)如图2,点E 在线段CB 上运动时,第(1)间中线段CA ,CF 与CE 之间的数量关系是否仍然成立如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.(3)点E 在射线CB 上运动,BC =,设BE x =,以A ,E ,C ,F 为顶点的四边形面积为y ,请直接写出y 与x 之间的函数关系式(不用写出x 的取值范围).16.如图,在△ABC中,AB=∠A=45°,AC=C作直线平行AB,将△ABC绕点A顺时针旋转得到△AB C''(点B,C的对应点分别为B',C'),射线AB',AC'分别交直线l于点P、Q.(1)如图1,求BC的长;(2)如图2,当点C为PQ中点时,求tan∠APQ;(3)如图3,当点P,Q分别在线段AB',AC'上时,试探究四边形PQC B''的面积是否存在最大值.若存在,求出其最大值;若不存在,请说明理由.17.已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)如图1,当∠EDF绕D点旋转到DE⊥AC于E时,易证S△DEF+S△CEF与S△ABC的数量关系为__________;(2)如图2,当∠EDF 绕D 点旋转到DE 和AC 不垂直时,上述结论是否成立?若成立,请给予证明; (3)如图3,这种情况下,请猜想S △DEF 、S △CEF 、S △ABC 的数量关系,不需证明.18.面直角坐标系中,O 为原点,点(12,0)A ,点(0,5)B ,线段AB 的中点为点C .将ABO 绕着点B 逆时针旋转,点O 对应点为1O ,点A 的对应点为1A .(1)如图①,当点1O 恰好落在AB 上时, ①此时1CO 的长为__________;②点P 是线段OA 上的动点,旋转后的对应点为1P ,连接11,BP PO ,试求11BP PO +最小时点P 的坐标; (2)如图②,连接11,CA CO ,则在旋转过程中,11CAO △的面积是否存在最大值?若存在,直接写出最大值,若不存在,说明理由.19.如图,在Rt ABC 中,90C ∠=︒,5AB =,3sin 5A =.点P 从点A 出发,以每秒4个单位长度的速度向终点B 匀速运动,过点P 作PD AB ⊥交折线AC ,CB 于点D ,连结BD ,将DBP 绕点D 逆时针旋转90︒得到DEF .设点P 的运动时间为t (秒).(1)用含t 的代数式表示线段PD 的长.(2)当点E 落在AB 边上时,求AD 的长.(3)当点F 在ABC 内部时,求t 的取值范围.(4)当线段DP 将ABC 的面积分成1:2的两部分时,直接写出t 的值.20.如图1,在Rt ABC △中,90B ∠=︒,AB BC =,AO 是BC 边上的中线,点D 是AO 上一点,DE EO ⊥,E 是垂足,DEO 可绕着点O 旋转,点F 是点E 关于点O 的对称点,连接AD 和CF .(1)问题发现:如图2,当1AD DO=时,则下列结论正确的是_______.(填序号)①BE CF =;②点F 是OC 的中点:③AO 是BAC ∠的角平分线;④AD =.(2)数学思考:将图2中DEO 绕点O 旋转,如图3,则AD 和CF 具有怎样的数量关系?请给出证明过程;(3)拓展应用:在图1中,若AD x DO=,将DEO 绕着点O 旋转. ①则AD =_______CF ;②若4AB =,1x =,在DEO 旋转过程中,如图4,当点D 落在AB 上时,连结BE ,EC ,求四边形ABEC 的面积.答案21.(1)4(2)四边形APDQ的面积不会随旋转而变化,理由见详解;当45α=︒时,四边形APDQ是正方形.22.(1)AE BD=,AE BD⊥;(2)结论仍成立23.(1)PM=PN,PM⊥PN.(2)△PMN是等腰直角三角形.(3)S△PMN最大=25 224.(1)△CEF是等腰直角三角形;(2)成立,(3)18-18+25.(1)(3)826.(1)10;(2)42;(3) AE⊥CG221250CE AG=+;(4)30027.(1)(-3,4);(2)N(-3,92);(3)最大值为283,最小值为8328.(1)BE=AD,BE与AD互相垂直,(2)①AP=8413;②最小47,最大7229.(2)顺时针或逆时针旋转60.30.探究一:(1)EP=EQ;证明见解析;(2)1:2,(3)EP:EQ=1:m,∴0<;探究二:(1)当50cm2;当75cm2.(2)50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.31.(1)∠ADF=45°,AD DF;(2)①成立,;②1≤S△ADF≤4.32.(3)3145 Sπ=33.(3)①73;②34.,45︒;(2)无变化(3)121235.(1)①30;②AC +CF CE ;(2)CA -CF ;(3)当点E 在点B 左侧运动时,y =21322x +;当点E 在点B 右侧运动时,y 32+.36.(3)存在;21-37.(1)S △DEF +S △CEF =12S △ABC(2)上述结论S △DEF +S △CEF =12S △ABC 成立(3)S △DEF -S △CEF =12S △ABC38.(1)①1.5 ②20,07⎛⎫ ⎪⎝⎭ (2)存在最大值,最大值为6939.(1)3t (2)258(3)355 374t≤≤40.(1)①②④(2)AD=,(3)46 5。
2023年九年级数学中考复习《解直角三角形的应用解答题》专题提升训练+

2022-2023学年九年级数学中考复习《解直角三角形的应用解答题》专题提升训练(附答案)1.如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM,已知CD =45m.求楼间距MN(参考数据:tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)2.图①是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,托板长AB =115mm,支撑板长CD=70mm,且CB=35mm,托板AB可绕点C转动.(1)当∠CDE=60°时,①求点C到直线DE的距离;(计算结果保留根号)②若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在DE上,则CD旋转的角度为.(直接写出结果)(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2.sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,≈1.7)3.美丽的徒骇河穿城而过,成为市民休闲娱乐的风景带.某数学兴趣小组在一次课外活动中,测量徒骇河某段河的宽CD.如图所示,小组成员选取的点A,B是桥上的两点,点A,E,C在河岸的同一直线上,且AB⊥AC.若,AE间的距离80米,在B点处测得BD与平行于AC的直线间的夹角为30°,在点E处测得ED与直线AC之间的夹角为60°,求这段河的宽度CD.(结果保留根号)4.我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD 平行且相距1.2m,即DH=1.2m.(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)5.如图1,将一个直角三角形状的楔子(Rt△ABC)从木桩的底端点P沿水平方向打入木桩台底下,可以使木桩向上运动.如果楔子底面的倾斜角∠ABC为10°,其高度AC为1.8厘米,楔子沿水平方向前进一段距离(如箭头所示),如图2,留在外面的楔子长度HC为3厘米.(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)(1)求BH的长.(2)木桩上升了多少厘米?6.筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹筒,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A处,水沿射线AD方向泻至水渠DE,水渠DE所在直线与水面PQ平行.设筒车为⊙O,⊙O与直线PQ交于P,Q两点,与直线DE交于B,C两点,恰有AD2=BD•CD,连接AB,AC.(1)求证:AD为⊙O的切线;(2)筒车的半径为3m,AC=BC,∠C=30°.当水面上升,A,O,Q三点恰好共线时,求筒车在水面下的最大深度(精确到0.1m,参考值:≈1.4,≈1.7).7.如图,一扇窗户垂直打开,即打开到OM⊥OP的状态,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转45°到达ON位置,此时,点A、C的对应位置分别是点B、D.测出此时∠ODB为30°,BO的长为20cm.求滑动支架AC的长.(精确到1cm,≈1.41,≈1.73).8.如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)9.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM =113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)10.动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)11.某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)12.小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB=8m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少?(结果精确到0.1m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)13.如图①是大家熟悉的柜式空调,关闭时叶片竖直向下.如图②,当启动时,出风口叶片会同步开始逆时针旋转到最大旋转角90°时返回,旋转速度是每秒10°,同时空调风从叶片口直线吹出.AB由5个叶片组成的出风口,经过测量,A点、B点距地面高度分别是170cm、145cm在空调正前方100cm处站着一个高70cm的小朋友(线段EF表示).(1)从启动开始,多长时间小朋友头顶E处感受到空调风;(2)若叶片从闭合旋转到最大角度的过程中,小朋友的头顶E处有多长时间感受到空调风;(3)当选择上下扫风模式时,叶片会旋转到最大角度后原速返回.从启动到第一次返回起始位的过程中,该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了多长时间.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).14.第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)15.一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B,C,D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32cm,∠BDE=75°,其中一段支撑杆CD=84cm,另一段支撑杆DE=70cm.(1)求BD的长.(2)求支撑杆上的点E到水平地面的距离EF是多少?(结果均取整数,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.732)16.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A=72.9°,AD=1.6m,EF=6.2m.(结果保留小数点后一位)(1)求证:四边形DEFG为平行四边形;(2)求雕塑的高(即点G到AB的距离).(参考数据:sin72.9°≈0.96,cos72.9°≈0.29,tan72.9°≈3.25)17.如图①是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图②所示,已知晾衣臂OA=OB=120cm,支撑脚OC=OD=120cm,展开角∠COD=60°,晾衣臂支架PQ=MN=80cm,且OP=OM=40cm.(1)当晾衣臂OA与支撑脚OD垂直时,求点A距离地面的高度;(2)当晾衣臂OB从水平状态绕点O旋转到OB'(D、O、B'在同一条直线上)时,点N 也随之旋转到OB'上的点N'处,求点N在晾衣臂OB上滑动的距离.18.如图1是某小区门口的门禁自动识别系统,主要有可旋转高清摄像机和其下方固定的显示屏.图2是其结构示意图,摄像机长AB=20cm,点O是摄像机旋转轴心,O为AB的中点,显示屏的上沿CD与AB平行,CD=15cm,AB与CD连接杆OE⊥AB,OE=10cm,CE=2ED,点C到地面的距离为60cm.若AB与水平地面所成的角的度数为35°.(1)求显示屏所在部分的宽度;(2)求镜头A到地面的距离.(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700,结果保留一位小数)19.图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点,现测得AB=BE=ED=CD=20cm,经多次调试发现当点B,E都在CD的垂直平分线上时(如图3所示)放置最平稳.(1)求放置最平稳时灯座DC与灯杆DE的夹角的大小;(2)当A点到水平桌面(CD所在直线)的距离为42cm﹣43cm时,台灯光线最佳,能更好的保护视力.若台灯放置最平稳时,将∠ABE调节到105°,试通过计算说明此时光线是否为最佳.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)20.为测量水城河两岸的宽度,某数学研究小组设计了三种不同的方案,他们在河岸边A 处测得河对岸的同学B恰好在正北方向,测量方案及数据如下表:.课题测量水城河两岸的宽度测量工具测量角度的仪器,皮尺等测量方案方案一方案二方案三测量方案示意图测量说明点C,D在点A的正东方向,DE⊥AD.点C,D在点A的正东方向.点C在点A的正西方向,点D在点A的正东方向.测量数据∠ACB=60°,∠DCE=30°,CD=10.2m.∠ACB=60°∠ADB=30°,CD=11.8m.∠ACB=60°,∠ADB=30°;CD=23.5m.(1)哪一种方案无法计算出河两岸的宽度;(2)请选择其中一种方案计算出河两岸的宽度(精确到0.1m).(参考数据:≈1.73)参考答案1.解:如图,过点C、D分别作CE⊥PN,DF⊥PN,垂足分别为E、F,则,PN=90m,MB=DF=CE,DM=FN,CD=EF=45m,设MN=xm,在Rt△PDF中,∠PDF=55.7°,DF=MN=xm,∴PF=tan55.7°•DF≈1.47x(m),在Rt△PCE中,∠PCE=30°,CE=xm,∴PE=tan30°•CE≈0.58x(m),∵EF=PF﹣PE,即CD=PF﹣PE,∴1.47x﹣0.58x=45,解得x≈50.56(m),即MN=50.56m.2.解:(1)①如图,过点C作CF⊥DE于F,过点C、A分别作DE的平行线和垂线相交于点G,在Rt△CDF中,∠CDF=60°,CD=70mm,∴CF=CD•sin60°=70×=35(mm),即点C到直线DE的距离为35mm;②当∠DCB=70°时,∵CG∥DE,∴∠GCD=∠CDF=60°,又∵∠DCB=70°,∴∠ACG=180°﹣70°﹣60°=50°,在Rt△ACG中,AC=AC﹣BC=115﹣35=80(mm),∠ACG=50°∴AG=AC•sin50°≈80×0.8=64(mm),∴点A到直线DE的距离为AG+CF=64+35≈124(mm);(2)把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在DE上,旋转后的图形如图③所示,在Rt△B′C′D中,B′C′=35mm,C′D=CD=70mm,∴tan∠C′DB′==0.5,又∵tan26.6°≈0.5,∴∠C′DB′=26.6°,∴∠CDC′=60°﹣26.6°=33.4°,故答案为:33.4°.3.解:如图,过点B作BF⊥CD于F,则AB=CF,AC=BF,∵,AE=80米,∴AB=20米=CF,在Rt△BDF中,∠DBF=30°,设DF=x,则BF=x=AC,∴EC=AC﹣AE=(x﹣80)米,在Rt△CDE中,∠DEC=60°,CD=(20+x)米,EC=(x﹣80)米,∵tan60°=,∴=,解得,x=40+10,经检验,x=40+10是原方程的根,∴DF=(40+10)米,∴CD=CF+DF=(40+30)米,答:这段河的宽度CD的长为(40+30)米.4.解:(1)过点B作BF⊥CH,垂足为F,延长AD交BF于E,垂足为E,则AE⊥BF,由cos∠BAE=,∴cos22°=,∴,即AE=4.5m,∴DE=AE﹣AD=4.5﹣0.4=4.1(m),由sin∠BAE=,∴,∴,即BE=1.8m,∴BF=BE+EF=1.8+1.2=3(m),又,∴,即CF=4m,∴CH=CF+HF=CF+DE=4+4.1=8.1(m),即点O到岸边DH的距离为8.1m;(2)过点B作BN⊥OH,垂足为N,延长AD交BN于点M,垂足为M,由cos∠BAM=,∴,∴,即AM=2.88m,∴DM=AM﹣AD=2.88﹣0.4=2.48(m),由sin∠BAM=,∴,∴,即BM=3.84m,∴BN=BM+MN=3.84+1.2=5.04(m),∴=(m),∴OH=ON+HN=ON+DM=4.58(m),即点O到岸边的距离为4.58m.5.解:(1)在Rt△ABC中,∠ABC=10°,tan∠ABC=,则BC=≈=10(厘米),∴BH=BC﹣HC=7(厘米);(2)在Rt△ABC中,∠ABC=10°,tan∠ABC=,则PH=BH•tan∠ABC≈7×0.18≈1.26(厘米),答:木桩上升了大约1.26厘米.6.(1)证明:连接AO,并延长交⊙O于G,连接BG,∴∠ACB=∠AGB,∵AG是直径,∴∠ABG=90°,∴∠BAG+∠AGB=90°,∵AD2=BD•CD,∴,∵∠ADB=∠CDA,∴△DAB∽△DCA,∴∠DAB=∠ACB,∴∠DAB=∠AGB,∴∠DAB+∠BAG=90°,∴AD⊥AO,∵OA是半径,∴AD为⊙O的切线;(2)解:当水面到GH时,作OM⊥GH于M,∵CA=CB,∠C=30°,∴∠ABC=75°,∵AG是直径,∴∠ABG=90°,∴∠CBG=15°,∵BC∥GH,∴∠BGH=∠CBG=15°,∴∠AGM=45°,∴OM=OG=,∴筒车在水面下的最大深度为3﹣≈0.9(m).7.解:由题意可知:∠BOE=45°,BO=20cm,BE⊥OD,∴BE=OE=BO•sin45°=10(cm),在Rt△BDE中,∠BDE=30°,∴sin∠BDE=,∴BD=20cm,∵BD=AC,∴AC=20≈28(cm),答滑动支架AC的长约为28cm.8.解:(1)过点A作AE⊥l,垂足为E,设CE=x米,∵CD=60米,∴DE=CE+CD=(x+60)米,∵∠ACB=15°,∠BCD=120°,∴∠ACE=180°﹣∠ACB﹣∠BCD=45°,在Rt△AEC中,AE=CE•tan45°=x(米),在Rt△ADE中,∠ADE=30°,∴tan30°===,∴x=30+30,经检验:x=30+30是原方程的根,∴AE=(30+30)米,∴河的宽度为(30+30)米;(2)过点B作BF⊥l,垂足为F,则CE=AE=BF=(30+30)米,AB=EF,∵∠BCD=120°,∴∠BCF=180°﹣∠BCD=60°,在Rt△BCF中,CF===(30+10)米,∴AB=EF=CE﹣CF=30+30﹣(30+10)=20(米),∴古树A、B之间的距离为20米.9.解:(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,∵∠ABM=113.6°,∴∠BMH=180°﹣∠ABM=66.4°,在Rt△BMH中,∠BMH=66.4°,BM=44cm,∴MH=BM•cos66.4°≈44×0.4=17.6(cm),∵MP=26.1cm,∴BA=HP=MP﹣MH=26.1﹣17.6=8.5(cm),∴枪身BA的长度约为8.5cm;(2)此时枪身端点A与学生额头的距离不在规定范围内,理由:延长QM交FG于点K,则KQ=50cm,∠NKM=90°,∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMK=180°﹣∠BMN﹣∠BMH=45°,在Rt△MNK中,MN=30cm,∴KM=MN•cos45°=30×=15(cm),∵KQ=50cm,∴PQ=KQ﹣KM﹣MP=50﹣15﹣26.1≈2.7(cm),∵测温时规定枪身端点A与额头距离范围为3cm~5cm,∴此时枪身端点A与学生额头的距离不在规定范围内.10.解:∵AB=34cm,BC=70cm,∴AC=AB+BC=104cm,在Rt△ACE中,sin∠BCD=,∴AE=AC•sin∠BCD≈104×0.85≈88cm.答:点A到CD的距离AE的长度约88cm.11.解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.512.解:连接MC,过点M作HM⊥NM,由题意得:∠DMC=2∠CMH,∠MCD=∠HMN=90°,AB=MC=8m,AB∥MC,∴∠CMN=180°﹣∠MNB=180°﹣118°=62°,∴∠CMH=∠HMN﹣∠CMN=28°,∴∠DMC=2∠CMH=56°,在Rt△CMD中,CD=CM•tan56°≈8×1.48≈11.8(米),∴能看到的水平地面上最远处D到他的距离CD约为11.8米.13.解:(1)如图,连接AE,过点E作EM⊥AC于M,由题意可知,CF=100cm=ME,AC=170cm,BC=145cm,EF=70cm=MC,∴AM=170﹣70=100(cm),在Rt△AEM中,AM=100cm,ME=100cm,∴∠MAE=∠AEM=45°,∴从启动开始,到小朋友头顶E处感受到空调风所用的时间为45÷10=4.5(s),答:从启动开始,4.5s小朋友头顶E处感受到空调风;(2)如图,连接BE,则BM=145﹣70=75(cm),在Rt△BEM中,∵tan∠BEM==0.75,∴∠BEM=37°,∴∠MBE=90°﹣37°=53°∴小朋友的头顶E处感受到空调风的时长为﹣=0.8(s),答:小朋友的头顶E处有0.8s的时间感受到空调风;(3)如图,当BE绕着点B旋转到BE′时,所用时间为=3.7(s),所以该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了时长为0.8+3.7×2=8.2(s),答:该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了8.2s.14.解:如图,过点E作EN⊥BC于点N,交HG于点M,则AB=AH﹣EM+EN.根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),∵HG∥BC,∴∠EGM=∠ECB=36°,在Rt△AHF中,∠AFH=40°,AF=50,∴AH=AF•sin∠AFH≈50×0.64=32(米),在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7﹣m)米,∴EM=MG•tan∠EGM=MG•tan36°≈0.73m,EM=FM•tan∠EFM=FM•tan25°≈0.47(7﹣m),∴0.73m=0.47(7﹣m),解得m≈2.7(米),∴EM≈0.47(7﹣m)=2.021(米),∴AB=AH﹣EM+EN≈32﹣2.021+40≈70(米).∴此大跳台最高点A距地面BD的距离约是70米.15.解:(1)在Rt△ABC中,∠ABC=60°,AB=32cm,∴BC=AB=16cm,∴BD=BC+CD=16+84=100(cm).(2)作DM⊥BA于点M,DN⊥EF于点N,在Rt△DBM中,sin∠DBM=,即=,∴DM=50,∵∠F=∠M=∠DNF=90°,∴四边形NFMD为矩形,∴NF=DM=50,DN∥FM,∴∠NDB=∠DBM=60°,∵∠BDE=75°,∴∠EDN=∠BDE﹣∠NDB=15°,∴在Rt△DEN中,sin∠EDN=,即sin15°=,∴EN=70sin15°,∴EF=EN+NF=50+70sin15°≈105(cm).16.(1)证明:∵AB∥CD,∴∠CDG=∠A,∵∠FEC=∠A,∴∠FEC=∠CDG,∴EF∥DG,∵FG∥CD,∴四边形DEFG为平行四边形;(2)解:如图,过点G作GP⊥AB于P,∵四边形DEFG为平行四边形,∴DG=EF=6.2,∵AD=1.6,∴AG=DG+AD=6.2+1.6=7.8,Rt△APG中,sin A=,∴=0.96,∴PG=7.8×0.96=7.488≈7.5.答:雕塑的高为7.5m.17.解:(1)过点O作OE⊥CD,垂足为E,过点A作AG⊥CD,垂足为G,过点O作OF ⊥AG,垂足为F,则OE=FG,∠FOE=90°,∵OC=OD=120cm,∠COD=60°,∴∠DOE=∠COD=30°,∴OE=OD•cos30°=120×=60(cm),∴FG=OE=60cm,∵OA⊥OD,∴∠AOD=90°,∴∠AOD﹣∠DOF=∠EOF﹣∠DOF,∴∠AOF=∠DOE=30°,在Rt△AOF中,OA=120cm,∴AF=OA=60(cm),∴AG=AF+FG=(60+60)cm,∴点A距离地面的高度为(60+60)cm;(2)过点M作MK⊥OB,垂足为K,过点M作ML⊥OD,垂足为L,∵OC=OD=120cm,∠COD=60°,∴△COD是等边三角形,∴∠OCD=60°,∵OB∥CD,∴∠BOC=∠OCD=60°,在Rt△MKO中,OM=40cm,∴KO=OM•cos60°=40×=20(cm),MK=OM•sin60°=40×=20(cm),在Rt△MNK中,MN=80cm,∴NK===20(cm),∵OB=120cm,∴BN=OB﹣OK﹣NK=120﹣20﹣20=(100﹣20)cm,在Rt△OML中,∠COD=60°,∴ML=OM•sin60°=40×=20(cm),OL=OM•cos60°=40×=20(cm),在Rt△MN′L中,MN′=MN=80cm,∴N′L===20(cm),∴ON′=N′L﹣OL=(20﹣20)cm,∵OB′=OB=120cm,∴B′N′=OB′﹣ON′=(140﹣20)cm,∴B′N′﹣BN=140﹣20﹣(100﹣20)=40(cm),∴点N在晾衣臂OB上滑动的距离为40cm.18.解:(1)过点C作CM⊥DF,垂足为F,∵CD∥AB,AB与水平地面所成的角的度数为35°,∴CD与水平地面所成的角的度数为35°,∴∠DCM=35°,在Rt△DCM中,DC=15cm,∴CM=DC•cos35°≈15×0.819≈12.3(cm),∴显示屏所在部分的宽度约为12.3cm;(2)连接AC,过点A作AH⊥CM,交MC的延长线于点H,∵CE=2ED,DC=15cm,∴CE=CD=10(cm),∵O为AB的中点,∴OA=AB=10(cm),∴OA=CE=10cm,∵OA∥CE,∴四边形ACEO是平行四边形,∵OE⊥AB,∴∠AOE=90°,∴四边形ACEO是矩形,∴∠ACE=90°,AC=OE=10cm,∵∠DCM=53°,∴∠ACH=180°﹣∠ACE﹣∠DCM=55°,∴∠HAC=90°﹣∠ACH=35°,在Rt△AHC中,AH=AC•cos35°≈10×0.819=8.19(cm),∵点C到地面的距离为60cm,∴镜头A到地面的距离=8.19+60≈68.2(cm),∴镜头A到地面的距离约为68.2cm.19.解:(1)延长BE交DC于点F,由题意得:EF⊥CD,FD=CD=CD=10cm,在Rt△DEF中,DE=20cm,∴cos D===,∴∠D=60°,∴灯座DC与灯杆DE的夹角为60°;(2)过点A作AM⊥DC,交DC的延长线于点M,过点B作BG⊥AM,垂足为G,则GM=BF,∠GBF=90°,在Rt△DEF中,DE=20cm,DF=10cm,∴EF===10(cm),则GM=BF=BE+EF=(20+10)cm,∵∠ABE=105°,∴∠ABG=∠ABF﹣∠GBF=15°,在Rt△ABG中,AB=20cm,∴AG=AB⋅sin15°≈20×0.26=5.2(cm),∴AM=AG+GM=20+10+5.2≈42.5(cm),∴A点到水平桌面(CD所在直线)的距离约为42.5cm,∴此时光线最佳.20.解:(1)第一个小组的数据无法计算河宽,理由如下:∵第一小组给出的数据为BD的长,△ABC和△CDE无法建立联系,无法得到△ABC的任何一边长度,∴第二小组的数据无法计算河宽;(2)第二个小组的解法:∵∠ACB=∠ADB+∠CBD,∠ACB=60°,∠ADB=30°,∴∠ADB=∠CBD=30°,∴BC=CD=11.8m,∴AB=BC•sin60°=11.8×≈10.2(m).第三个小组的解法:设AB=xm,则AC=,AD=,∴+=23.5,解得x≈10.2.答:河宽约10.2m.。
中考数学专题复习 实际生活应用问题(二)习题-人教版初中九年级全册数学试题

word 1 / 8 y AD B 实际生活应用问题(二)例题示X例 1:如图,排球运动员甲站在点 O 处练习发球,将球从 O 点正上方的 A 处发出,把球看成点,其运行路线是抛物线 y 1 (x 6)2 2.6 的一部分,点 D 为球运动的最高点.球60网 BC 离 O 点的水平距离为 9 米,以 O 为坐标原点建立如图所示的坐标系,乙站立地点 M 的坐标为(m ,0)(m >9).乙原地起跳可接球的最大高度为 2.4 米(2.4 米时能接到球), 若乙因为接球高度不够而失球,求 m 的取值X 围.O C M x2 / 83【思路分析】①理解题意,梳理信息读题标注,将题目中的数据转化为图象中对应的线段长以及关键点坐标.如: D (6,2.6),C (9,0),M (m ,0) .②辨识类型,建立函数图象模型题目条件和判断标准均与函数图象相关,判断为实际生活应用问题.利用二次函数图象求解,首先要明确目标及判断标准.由题意,若排球高度(y )大于 2.4 米,则乙会因接球高度不够而接不到球;若排球高度(y )小于等于 2.4 米,则乙可以接到球.即当 y >2.4 时,符合题目要求.所求目标即为当 y >2.4 时,对应的 x 的取值X 围,即 m 的取值X 围. ③求解验证,回归实际【过程示X 】解:由题意得 y ,即1 (x 6)2 2.6 2.4 , 60 解得, 6 2 ∵m >9,∴9m 6 2 x623,即6 2 .m 6 2 ∴乙因为接球高度不够而失球,m 的取值X 围是 9m 6 2 . 3 3 3 3巩固练习1.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y3x2 3x 1 的一部分,如图. 5(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4 米,在一次表演中,人梯到起跳点A 的水平距离是 4 米,则这次表演是否成功?请说明理由.y(米)BAO C x(米)3 / 82.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为 80 m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x m,矩形区域ABCD 的面积为y m2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值X围;(2)当x 为何值时,y 有最大值?最大值是多少?岸堤4 / 8B s(m)A3.小明的爸爸和妈妈分别驾车从家同时出发去上班.爸爸行驶到甲处时,看到前面路口是红灯,他立即刹车减速并在乙处停车等待.爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图 1中的实线所示,行驶路程s(m)与时t s)的关系如图 2 所示,在加速过程中,s与t 满足表达式s=at2.v(m/s)12180hC48O 8 17 21 t(s)O 8 17 21t(s)图1 图2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;(2)求图 2 中A 点的纵坐标h,并说明它的实际意义;(3)爸爸在乙处等待了 7 s 后绿灯亮起继续前行.为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/ s)与时间t(s)的关系如图 1 中的折线O—B—C 所示,加速过程中行驶路程s (m)与时间t(s)的关系也满足表达式s=at2.当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.5 / 84.我市某风景区门票价格如图所示,某旅游公司有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为 120 人,乙团队人数不超过 50 人.设甲团队人数为x人,如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值X围.(2)若甲团队人数不超过100 人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱.(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过 50人但不超过 100 人时,每X 门票降价a 元;人数超过 100 人时,每X门票降价 2a元.在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约 3 400 元,求a 的值.门票价(元/人)807060O 50100 人数(人)思考小结图象类问题的关键是能够把实际场景与数学模型结合起来进行思考分析.在读图时,要考虑三个方面:①x 轴、y 轴代表的意义.6 / 8word②每个点坐标在实际场景中的意义.③每两个转折点间的线段(曲线)代表实际场景的变化趋势.7 / 8word 8 / 8【参考答案】1. (1)演员弹跳离地面的最大高度是19米; 4(2)这次表演能够成功,理由略.2. (1)y 3 x 230x (0x 40);4(2)当 x =20 时 y 有最大值,最大值为 300.3. (1) a 3 ;4(2) h =156,它的实际意义是小明家距离甲处的距离为 156 米; (3)此时妈妈的驾车速度是 6 m/s .4. (1)W 10x 9600 (70≤x ≤100)20x9600(100 x 120 ; )(2)最多节约 1 700 元;(3) a =10.。
人教版九年级中考数学 考点复习 二元一次方程组 专题练习

人教版九年级中考数学考点复习 二元一次方程组 专题练习一.选择题(本大题共10道小题)1. 下列方程中,是二元一次方程的是( )A.xy =2B.3x =4yC.x 2D.x 2+2y =4 2. 下列方程中,①x+y=6;②x(y+1)=6;③3x+y=z+1;④mn+m=7,是二元一次方程的有( )A.1个B.2个C.3个D.43. 如果3x 3m-2n -4y n-m +12=0是关于x 、y 的二元一次方程,那么m 、n 的值分别为( )A.m =2,n =3B.m =2,n =1C.m =-1,n =2D.m =3,n =4 4. 方程组的解是( ) A. B. C. D.5. 用加减消元法解二元一次方程组时,下列方法中无法消元的是( ) A.①×2﹣② B.②×(﹣3)﹣① C.①×(﹣2)+② D.①﹣②×36. 如图,在数轴上,点A 、B 分别表示数a 、b,且a+b=2.若AB=4,则点A 表示的数为( )A.-1B.-2C.2D.17. 若方程组⎩⎪⎨⎪⎧3x -y =4k -5①2x +6y =k ② 的解中x +y =16,则k 等于( ) A.15 B.18 C.16 D.178. 方程组⎩⎨⎧2x +y =□x +y =3 的解为⎩⎨⎧x =4y =□,则被遮盖的两个数分别为( ) A.9,-1 B.9,1 C.7,-1 D.5,19. 同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( )A.120kmB.140kmC.160kmD.180km10. 《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为( )A. ⎩⎪⎨⎪⎧x -12y =50,y -23x =50B.⎩⎪⎨⎪⎧x +12y =50,y +23x =50C.⎩⎪⎨⎪⎧2x +y =50,x +23y =50D.⎩⎪⎨⎪⎧2x -y =50,x -23y =50 二、填空题(本大题共6道小题)11. 已知x 、y 满足方程组,则x+y 的值为______.12. 写出二元一次方程3x-y=4的一组解 (写出一组即可)13. 关于x 、y 二元一次方程组2352x y x y k +=⎧⎨-=⎩的解满足6x+y=21,则k 的值为______.14. 已知二元一次方程x +3y =14,请写出该方程的一组整数解 .15. 某企业有A,B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为(4a+1)小时;在一天内,B 生产线共加工b 吨原材料,加工时间为(2b+3)小时.第一天,该企业将8吨原材料分配到A,B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为 _____.第二天开工前,该企业按第一天的分配结果分配了8吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则mn 的值为 _____.16. 我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是 尺.三、解答题(本大题共6道小题)17. 列二元一次方程组解应用题:某大型超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?18. 某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,总费用为5700元,这所学校购买了多少个B 型号篮球?19. 某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?20. 某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?21. 2020年是脱贫攻坚最后一年,某镇拟修一条连通贫困山区村子的公路,现有甲、乙两个工程队.若甲、乙合作,36天可以完成,需用600万元;若甲单独做20天后,剩下的由乙做,还需40天才能完成,这样所需550万元.(1)求甲、乙两队单独完成此项工程各需多少天?(2)求甲、乙两队单独完成此项工程各需多少万元?22.我校组织了国学经典知识竞赛,学校购买了若干副乒乓球拍和羽毛球拍对表现优异的班级进行奖励.若购买2副乒乓球拍和1副羽毛球拍共需280元;若购买3副乒乓球拍和2副羽毛球拍共需480元.求1副乒乓球拍和1副羽毛球拍各是多少元.。
2024-2025学年人教版九年级中考数学复习课件——二次函数与利润类问题
销销售单价(元、件)
11
19
日销售量(件)
18
2
(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价(元/件)定为多少时,日销
售利润最大?最大利润是多少?
分析:第二问已经说明y和x之间是一次函数的关系
解:(2) 设 = +
(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销
售期”共有多少天?
分析:第三问问的是销售量,回到题目中找到销售量,销售
量y与x之间是分段函数。分段去讨论。
(3)当0 ≤ ≤ 30时, = 2
令 2 ≥ 48
解得:24 ≤ ≤ 30
②当30 < ≤ 40时, = −6 + 240
令 −6 + 240 ≥ 48
解得:30 < ≤ 40
∴ 综上所述,当24 ≤ ≤ 40时,日销售量不低于48天,则火热销
售期共有16天
变式训练3、某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3
件乙商品,需65元、
(1)甲、乙两种商品的进货单价分别是多少?
变式训练3、某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3
件乙商品,需65元、
(1)甲、乙两种商品的进货单价分别是多少?
(2)设甲商品的销售单价为(单位:元/件),在销售过程中发现:当11 ≤ ≤ 19时,甲商品的日销售
量(单位:件)与销售单价之间存在一次函数关系,、之间的部分数值对应关系如表:请写出当
∵对称轴: = − 2 = 2.5, = −20 < 0
九年级数学中考数学复习实际问题(销售问题)大题复习
【三角函数】1、(2013年天津市,23)天塔是天津市的标志性建筑之一.某校数学兴趣小组要测量天塔的高度.如图,他们在点A 处测得天塔的最高点C 的仰角为︒45,再往天塔方向前进至点B 处测得最高点C 的仰角为︒54,AB =112m .根据这个兴趣小组测得的数据,计算天塔的高度CD (tan36≈︒0.73,结果保留整数).2、已知不等臂跷跷板AB 长4m ,如图①,当AB 的一端A 碰到地面时,AB 与地面的夹角为α;如图②,当AB 的另一端B 碰到地面时,AB 与地面的夹角为β.求跷跷板AB 的支撑点O 到地面的高度OH.(用含α、β的式子表示)。
【应用题】3、(2012新疆乌鲁木齐,19,12分)水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?4.在水果店里,小李买了5kg 苹果,3kg 梨,老板少要2元,收了50元;老王买了11kg 苹果,5kg 梨,老板按九折收钱,收了90元。
该店的苹果和梨的单价各是多少元?5.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?450 540C DB A6.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(太)与销售单价x(元)满足=-+,w x280设销售这种台灯每天的利润为y(元)。
(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?7、.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应返回金额.注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如,若购买标价为400元的商品,则消费金额为320 元,获得的优惠额为400×(1-80%)+30=110(元)(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?9、2010年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署.为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2012年当年用于城市基础设施维护与建设资金达到8.45亿元。
人教版九年级数学中考总复习 专题六 方案设计题 含解析及答案
专题六方案设计题专题提升演练1.一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化带上种植四种不同的花卉,要求种植的四种花卉组成面积分别相等、形状完全相同的几何图案.某同学为此提供了如图所示的四种设计方案.其中可以满足园艺设计师要求的有()A.2种B.3种C.4种D.1种2.小明设计了一个利用两块相同的长方体木块测量一张桌子高度的方案,首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73 cmB.74 cmC.75 cmD.76 cm3.某化工厂,现有A种原料52 kg,B种原料64 kg,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3 kg,B种原料2 kg;生产1件乙种产品需要A种原料2 kg,B种原料4 kg,则生产方案的种数为()A.4B.5C.6D.74.某市有甲、乙两家液化气站,他们的每罐液化气的价格、质量都相同.为了促销,甲站的液化气每罐降价25%销售;乙站的液化气第1罐按原价销售,从第2罐开始以7折优惠销售,若小明家购买8罐液化气,则最省钱的方法是买站的.5.从边长为a的大正方形纸板中间挖去一个边长为b的小正方形后,其截成的四个相同的等腰梯形(如图①)可以拼成一个平行四边形(如图②).现有一张平行四边形纸片ABCD(如图③),已知∠A=45°,AB=6,AD=4.若将该纸片按图②的方式截成四个相同的等腰梯形,然后按图①的方式拼图,则得到的大正方形的面积为 .+6√26.某市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍. (1)求温馨提示牌和垃圾箱的单价各是多少元;(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元.设温馨提示牌的单价是x 元, 则垃圾箱的单价是3x 元,由题意得2x+3×3x=550,解得x=50.故温馨提示牌的单价是50元,垃圾箱的单价是150元. (2)设购买温馨提示牌m 个, 则购买垃圾箱(100-m )个,由题意得50m+150(100-m )≤10000, 解得m ≥50.又100-m ≥48,∴m ≤52.∵m 为整数,∴m 的取值为50,51,52. 方案一:当m=50时,100-m=50,即购买50个温馨提示牌和50个垃圾箱,其费用为50×50+50×150=10000(元); 方案二:当m=51时,100-m=49,即购买51个温馨提示牌和49个垃圾箱,其费用为51×50+49×150=9900(元);方案三:当m=52时,100-m=48,即购买52个温馨提示牌和48个垃圾箱,其费用为52×50+48×150=9800(元).∵10000>9900>9800,∴方案三所需资金最少,最少是9800元.7.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1 200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.设该旅行团中成人x 人,少年y 人,根据题意,得{x +y +10=32,x =y +12,解得{x =17,y =5,故该旅行团中成人17人,少年5人.(2)①由题意得,所需门票的总费用是:100×8+100×0.8×5+100×0.6×(10-8)=1320(元). ②设可以安排成人a 人,少年b 人带队, 则1≤a ≤17,1≤b ≤5. 当10≤a ≤17时,若a=10,则费用为100×10+100×0.8×b ≤1200,解得b ≤52, ∴b 的最大值是2,此时a+b=12,费用为1160元. 若a=11,则费用为100×11+100×0.8×b ≤1200,解得b ≤54, ∴b 的最大值是1,此时a+b=12,费用为1180元.若a ≥12,则100a ≥1200,即成人门票至少需要1200元,不合题意,舍去.当1≤a<10时,若a=9,则费用为100×9+100×0.8×b+100×0.6×1≤1200,解得b ≤3, ∴b 的最大值是3,a+b=12,费用为1200元.若a=8,则费用为100×8+100×0.8×b+100×0.6×2≤1200,解得b ≤72,∴b 的最大值是3,a+b=11<12,不合题意,舍去.同理,当a<8时,a+b<12,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人.其中成人10人,少年2人时购票费用最少.。
初三数学《应用题复习专题》训练题
初三数学《应用题复习专题》训练题(满分100分,时间90分钟)班级_______姓名_______分数_______第1~13题,每题7分,第14题9分,共100分1、由于节约用水,小明发现他家同样是用10m3的水,本月比上月能多用5天。
已知本月小明家每天的平均用水量比上月少20%,求小明家上月每天的平均用水量。
2、一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是多少?3、甲、乙两种商品原来的单价和为100元。
因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%。
求甲、乙两种商品原来的单价分别是多少?4、某车间加工1000个零件,由于采用了新工艺,效率提高了一倍,这样加工同样多的零件就少用5小时。
求该车间采用新工艺前、后每小时分别加工多少个零件?5、今年以来,CPI(居民消费价格总水平)的不断上涨已成热门话题。
已知某种食品在9月份的售价为8.1元/kg,11月份的售价为10元/kg。
求这种食品平均每月上涨的百分率是多少?6、“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?7、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
若商场平均每天要盈利1200元,每件衬衫应降价多少元?8、为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容环境提升行动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学复习题各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。
下面是作者给大家整理的一些九年级数学复习的学习资料,期望对大家有所帮助。
初三数学知识点分类复习题【实弹射击】1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图a,AC= ,BD= ;四边形ABCD是梯形.(2)请写出图a中所有的类似三角形(不含全等三角形).图10(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范畴.图a2、(09广东省) 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积,并求出面积;(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。
动点M、N分别从点D、B同时动身,沿射线DA、线段BA向点A 的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。
连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW。
设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。
试解答下列问题:(1)说明△FMN∽△QWP;(2)设0≤x≤4(即M从D到A运动的时间段)。
试问x为何值时,△PQW为直角三角形?当x在何范畴时,△PQW不为直角三角形?第3题图(2)(3)问当x为何值时,线段MN最短?求此时MN的值。
第3题图(1)4、(08茂名市)如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.(1)求证:∠ADB=∠E;(3分)(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3分)(3)当AB=5,BC=6时,求⊙O的半径.(4分)相干链接 :若是一元二次方程的两根,则5、(08茂名市)如图,在平面直角坐标系中,抛物线 =- + + 经过A(0,-4)、B( ,0)、 C( ,0)三点,且 - =5.3、求、的值;4、 (2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判定这个菱形是否为正方形?若不存在,请说明理由.6、(08梅州市)如图所示,E是正方形ABCD的边AB上的动点, EF⊥DE交BC于点F.(1)求证: ADE∽ BEF;(2) 设正方形的边长为4, AE= ,BF= .当取什么值时,有值?并求出这个值.初三数学总复习测试一、挑选题(每小题3分,共30分)1.在平面直角坐标系中,点P(3,-x2-1)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.若反比例函数y=kx的图象经过点(-1,2),则这个函数的图象一定经过点( )A.(2,-1)B.-12,2C.(-2,-1)D.12,23.如果一次函数y=kx+b的图象经过第一象限,且与y轴负半轴相交,那么( )A.k 0,b 0B.k 0,b 0C.k 0,b 0D.k 0,b 04.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程s(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD.下列说法正确的是( )A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面5.把抛物线y=-x2向左平移1个单位长度,然后向上平移3个单位长度,则平移后抛物线的解析式为( )A.y=-(x-1)2-3B.y=-(x+1)2-3C.y=-(x-1)2+3D.y=-(x+1)2+36.矩形面积为4,长为y,宽为x,y是x的函数,其函数图象大致是( )7.如图,A是反比例函数y=kx图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则k的值为( )A.1B.2C.3D.48.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的点)离水面2 m,水面宽为4 m.如图(2)建立平面直角坐标系,则抛物线的关系式是( )A.y=-2x2B.y=2x2C.y=-12x2D.y=12x29.函数y=x+m与y=mx(m≠0)在同一坐标系内的图象如图,可以是( )10.函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c-3=0的根的情形是( )A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点A(1,2)关于y轴对称的点为B(a,2),则a=__________.12.函数y=-x-x-1中自变量x的取值范畴是__________.13.如图,l1反应了某公司的销售收入与销量的关系,l2反应了该公司产品的销售本钱与销量的关系,当该公司赢利(收入大于本钱)时,销售量必须__________.14.已知关于x的一次函数y=mx+n的图象如图所示,则|n-m|-m2可化简为__________.15.函数y1=x(x≥0),y2=4x(x 0)的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x 2时,y2③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是__________.16.抛物线y=-x2+bx+c的部分图象如图所示,请写出与其关系式、图象相干的2个正确结论:____ ______,__________.(对称轴方程,图象与x轴正半轴、y轴交点坐标例外)17.在直线y=-x-1上且位于x轴下方的所有点,它们的横坐标的取值范畴是______.18.对于每个非零自然数n,抛物线y=x2-2n+1n(n+1)x+1n(n+1)与x轴交于An,Bn两点,以AnBn表示这两点间的距离,则A1B1+A2B2+…+A2 011B2 011的值是__________.三、解答题(共66分)19.(6分)在平面直角坐标系xOy中,反比例函数y=kx的图象与y=3x的图象关于x轴对称,又与直线y=ax+2交于点A(m,3),试肯定a的值.20.(6分)A市有某种型号的农用车50辆,B市有40辆,现要将这些农用车全部调往C,D两县,C县需要该种农用车42辆,D县需要48辆,从A市运往C,D两县农用车的费用分别为每辆300元和150元,从B市运往C,D两县农用车的费用分别为每辆200元和250元.(1)设从A 市运往C县的农用车为x辆,此次调运总费用为y元,求y与x 的函数关系式,并写出自变量x的取值范畴;(2)若此次调运的总费用不超过16 000元,有哪几种调运方案?哪种方案的费用最小?并求出最小费用.21.(8分)如图,一次函数y=ax+b的图象与反比例函数y=kx的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(-2,0),点A的横坐标是2,tan∠CDO=12.(1)求点A的坐标;(2)求一次函数和反比例函数的解析式;(3)求△AOB的面积.22.(8分)某单位准备印制一批证书.现有两个印刷厂可供挑选.甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y甲与x的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应挑选哪个印刷厂节省费用?节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不着落制版费的条件下,每个证书最少着落多少元?23.(9分)[探究]在图1中,已知线段AB,CD,其中点分别为E,F.(1)若A(-1,0),B(3,0),则E点坐标为__________;(2)若C(-2,2),D(-2,-1),则F点坐标为__________.[归纳]在图2中,不管线段AB处于坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB 中点为D(x,y)时,则D点坐标为________.(用含a,b,c,d的代数式表示)[运用]在图3中,一次函数y=x-2与反比例函数y=3x的图象交点为A,B.(1)求出交点A,B的坐标;(2)若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.24.(9分)浏览下列材料:题目:已知实数a,x满足a 2且x 2,试判定ax与a+x的大小关系,并加以说明.思路:可用“求差法”比较两个数的大小,先列出ax与a+x的差y=ax-(a+x),再说明y的符号即可.现给出以下利用函数解决问题的方法:简解:可将y的代数式整理成y=(a-1)x-a,要判定y的符号可借助函数y=(a-1)x-a的图象和性质解决.参考以上解题思路解决以下问题:已知a,b,c都是非负数,a 5,且a2-a-2b-2c=0,a+2b-2c+3=0.(1)分别用含a的代数式表示4b,4c;(2)说明a,b,c之间的大小关系.25.(10分)近年来,我国煤矿安全事故频频产生,其中危害的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发觉:从零时起,井内空气中CO的浓度到达4 mg/L,此后浓度呈直线型增加,在第7小时到达值46 mg/L,产生爆炸;爆炸后,空气中的CO浓度成反比例降落.如图,根据题中相干信息回答下列问题.(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应自变量的取值范畴.(2)当空气中的CO浓度到达34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多快的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井展开生产自救,求矿工至少在爆炸后多少小时才能下井.初三数学期末考试题一、挑选题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A.y=(x+2)2+2B.y=(x﹣2)2﹣2C.y=(x﹣2)2+2D.y=(x+2)2﹣22.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个3.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c 0的解集是()A.﹣1 x4.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移进程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位5.为了测量被池塘隔开的A,B两点之间的距离,根据实际情形,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组6.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于()A.6B.5C.9D.7.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A 优弧上一点,则cos∠OBC的值为()A.B.C.D.8.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A.2B.3C.D.9.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100°B.110°C.120°D.130°10.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到本来的2倍.设点A′的对应点A的纵坐标是1.5,则点A 的纵坐标是()A.3B.﹣3C.﹣4D.4二、填空题(本大题共4小题,每小题5分,共20分)11.已知二次函数y=x2+bx+3的对称轴为x=2,则b=.12.若△ADE∽△ACB,且=,若四边形BCED的面积是2,则△ADE的面积是.13.在Rt△ABC中,∠C=90°,AB=4,BC=2,则sin=.14.如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为.三、运算题(本大题共1小题,共8分)15.运算:(﹣1)202X+2sin60°﹣|﹣|+π0.四、解答题(本大题共7小题,共68分)16.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.17.某校九年级数学爱好小组的同学展开了测量湘江宽度的活动.如图,他们在河东岸边的A点测得河西岸边的标志物B在它的正西方向,然后从A点动身沿河岸向正北方向行进550米到点C处,测得B在点C的南偏西60°方向上,他们测得的湘江宽度是多少米?(结果保存整数,参考数据:≈1.414,≈1.732)18.已知:如图,点P是⊙O外的一点,PB与⊙O相交于点A、B,PD与⊙O 相交于C、D,AB=CD.求证:(1)PO平分∠BPD;(2)PA=PC.九年级数学复习题到此结束。