第三章字母表示数
第三章 字母表示数练习题及答案全套初一数学

一、填空题1.商店运来一批梨,共9箱,每箱n 个,则共有_______个梨..小明x 岁,小华比小明的岁数大5岁,则小华_______岁.3.一个正方体边长为a ,则它的体积是_______.4.一个梯形,上底为3 cm ,下底为5 cm ,高为h cm,则它的面积是_______cm 2.5.一辆客车行驶在长240千米的公路,设它行驶完共用a 个小时,则它的速度是每小时_______千米. 二、选择题1.原产量n 千克增产20%之后的产量应为( )A.(1-20%)n 千克B.(1+20%)n 千克C.n +20%千克D.n ×20%千克 2.甲乙两人岁数的年龄和等于甲乙两人年龄差的3倍,甲x 岁,乙y 岁,则他们的年龄和如何用年龄差表示( )A.(x +y )B.(x -y )C.3(x -y ) D .3(x +y ) 3.三角形一边为a +3,另一边为a +7,它的周长是2a +b +23,求第三边( )A.b -13B.2a +13C.b +13D.a +b -13 4.公路全长P 米,骑车n 小时可到,如想提前一小时到,则需每小时走_______米.( )A.nP+1 B.1-n P C.1+nP P D.1+n P三、根据题意列代数式1.平行四边形高a ,底b ,求面积.2.一个二位数十位为x ,个位为y ,求这个数.3.某工程甲独做需x 天,乙独做需y 天,求两人合作需几天完成?4.甲乙两数和的2倍为n ,甲乙两数之和为多少?四、解答题路程x (km ) 费用y 元2 5 2.5 5+13 5+2 3.5 5+3五、一根弹簧原来的长度是10厘米,当弹簧受到拉力F 千克(F 在一定范围内)时,弹簧拉力F (kg ) 弹簧长度l (cm )1 10+0.52 10+13 10+1.54 10+2 M M(1)写出当F =7 kg 时,弹簧的长度l 为多少厘米?(2)写出拉力为F 时,弹簧长度l 与F 的关系式.(3)计算当拉力F =100 kg 时弹簧的长度l 为多少厘米?§3.1.1字母表示数一、填空题1.零乘任何数得零,用字母表示为_____.2.某汽车公司对所有车辆进行消毒处理,今将m千克水中,加入n千克消毒制剂,则消毒液的重量为__________.3.大量事实证明,治理垃圾污染刻不容缓,据统计,全球每分钟约有850万吨污水排入江河湖水,则t分钟排污量为_____万吨.4.“龟兔赛跑”,龟兔每小时的行程分别为a 千米,b千米,经过t小时后,龟兔相距_____千米.5.某水果市场,苹果的零售价为每斤2元,一人要买x斤苹果需付款__________,另一人付资y元,需给苹果__________斤.6.一个有31排,每排29个座位的电影院,演a场电影,每场座无虚席,共出售电影票______张,如果每张电影票售价b元,则电影院收入__________元.7.某水果批发商,第一天以每斤3元的价格,出售西瓜m斤,第二天又以每斤2元的价格出售西瓜n斤,则该水果批发商,这两天卖出西瓜的平均售价为_____.二、选择题8.用字母表示加法交换律,错误的是()A.a+b=b+aB.m+n=n+mC.p·q=q·pD.x+y=y+x9.如果m表示奇数,n表示偶数,则m+n表示()A.奇数B.偶数C.合数D.质数10.如图1两同心圆,大圆半径为R,小圆半径为r,则阴影部分的面积为()A.πR2B.πr2C.π(R2+r2)D.π(R2-r2)11.数轴上点A位于原点的右侧,所对应的实数为a(a<3),则位于原点左侧,与A点距离为3的点B所对应的实数为()A.3-aB.a-3C.a+3D.-312.下列数值一定为正数的是()A.|a|+|b|B.a2+b2C.|a|-|b|D.|a|+2113.比较a+b与a-b的大小,叙述正确的是()A.a+b≥a-bB.a+b>a-bC.由a的大小确定D.由b的大小确定三、解答题14. 方格中,除9和7外其余字母各表示一个数,已知方格中任何三个连续方格中的数之和为19,求A+H+M+O的值.15.一根木棍原长为m米,如果从第一天起每天折断它的一半.(1)请写出木棍第一天,第二天,第三天的长度分别是多少?(2)试推断第n天木棍的长度是多少?16.全国统一鞋号成年男鞋共有14种尺码,其中最小的尺码是2321厘米,各相邻的两个尺码都相差21厘米,如果从尺码最小的鞋开始标(1)标号为7的鞋的尺码为多少?(2)标号为m的鞋的尺码用m如何表示?(1≤m≤14)A 9 H M O X 7标号1 2 3 (14)尺码23.523.5+1×212321+2×21…2321+14×21§3.1.2字母表示数情景再现:(1)小强从甲地到乙地,先步行,他步行的速度是每小时v 千米,走了31小时,又改乘21小时汽车,汽车的速度是步行速度的4倍.则他步行了______千米,乘车走了_______千米,共行了_______千米.(2)如果他步行走了s 千米,速度仍是每小时v 千米,他走了______小时.若乘车走了m 千米,速度为每小时n 千米,则他乘了_______小时的车.步行与乘车共用_______小时.思考:像x ,x +x ,ab ,2(m +n ),ts等式子都是代数式,单独的一个数或一个字母也是代数式.那么你能用代数式填写上面的空吗? 注意:a .当带分数与字母相乘时,应注意什么?例如,121与t 相乘,写成121t 对吗?应如何写?_______.b .当用代数式表示商时,如a 除以b 的商,表示成a ÷b 对吗?应如何表示?_______________________________________________________________. 一、填空题1.小丁期中考试考了a 分,之后他继续努力,期末考试比期中考试提高了b %,小丁期末考试考了_______分.2.人的头发平均每月可长1厘米,如果小红现在的头发长a 厘米,两个月不理发,她的头发长为_______厘米.3.妈妈买了一箱饮料共a 瓶,小丁每天喝1瓶,_______天后喝完.4.代数式(x+y )(x -y)的意义是_____________________________________.5.小明有m 张邮票,小亮有n 张邮票,小亮过生日时,小明把自己的邮票的一半作为礼物送给小亮,现在小亮有_______张邮票.6.用语言描述下列代数式的意义.(1)(a +b )2可以解释为___ __. (2)3x +3可以解释为__ ___. 二、判断题1.3x +4-5是代数式. ( )2.1+2-3+4是代数式. ( )3.m 是代数式,999不是代数式. ( )4.x>y 是代数式( )5.1+1=2不是代数式. ( ) 三、选择题1.下列不是代数式的是( )A.(x +y )(x -y )B.c =0C.m +nD.999n +99m 2.代数式a 2+b 2的意义是( )A.a 与b 的和的平方B.a +b 的平方C.a 与b 的平方和D.以上都不对 3.如果a 是整数,则下面永远有意义的是( )A.a1B.221aC.21aD.11a 4.一个两位数,个位是a ,十位比个位大1,这个两位数是( )A.a (a +1)B.(a +1)aC.10(a +1)aD.10(a +1)+a 四、解答题1.小明今年x 岁,爸爸y 岁,3年后小明和爸爸的年龄之和是多少?2.小丁和小亮一起去吃冰糕,小丁花了m 元,小亮花了n 元,已知每个冰糕0.5元,小丁和小亮各吃了几个?§3.2字母表示数一、填空题1.一只小狗的奔跑速度为a 千米/时,从A 地到B 地的路程为(b +15)千米,则这只小狗从A 地到B 地所用的时间为_______;当a =21,b =12时,它所用的时间为_______.2.当x =1,y =32,z =34时,代数式y (x -y +z )的值为_______.3.香蕉比桔子贵25%,若香蕉的价格是每千克m 元,则桔子的价格为每千克_______.4.爸爸的体重比妈妈的2倍少30 kg ,若妈妈的体重为p kg ,用代数式表示爸爸的体重为_______kg.当p=50时,爸爸的体重为_______kg. 二、判断题1.一项工程,甲单独做x 天完成,乙单独做y 天完成,两人合作需yx +1天完成.( ) 2.当a=1,b=1时,a 2+b 2=4. ( ) 3.当m=11时,2m 为奇数. ( )4.某车间一月份生产P 件产品,二月份增产9%,两月共生产[P+(1+9%)P ]件产品.( ) 三、选择题1.正方形的边长为m ,当m =91时,它的面( ) A.181 B.271C.811D.312.蚯蚓每小时爬a 千米,b 小时爬了c 千米,则b 等于( )A.ca B.a c C.abc D.ba c+ 3.如果x =3y ,y =6z ,那么x +2y +3z 的值为( )A.10zB.30zC.15zD.33z4.若s =8,t =23,v =32,则代数式s +vt的值( ) A.1041B.9C.8D.894 四、解答题通话时间a (分) 电话费b (元)1 0.2+0.82 0.4+0.83 0.6+0.84 0.8+0.8 … …(2)计算当a =100时,b 的值.x y x 2 2xy y 2 x 2-2xy +y 2 (x -y )2 0 1 -1 -221 23-2 11 -3 -2xy +y 2与(x -y )2的值吗?______.当x =0,y =1时,x 2-2xy +y 2与(x -y )2的值相同吗?__________.当x =-1,y =-2时,x 2-2xy +y 2与(x -y )2的值相同吗?______.是否当无论x 、y 是什么值,计算x 2-2xy +y 2与(x -y )2所得结果都相同吗?__________.由此你能推出x 2-2xy +y 2=(x -y )2吗?__________.总结:①给出代数式中字母的值,就能计算代数式的值,并且根据所给值的不同,求出的代数式的值也不同.②根据所给数值还可以发现一些规律.§3.3.1字母表示数一、填空题1.小明比小亮大3岁,小亮今年a岁,小明今年__________岁.2.三个连续的整数,最大的为x,则其余两个由小到大,依次为__________.3.所有不能被2整除的整数统称为奇数,设n是整数,则所有的奇数可以表示为______.4.某商店购进一批茶杯,每个1.5元,则购进n个茶杯需付款__________元,如果茶杯的零售价为每个2元,则售完茶杯得款_____元,当n=300时,该商店的利润为______元.5.培育水稻新品种,如果第1代得到120粒种子,并且从第一代起,以后各代的每一粒种子都得到下一代的120粒种子,到第n代可以得到这种新品种的种子__________粒.6.一个屋顶的某一斜面是等腰梯形,最上面一层铺了瓦片21块,往下每一层多铺一块,则第5层铺瓦__________块,第n层铺瓦__________块.7.某处细菌在培养过程中,每30分钟分裂一次(一个分裂成两个),经过4小时,这种细菌由1个可繁殖成__________个.8.一个长、宽、高分别为a米、b米、c米的长方体的表面积为__________.9.某次考试全班参考人数n,考试及格人数为m(m≤n),则这次考试的及格率为p=______,当n=50,m=30时,p=______. 10.某种蔬菜今天的价格比昨天上涨了20%,如果昨天的价格为每千克a元,那么这种蔬菜今天的价格为每千克____元,当a=1.2时,今天蔬菜的价格为____元.11.小明将“压岁钱”存入银行参加教育储蓄,如果存入350元,年利率为10%,则一年后本金和利息共__________元.12.“抗击非典”活动中,甲、乙、丙三家企业捐款,已知甲捐了a万元,乙比甲的2倍少5万元,丙比甲多6万元,则捐款总额为__________万元,当a=30时,捐款总额为__________万元.二、选择题13.baba+-2的意义是()A.a与b差的2倍除以a与b的和B.a的2倍与b的差除以a与b和的商C.a的2倍与b的差除a与b的和D.a与b的2倍的差除以a与b和的商14.一个二位数,个位上的数字是a,十位上的数字为b,则这个两位数是()A.baB.abC.10a+bD.10b+a15.用代数式表示a的5倍的平方与b的差正确的是()A.(5a)2-bB.5a2-bC.5(a2-b)D.25(a2-b)16.当a=4,b=6,c=-5时,cba2)(21-的值为()A.1B.-21C.2D.-117.下列说法正确的是()A.一个代数式只有一个值B.代数式中的字母可以取任意的数值C.一个代数式的值与代数式中字母所取的值无关D.一个代数式的值由代数式中字母所取的值确定三、解答题18.某种水果第一天以2元的价格卖出a 斤,第二天以1.5元的价格卖出b斤,第三天以1.2元的价格卖出c斤,求:(1)三天共卖出水果多少斤?(2)这三天共得多少元?(3)三天的平均售价是多少?并计算当a=30,b=40,c=45时,平均售价的数值..§3.3.2字母表示数情景再现:计算下列代数式的值: 5a +2b +3a +5b -2a -3b (1)当a =5,b =4时(2)当a =31,b =21时你能总结出规律吗?像上面,5a ,3a ,-2a 这样所含字母相同并且相同字母的指数也完全相同的项叫同类项.将同类项合并成一项叫合并同类项.计算时,先合并同类项再求值.既节省时间,又容易算对.一、选择题1.下列计算正确的是( )A.2a +b =2abB.3x 2-x 2=2C.7mn -7nm =0D.a +a =a 22.当a =-5时,多项式a 2+2a -2a 2-a +a 2-1的值为( )A.29B.-6C.14D.24 3.下列单项式中,与-3a 2b 为同类项的是( )A.-3ab 3B.-41ba 2C.2ab 2D.3a 2b 24.下面各组式子中,是同类项的是( )A.2a 和a 2B.4b 和4aC.100和21 D.6x 2y 和6y 2x二、填空题1.合并同类项:-mn +mn =_______-m -m -m =_______.2.在多项式5m 2n 3-32m 2n 3中,5m 2n 3与-32m 2n 3都含有字母_______,并且_______都是二次,_______都是三次.因此5m 2n 3与-32m 2n 3是_______.3.合并同类项的法则是_______,所得结果作为_______、_______和_______不变.4.两个单项式-2a m 与3a n 的和是一个单项式,那么m 与n 的关系是_______. 三、根据题意列出代数式 1.三个连续偶数中,中间一个是2n ,其余两个为_______,这三个数的和是_______.2.一个长方形宽为x cm,长比宽的2倍少1 cm ,这个长方形的长是_______,周长是_______.3.一个圆柱形蓄水池,底面半径为r ,高为h ,如果这个蓄水池蓄满水,可蓄水_______. 四、解答题如果单项式2mx a y 与-5nx 2a -3y 是关于x 、y 的单项式,且它们是同类项.1.求(4a -13)2003的值.2.若2mx a y +5nx 2a -3y =0,且xy ≠0,求(2m +5n )2003的值.§3.4字母表示数情景再现:观察下列①式与②式①8-(4-1)=8-3=5②8-(4-1)=8+(-1)(4-1)=8+(-1)×4-(-1)×1=8-4+1=5也就是说8-(4-1)=8-4+1上式左边有括号,而右边去掉了括号,你能说出去掉括号后,括号内的各项发生了什么变化吗?照上面的规律:你能去掉下式的括号吗?a-(b-c )=__________.试着做一做:a-(b+c)=_________.c-(b-a)=_________.一、填空题1.a+b-c+d=a+b-_______.2.x2+_______=x2-2x+1.3.-2a2+a-3=-_______.4.(x-2y+z)(x+2y-z)=(x-____)(x+_____).5.不改变式子a-(b-3c)的值,把其中的括号前的符号变成相反的符号,结果是_______. 二、下列等式是否一定成立.1.a+(b-c)=a+b-c ()2.-m+n=-(n+m) ()3.3-2x=-(2x+3) ()4.-(u-v)=-u+v ()5.5(x-1)=5x-1 ()三、化简下列各式1.5a-(a+3b).2.3(a+b)-(a+b)-5(a+b).3.-2(pq+mn)+(2pq-mn).四、初一(1)班,男生有a人,女生比男生的2倍少25人,并知男生比女生的人数多,用代数式来表示,能化简的化简.1.女生有多少人?2.男生比女生多多少人?3.全班共有多少人?§3.5.1字母表示数一、填空题1.在合并同类项时,我们把同类项的____相加.2.合并同类项:(1)2a -5a -7a =__________. (2)2ab +3ab -6ab =__________. (3)2a 2b -4ab 2+3b 2a -5a 2b =__________. (4)5x 3y -6x +7x 3y +8x =__________.3.请写出3个与3x 2y 2z 是同类项的代数式____.4.去括号(1)2x -(2-5x )=__________. (2)3x 2y +(2x -5x 2y )=__________.5.计算:a -(2a -3b )+(3a -4b )=__________.6.若x 2y =x m y n ,则m =______,n =______.7.化简x +{3y -[2y -(2x -3y )]}=__________.8.m +n -p 的相反数为__________.9.九个连续整数,中间的一个数为n ,这九个整数的和为__________.10.某服装店打折出售服装,第一天卖出a 件,第二天比第一天多12件,第三天是第一天的2倍,则该服装店这三天共卖出服装________件. 11.当k =__________时,多项式x 2-3kxy -3y 2-31xy -8中不含xy 项.12.在代数式6a 2-7b 2+2a 2b -3ba 2+6b 2中没有同类项的是__________. 二、选择题13.下列各组式子中是同类项的是( )A.-a 与a 2B.0.5ab 2与-3a 2bC.-2ab 2与21b 2a D.a 2与2a 14.下列计算正确的是( )A.3a +2b =5abB.-2a 2b +3ab 2=a 2b 2C.21a 2b -3a 2b =-25a 2bD.3x 2-4x 5=-x 315.当a =5,b =3时,a -[b -2a -(a -b )]等于( )A.10B.14C.-10D.416.如果(3x 2-2)-(3x 2-y )=-2,那么代数式(x +y )+3(x -y )-4(x -y -2)的值是( )A.4B.20C.8D.-6 17.-[-(-a 2)+b 2]-[a 2-(+b 2)]等于( )A.2a 2B.2b 2C.-2a 2D.2(b 2-a 2) 三、解答题18.已知a =1,b =2,c =21, 计算2a -3b -[3abc -(2b -a )]+2abc 的值.19.已知2x m y 2与-3xy n 是同类项,计算m -(m 2n +3m -4n )+(2nm 2-3n )的值.20.把(a +b )当作一个整体化简,5(a +b )2-(a +b )+2(a +b )2+2(a +b ).§3.5.2字母表示数一. 选择题。
第三章用字母表示数复习

期中复习----用字母表示数复习一、基本概念1、_____________________________________________叫代数式;(1)__________________________叫单项式,_____________________叫做单项式的系数 ____________________________________叫做单项式的次数;叫做多项式的项,其中__________________________________叫做多项式的次数;(3)代数式书写时应注意:①数字与字母、字母与字母相乘,乘号通常用“.”或省略不写; ②数字写在字母的前面;③除法通常写成分数形式④数字系数为带分数时化为假分数。
2、___________________________________________________________叫代数式的值。
求代数式的值因注意的问题:_____________________________________________3、同类项的概念:注意:(1)同类项中两个相同:① _____________________,②_______________________;(2)同类项中两个无关:① _______________________,② ____________________,(3)特例:所有常数项也是同类项。
4、(1)合并同类项法则:_____________________________________________________;(2)合并同类项依据:______________________________________________________ .5、去括号法则_______________________________________________________________ _________________________________________________________________________.二、课堂反馈练习:(一)填空题(每题3分,共30分)1.设x 表示一个数,用代数式表示“比这个数的平方小3的数”是___________.2.一个长方形的宽为a cm ,长比宽的2倍少1cm ,这个长方形的长是___________cm.3.某校男生人数是m 人,且男生人数占全校总人数的40%,则全校总人数为__________.4.代数式-2223ab 的系数是__________,次数是___________. 5.当32m n ==-,时,代数式222m n -的值是 。
北师大版七年级上数学第三章字母表示数学习笔记

第三章字母表示数1 字母能表示什么Ⅰ学法导引回忆以前学过的公式和运算律,加法交换律可以表示成a+b=b +a,这里a、b分别表示两个数,因此数和字母是个别和一般的关系,即字母可以表示任意数.课堂上动手用火柴棒摆一摆,边摆边思考,进而找到图形的数量变化与火柴棒数量变化的规律.Ⅱ思维整合解析重点经历探索过程,体会字母表示数,形成初步符号感.【例1】如下图3—1—1,搭一个正方形需要4根火柴棒.按上图的方式,搭2个正方形需要________根火柴棒,搭3个正方形需要________根火柴棒.(1)搭10个这样的正方形需要多少根火柴棒?(2)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(3)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?解析本题对第(1)问还可以画出火柴棒的根数;但对第(2)问,数数的方法失效,若正方形的数目再大,数火柴棒的方法更不可行.若能找出正方形的个数和火柴棒的根数之间的关系,问题将迎刃而解.用x表示正方形的个数,用不同的方法给出火柴棒的根数的表达式.第一个正方形用4根,每增加一个增加3根,若搭x个正方形,则增加3(x-1)根,故火柴棒的根数可表示为:4+3(x-1).把每一个正方形都看成4根火柴棒搭成的,然后再减去多算的根数,x个正方形所需的根数即为:4x-(x-1).把每一个正方形看成3根火柴棒搭成的,然后再加上最后一根,这样,x个正方形所需的根数为:3x+1.当搭100个正方形,即x=100时,上述三种做法算得火柴棒都是301根.解搭2个正方形需要7根火柴棒,搭3个正方形需要10根火柴棒.(1)搭10个这样的正方形需要31根火柴棒.(2)搭100个这样的正方形需要301根火柴棒,方法为:3×100+1=301(根).(3)搭x个这样的正方形需要(3x+1)根火柴棒.点拨用字母表示数,简洁明了地表示了正方形个数与火柴棒根数之间的关系.剖析难点探索过程中,找不到规律或不能用字母把找到的规律正确表达出来.【例2】如图3-1-5①是一个三角形,分别连结这个三角形三边的中点得到图②;再分别连结图②中间小三角形三边的中点,得到图③.(1)图①、图②、图③中分别有多少个三角形?(2)按上面的方法继续下去,第n个图形中有多少个三角形?因此第n个图形中三角形个数为1+4×(n-1),即4n-3.解(1)1,5,9;(2)4n-3.点击易错点不能把找到的规律用字母表示出来.【例3】图中的各个图形是由若干盆花组成的形如三角形的图案,每条边(包括两个端点)有n(n>1)盆花,每个图案花盆的总数是S,按此规律推断S与n的关系式是________.错解S=3n.错解分析由于每条边上都有n盆花,共有3条边,便直接用3和n相乘,而忽略了端点处3盆花各重复了一次,应再减3.正解S=3n-3.[想一想]观察下列各式:想一想,什么样的两数之积等于这两数之和?设n表示正整数,用关于n的等式表示这个规律为________×________=________+________.Ⅲ能力升级平台综合能力升级用字母表示数是代数的基础,它常和以前学过的公式综合出题,它容身于代数、几何的各个角落.【例4】如图3-1-7,把一个长、宽分别为a、b的长方形铁片在四角各剪去一个边长为c的正方形(2c<b<a=,然后作成一个长方体盒子,用字母表示它的容积.解析根据长方体的容积(体积)公式V=Sh.欲求长方体的容积需知长方体的底面积S和长方体的高,又可根据S=ab,欲求底面积需知底面的长和宽,用图中虚线部分作成长方形盒子的底面,它的长为(a-2c),宽为(b-2c)由作法可知,盒子高为c,故盒子容积为(a-2c)(b-2c)·c.解根据长方体的容积公式可知:此盒子的容积为:(a-2c)(b -2c)·c创新能力升级对于方案设计及判断不同方案的优劣,用字母表示数从不同角度解决问题,培养学生创新意识.【例5】用a米的竹篱笆在空地上围成一个养鸡场,有两种方案:一种围成正方形,另一种围成圆形,试比较两种方案的面积大小,并说明理由.应用能力升级把学到的知识用到生活中,求某些图形的周长或面积.【例6】学校决定修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图3-1-8所示的两条小路,已知两条小路的宽都是x米,求(1)修建的两条小路的面积是多少平方米?(2)草坪的面积是多少平方米?解析两条小路分别为长方形和平行四边形,长方形面积为长×宽=a×x,平行四边形的面积为x×b,求两条小路的面积时不要忽略重合部分,草坪的面积就为大长方形面积减去两条小路面积.2 代数式Ⅰ学法导引明白代数式的特征:只含有加、减、乘、除、乘方等运算符号及括号,而不含“等号”、“大于号”、“小于号”.注意单独一个数或字母也是代数式,思考代数式的优点,如代数式10x+5y可表示什么,加深体会字母可以表示任何数,列代数式时,要正确判断各数量关系中的运算顺序,并抓住关键词语.Ⅱ思维整合解析重点在具体情境中列出代数式.【例1】一家商店某种服装成本价为a元,按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,用代数式表示这种服装的实际售价.解析列代数式时抓住关键词:提高、理顺运算顺序,先说先算,分层处理,先找出标价,最后打八折.解实际售价为:a(1+40%)×80%.点拨正确书写代数式,数字与字母或字母与字母相乘时乘号写作“·”或省略不写,数字与数字相乘仍用“×”.剖析难点用代数式表示实际问题中的数量关系,理解代数式表示的实际意义.【例2】甲、乙两地相距x千米,某人计划用a小时从甲地到乙地,如果必须提前2个小时到达,那么他每小时需多走____.点击易错点本节常见易错点有:(1)对代数式的意义叙述不准确;(2)列代数式时审题不仔细,弄错运算顺序.【例3】说出下列代数式的意义.正解(1)x的平方的3倍与5的差;(2)a与b的差的立方的5倍.Ⅲ能力升级平台综合能力升级代数式与数字问题的综合、代数式与简单方程的综合.【例4】一个十位数字为0的三位数,它恰好等于各位数字和的m倍,交换它的百位数字与个位数字的位置,得到新的三位数是其各位数字之和的n倍,则n的值是()A.99-m B.101-mC.100-m D.101+m解析设原三位数为100a+b,则交换百位数字与个位数字后的三位数为100b+a,则由题意可得:100a+b=m(a+b),100b+a =n(a+b),两式左右两边相加,得101a+101b=(m+n)(a+b)即101(a+b)=(m+n)(a+b),∴m+n=101,即n=101-m.解 B应用能力升级列代数式解决实际问题,如水费,电费、稿费、出租车收费固定电话收费等分段收费问题.解析此题中关系复杂,关键在于用水量是否超标,由于结算方法不同,所列代数式也不同.解分两种情况:(1)当x≤12时未超标,此时应交纳水费1.4x元;(2)当x>12时,用水量超标,此时应交纳水费[1.4×12+(x -12)×2.6]元.创新能力升级用字母表示学过的公式并灵活运用,把求平均数的方法用到求平均速度中.【例6】某人以每小时a千米的速度上山,然后又沿原路以每小时b千米的速度下山,如果上山的路程s千米,那么此人上山、下山的平均速度是多少?解析首先将行程问题的基本数量路程、速度、时间三者之间的关系列述出来,然后再回到题目中来:上下山的平均速度=(上山路程+下山路程)÷(上山时间+下山时间),最后用代数式将上山时间、下山时间表述出来,3 代数式的求值Ⅰ学法导引代数式求值就是用给定的数值代替代数式里的字母,按照代数式指明的运算顺序,计算出结果,有些代数式的求值,在未明确给定或不能求出单个字母的取值时,要用整体代入法.(如例5)Ⅱ思维整合解析重点求代数式的值的方法是先代入,后按代数式指明的运算顺序进行计算.剖析难点利用代数式求值推断代数式所反映的规律.【例2】当a=4,b=2,c=-1时,求a-bc的值错解1 当a=4,b=2,c=-1时,a-bc=4-2×(-1)=2×(-1)=-2.错解2 当a=4,b=2,c=-1时,a-bc=4-2×-1=-2.错解分析错解1的原因是计算时弄错了运算顺序;错解2的原因是没有把“-1”用括号括上.正解a=4,b=2,c=-1时,a-bc=4-2×(-1)=4+2=6.解析把n=40代入,看所求的数是质数吗?如果是,再验证;如果不是,则得出结论.Ⅲ能力升级平台综合能力升级互为倒数的定义与整体代入法综合去求较为复杂的代数式值.应用能力升级用代数式求值解决实际问题,求立方体的体积等.【例4】挖一条长为l的水渠,渠道的横断面是等腰梯形(如图3-3-1),梯形的底分别为a、b,水渠深为h,若l=200米,a =6米,b=4米,h=1.5米,求挖这条小渠的土方量.解析求水渠的土方量,即求棱柱的体积,棱柱的体积=底面积×高,这里即等腰梯形的面积×水渠的长度.为了方便,设水渠的土方量为V.4 合并同类项Ⅰ学法导引弄清几个基本概念,特别是同类项的概念,另外代数式中的项由系数(包括前面的符号)和字母(π除外)两部分组成,分清哪些项是同类项,是合并同类项的关键,合并同类项的根据是乘法分配律,根据法则进行合并,对于求代数式的值这类题要会书写格式.Ⅱ思维整合解析重点同类项的概念,合并同类项.同类项:所含字母相同,并且相同字母的指数也相同的项叫同类项.判断时,同时具备2个条件:一是所含字母相同,二是相同字母的指数也相同,缺一不可,引申为同类项与系数无关、与字母排列顺序无关;概念具有双重性.合并同类项法则:在合并同类项时,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,即“一变二不变”.【例2】说出下列各题的两个项是不是同类项?为什么?解析观察所含字母是否相同,相同字母的指数是否相同.解(2)、(4)不是同类项,因为(2)中相同字母的指数不同,(4)所含字母不同,(1)、(3)、(5)是同类项,因为(1)、(5)中都是常数,(3)中所含字母相同,相同字母的指数也相同.点击易错点本节的易错点:①判定同类项容易出错,②合并同类项时容易出错,③确定代数式项的系数有误.【例3】下列各题合并同类项的结果对不对?不对的,指出错在哪里.错解认为都对.错解分析(1)3a与2b不是同类项,不能合并;(2)合并同类项只是系数的运算,字母不变,字母不参与运算;(3)(4)都不是同类项,不能合并;(5)保留了字母和字母的指数不变,又忘记了互为相反数的两个系数的和为0.结果应为0.正解(1)不对,因为3a与2b不是同类项,不能合并;(2)不对,丢掉了字母及字母指数;(3)(4)不对,分别不是同类项,所以不能合并;(5)不对,因为-3+3=0,0与xy相乘为0,而不是xy.Ⅲ能力升级平台综合能力升级合并同类项与数字问题、数的整除性的综合.【例4】随便写出一个十位数字与个位数字不相等的两位数,把它的十位数字与个位数字(不为0)对调后,得到一个新的两位数,并把两个两位数相加,所得的和一定能被11整除吗?为什么?解析一个数能否被11整除也就是看这个数能否写成11的倍数形式.用代数式把原、新两个十位数表示出来,并求和.解设原两位数的十位数字为x,个位数字为y,根据题意得(10x+y)+(10y+x)=10x+y+10y+x=(10x+x)+(y+10y)=11x+11y=11(x+y).因此,所得的和一定能被11整除.应用能力升级用合并同类项知识解决日常生活中的问题,如用字母表示付费、图形周长等.【例5】以物易物在农村是普遍存在的一种现象.一天,王大妈用玉米换苹果,交易条件是1公斤玉米换0.8公斤苹果,当称完带口袋的玉米后,小贩要称皮(口袋)时,王大妈说话了:“不用称皮了!称玉米带皮,称苹果时也带皮,这样既省事又互不吃亏.”想一想:王大妈讲的有道理吗?用学过的有关代数式的知识解答.解析本题的关键是列代数式求值比较吃亏还是不吃亏的过程.解王大妈讲的没有道理,王大妈自己吃亏.设玉米重x公斤,口袋重y公斤,则应换苹果(0.8x)公斤,若不称皮,则实换苹果为0.8(x+y)-y=0.8x+0.8y-y=0.8x-0.2y,也就是说,这样王大妈要少得苹果0.2y公斤,口袋越重吃亏越大. 5 去括号Ⅰ学法导引我们第二章学过有理数减法,如7-(-5)=7+5=12,这就是有理数减法中遇到的去括号,根据它来学习去括号法则的第二条,需要注意本节在去括号时,若括号内多于一项时,在去括号后,括号内各项要么全变号,要么全不变号,同时还应正确运用乘法分配律,这节内容今后经常用到,一定要打好基础.思维整合解析重点去括号法则,正确去括号.【例1】先去括号,再合并同类项:(1)8a+2b+5(a-b);(2)6a-2(a-c).解析这两个题都需要先利用分配律计算5与(a-b),2与(a -c)的积,再去括号,最后合并同类项.解(1)8a+2b+5(a-b)=8a+2b+(5a-5b)=8a+2b+5a-5b=(8a+5a)+(2b-5b)=13a-3b;(2)6a-2(a-c)=6a-(2a-2c)=6a-2a+2c=4a+2c.剖析难点当括号前是“-”号时的去括号.【例2】先去括号,再合并同类项.解析按去括号法则先把括号去掉,然后再合并同类项,要注意括号前面是“-”号,去括号后,括号内各项的符号都改变.点击易错点尤其易犯的错误是:(1)括号前是“-”号,去括号时,只改变括号里第一项的符号,而其余各项的符号均忘记改变.(2)运用分配律时,容易出现漏乘项的错误.错解分析错解1是第二步去括号时,括号里各项都应变号,但上述解法中只改变了第一项的符号.错解2是第一步应用分配律时,应用4去乘括号内的每一项,但上述解法中只与第一项相乘,造成漏乘的错误.解析去多重括号可以由内向外逐层进行,也可以由外向内进行,如果去括号法则掌握得比较熟练,也可以内外同时进行去括号.解解法之一(由内向外逐层去括号)Ⅲ能力升级平台综合能力升级有理数的绝对值,有理数的乘方及去括号合并同类项的综合运用.解析由两个非负数的和为0,则每个非负数为0可求出a、b 的值,代入式子A-B的化简结果中,就可求出A-B的值.应用能力升级应用去括号合并同类项解决几何图形的边长、周长及阴影部分的面积等问题.【例5】一个四边形的周长是38厘米,已知第一条边长是a厘米,第二条边长比第一条边长的2倍长3厘米,第三条边长等于第一、二两条边长的和,写出表示第四条边长的代数式.解析第一条边的边长为a厘米,第二条边的边长为(2a+3)厘米,第三条边的边长为(a+2a+3)厘米,周长减去前三条边的边长就是第四条边的边长.解根据题意得38-a-(2a+3)-(a+2a+3)=38-a-2a-3-a-2a-3=32-6a.点拨列代数式时,第二条边的边长,第三条边的边长要用括号括上.6 探索规律Ⅰ学法导引要善于从具体的、实际问题出发,观察各个数量的特点及相互之间的变化规律,合理归纳,大胆猜想,从不同事物中发现它们的相似点或相同点,并运用符号(代数式)表示规律,另外还需要通过运算,验证你所找到的规律是否正确.Ⅱ思维整合解析重点探索规律的方法和步骤:第一,观察、探索:从实际问题出发,观察各个数量的特点及相互之间的变化规律.第二,归纳、猜想:通过观察由此及彼,合理归纳、猜想,并用字母表示规律.第三,验证:观察、探索的结果,具有偶然性,可能是正确的,也可能是错误的,需要通过运算,验证规律.【例1】图3-6-1,图①是一个三角形,分别连结这个三角形三边的中点得到图②;再分别连结图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有多少个三角形?解析先找出图①、图②、图③中分别有多少个三角形,我们发现图①有1个图②有5个,图③有9个,还发现,图②比图①多4个三角形,图③比图①多8个(2个4)三角形.点击易错点根据题目找不出规律,考虑不全面,思维不清楚是导致本节错误的主要原因.【例2】如图3-6-2用棋子摆出下列一组图形:问:摆第④个图形用____枚棋子;摆第n个图形用____枚棋子.错解15,3(n+1)错解分析把每边棋子数×边数当成了发现的规律,而忽略了每个角处的一枚棋子都数了两遍.正解12,3nⅢ能力升级平台综合能力升级探索一些算式中的规律、图形中的规律、周期问题的规律等.【例3】观察下列各式;你会发现什么规律?解析(1)左边是两个连续奇数的积,右边是两个连续奇数中间的偶数的平方减去1,(2)找出算式中第1个数与算式序号之间的关系,3→1,5→2,7→3,9→4,…,2n+1→n.应用能力升级用探索规律解决实际生活中遇到的问题,托运行车费用、过已知多个点作直线条数问题、好朋友见面握手次数问题等.【例4】“⊙”表示一种新的运算符号,已知2⊙3=2+3+4;7⊙2=7+8;3⊙5=3+4+5+6+7,…按此规律,计算5⊙8.解析“⊙”只是一种符号而已,后面的几个等式,等式的左边是一种运算符号,等式的右边是几个连续自然数的和,关键是加数的个数和从哪个数开始加,条件:2⊙3=2+3+4,从“2”加起,有3个加数即“2+3+4”,7⊙2=7+8;从“7”加起有2个加数,即“7+8”;3⊙5=3+4+5+6+7,从3加起,共有5个加数,即“3+4+5+6+7”.所以5⊙8=5+6+7+8+9+10+11+12.解5⊙8=5+6+7+8+9+10+11+12。
七年级数学上册第三章用字母表示数3.1字母表示数字母能表示什么呢?素材苏科版

字母能表示什么呢?难易度:★★★★★关键词:字母表示数答案:用字母能够表示运算律、计算公式,字母能够表示任何数。
【举一反三】典题:某商品的价格m元,涨价10%后,9折优惠销售,该产品的实际售价是。
思路导引:要弄清字母的含义,原价m元涨价10%后是(1+10%)m元,再9折优惠就是乘以0.9.标准答案:99%m元。
尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in ourbusy schedule. We proofread the content carefully before the release ofthis article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. Ihope this article can solve your doubts and arouse your thinking. Partof the text by the user's care and support, thank you here! I hope tomake progress and grow with you in the future.。
北师大版七年级数学上册_第三章字母表示数35去括号ppt课件

➢ 13+(7-5)= 13+7-5 ————① ➢ 9a+(6a-a)=9a + 6a-a ————②
装备一个铸造车间,需要熔炼设备、 造型及 制芯设 备、砂 处理设 备、铸 件清洗 设备以 及各种 运输机 械,通 风除尘 设备等 。只有 设备配 套,才 能形成 生产能 力。
再看下列两组式子的计算:
例1:去括号,并合并同内项: (1)4 a-( a-3b); (2)a+(5a-3b)-(a-2b); (3)3(2xy-y)-2xy (4)5-[a-(b-c)]
解:(1)原式 4aa3b3a3b
括号前是“+”号, 把括号和它前面的 “+”号去掉,括号 里各项都不变符号。 括号前是“-”号, 把括号和它前面的 “-”号去掉,括号 里各项都改变符号。
2、去括号:
1、a+(b-c) = a+b-c
(×)= a-b+c
(√)
(×)= c+2a-2b
2、a-(b-c) = a-b+c
3、a+(-b+c)= a-b+c
4、a-(-b-c)= a+b+c
四、例题解析: 装备一个铸造车间,需要熔炼设备、造型及制芯设备、砂处理设备、铸件清洗设备以及各种运输机械,通风除尘设备等。只有设备配套,才能形成生产能力。
【跟踪练习】:
1.下列各式一定成立吗?
(1)8x + 4 = 12 ( ×) =8x + 4 (2)35x + 4x = 39x (√ ) (3) 3 (x + 8 ) = 3x + 8 (×) =3x + 24 (4)3 (x + 8 ) = 3x + 24(√ ) (5)6x + 5 = 6(x + 5)(×)=6(x + 5/6) (6)-( x – 6 ) = -x - 6 (×)= -x + 6
七年数学上册 第三章 字母表示数

第三章 字母表示数教学目标1.在现实情境中进一步明白得用字母表示数的意义。
2.能分析简单问题的数量关系,并用代数式表示。
3.能说明一些简单代数式的实际背景或几何意义。
4.会求代数式的值,能依照特定的问题查阅资料,找到所需求的公式,并会代入具体的值进行计算。
5.了解单项式、多项式、整式、单项式的系数、同类项等概念,会进行简单的整式加、减运算。
教学进程 一、知识梳理(知识结构图)二、典型例题例1如图,按必然的规律用牙签搭图形: ① ② ③ (1)按图示的规律填表:图形标号① ② ③ …… ⑩ 牙签根数 ……(2)搭第n 个图形需要________________________根牙签.三、随堂练习(供选做)1.列代数式表示:①x 的31与a 的和是 ;②a ,b 两数和的平方减去a 、b 两数的立方差 ;③长方形的周长为20cm ,它的宽为xcm,那么它的面积为 ;④某商品的利润为a 元,利润率为10℅,此商品进价为 ;⑤m 箱苹果的质量为a 千克,那么3箱苹果的质量为 ;⑥甲乙两地相距x 千米,某人原打算t 小时抵达,后因故提早1小时抵达,那么他每小时应比原打算多走 数学内部用于计算(预测) 探索规律 表示规律 数量关系或 运算律 公式法则 字母表示数 代数式 语言表示到代数式表示 代数式表示的实际情境或几何背景 列代数式 值的实际意义 代数式作为运算的过程 算法的思想 对代数式反映规律的判断 代数式求值合并同类项、去括号 验证所探索的规律 代数式运算千米;⑦托运行李p 千克(p 为整数)的费用标准:已知托运第1个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用5角.假设某人托运p 千克(p >1)的行李,那么托运费用为 ; ⑧一个两位数,它的十位数字为x ,个位数字比十位数字大3,那么这个两位数为 .2.当m = ,n = 时,m y x 2232和8221y x m 是同类项. 3.代数式22231y y x +-有 项,各项系数别离是 . 4.去括号:=-+-)32(22ab b a , =-+--)3143(212ab a . 5.假设m 2+3n -1的值为5,那么代数式2m 2+6n +1的值为 .6.已知82=-ab a ,42-=-b ab ,那么=-22b a , =+-222b ab a .。
六年级第三章用字母表示数的初步知识
六年级第三章用字母表示数的初步知识六年级第三章用字母表示数的初步知识要想在考试中取得好成绩就必须注重平时的练习与积累,查字典数学网为大家整理了六年级第三章用字母表示数的初步知识,小朋友们一定要仔细阅读哦!1、用字母表示数的意义和作用* 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系路程用s表示,速度v用表示,时间用t表示,三者之间的关系: s=vt v=s/t t=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系: a=bc b=a/c c=a/b(2)运算定律和性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c) =a-b-c(3)用字母表示几何形体的公式者省略不写,数字要写在字母的前面。
当“1”与任何字母相乘时,“1”省略不写。
在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。
用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。
4、将数值代入式子求值* 把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。
字母表示的是数,后面不写单位名称。
* 同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。
用字母表示数的初步知识就为大家整理到这,想要了解更多小升初辅导资料欢迎关注查字典数学网小升初频道!。
第三章代数式 用字母表示数
用字母表示数
1.用字母表示数 2.用字母表示运算定律 3.用字母表示计算公式 4.用字母表示数量关系和变化规律
一些特殊数的表示
偶数可以表示为__2_n__ 奇数可以表述为__2_n_-1_或__2_n_+_1___ 3的倍数可以表示为__3n___ 既能被4又能被6整除的数表示为_1_2_n__
cd
a+d=b+c
1.能把数量关系一般化地、简明地表示出来。 2.可代替任意数,便于应用。 3.同一问题中,不同数量要用不同的字母表示,相同的 字母表示相同的数量。
代数式:
用运算符号(指加、减、乘、除、乘方、开方)把 数或表示数的字母连接起来而组成的式子叫做代数式。
像 12,6x+6y,2+t,-st ,166-5n,(a+b) 2
(6)甲乙两数的和的平方减去它们的差的平方;
(7)甲乙两数的和与它们的差的乘积。
第三招 根据等量关系列代数式
在现实生活中有许多等量关系,如 单价× 数量 = 总价 速度÷ 时间= 路程
根据这些等量关系可以迅速列出代数式.
(1)一轮船在静水中航行速度为akm/h, 水流速度为bkm/h,则顺水航行的速度 为(a+b) km/,h 逆水航行的速度为(a-b) km/h.
注意:在省略乘号的时候,要把数字写在字母前面。带分数与字 母相乘时,带分数要写成假分数的形式。
3.字母与字母相乘时一般按英文字母顺序. 4.带单位的代数式的写法:要从总体上看整个代数 式,如果它是加减关系的,就要把整个代数式加上 括号;如果是乘除关系的,就不必在整个代数式上 加括号了。
5.关于除法的写法:在代数式中出现除法运算时,一般不 写“÷”,而是用分数线代替,改写成分数的形式;如 果除数为整数的,还可以把用这个整数为分母的分数单 位作为数字因数,写到前面。
初二数学:上册第三章用字母表示数3.1字母表示数用字母表示数例题与讲解
3.1 字母表示数(1)为什么用字母表示数在算术中我们学过2,4,6,8等能被2整除的数,叫做偶数.偶数是无穷无尽的,要研究它的性质,不可能一个一个把它们分别研究完了,最后再来归纳,怎么办呢?在代数里可以用字母n 代表任意一个整数,那么2n 就能表示所有的偶数.如果n 代表1,那么2n 就是2;n 代表2,那么2n 就是4;如果n 代表2 000,那么2n 就代表4 000.因此,研究2n 的性质就可以代表所有偶数的性质了.我们都知道1,3,5,7,9等不能被2整除的数叫做奇数,奇数也是无穷无尽的,要表示所有的奇数也很方便,用字母n 代表整数,2n -1就能表示所有的奇数.用字母S 表示“长方形的面积,”用字母a ,b 分别表示长方形的“长”和“宽”,得到公式S =ab ,这样用字母表示的数显得既简洁、又全面,记忆起来也很方便.(2)字母能表示什么①可以简明地表达数学运算律,如:加法交换律a +b =b +a ;②可以简明地表达公式,如三角形面积公式:S =12ah ,其中a 表示底边长,h 表示这条底边上的高;③可以简捷、准确地表达一些数学概念,如用a 和b 表示两个互为相反数的数,则a +b =0,反之若a +b =0,则a 与b 互为相反数;④可以简明地表达问题中的数量关系,如三个连续的偶数,中间一个为2n ,则另外两个可以表示为:2n -2,2n +2.(3)用字母表示数应注意的几个问题 ①注意字母具有一般性用字母可以表示我们已经学过的任意一个有理数,同时随着我们所学知识的深入与需要,数的范围将进一步扩大,字母可以表示今后我们所学到的任何一个数.比如,字母a 可以表示正数、负数、零,同学们不要见到a 就认为是正数,见到-a 就认为是负数,见到2a 就认为一定比a 大,这是对字母表示数的一种极为错误的认识.实际上,a 不一定就是正数,-a 不一定就是负数,2a 不一定就比a 大,这要看字母a 具体代表什么数,当a =-2时,-a =2,2a =-4,即a 是一个负数,-a 就是一个正数,2a 反而比a 要小.②注意字母的确定性它表现在两个方面:一方面是指在同一个问题中,同一个字母只能表示同一个数量,不同数量要用不同的字母来表示.另一方面,在用字母表示数时,一旦式子中的字母的取值确定了,式子的值也就随之确定了,如在圆的周长公式l =2πr 中,如果r =3,那么这个圆的周长就是6π了.③注意字母的不确定性同一个式子可以表示多种实际问题中的数量关系,如:式子3a 可以表示:“每斤苹果a 元,买3斤苹果共需3a 元”,也可以表示:“每支铅笔a 元,买3支铅笔共需3a 元”等.④注意字母的限制性用字母表示实际问题中的某一个数量时,字母的取值必须使这个问题有意义且符合实际,如“若某型号计算机的单价为a元/台,则买m台共需ma元”,这里a只能表示正数,m只能表示0和正整数.⑤注意字母的抽象性要逐步理解和接受有些问题的结果可能就是一个用字母表示的式子,如,我们已经习惯于计算“若每小时行30千米,则2小时就会行30×2=60千米”这样的具体结果,因为我们可以想象得到60千米大概有多远.如果换成“若每小时行30千米,则t小时就会行30t千米”这样的抽象结果,初学时,有的同学很难接受,因为我们想象不到30t千米大概有多远.其实,学习了用字母表示数以后,像30t或a-5等这些用字母表示的数,完全可以作为一个结果.⑥书写格式a.用字母表示数,当式子中出现数与字母、字母与字母相乘时,乘号通常简写作“·”或省略不写;如果是数与字母相乘,数字应写在字母前.例如,a×24一般写成24·a或24a的形式,而不应写成a·24或a24的形式;4×(a+b)通常写成4·(a+b)或4(a+b).b.数字与数字相乘,一般仍用“×”.c.相同字母相乘时,应写成幂的形式.例如,a×a写成a2(注:2写在右上角),a×a×a写成a3(注:3写在右上角)的形式.d.带分数与字母相乘时,如果省略乘号,一定要先把带分数化成假分数,再与字母相乘.例如,用代数式表示“a,b两数积的325倍”,一般写成175ab或17ab5,而不应写成325ab的形式.e.式中出现除法运算的,一般按照分数的写法来写.例如,s÷t(t≠0)应写成st(t≠0)的形式;y÷(x+1)通常写成yx+1.此外,分数线具有“÷”和“括号”的双重作用.f.在式子后面要注明单位时,若结果是乘除关系的,直接在后面写单位;若结果是加减关系时,先把式子用括号括起来,再在后面写单位.例如,长方形的长为12a cm,宽为5b cm,则长方形的面积为60ab cm2,周长为(24a+10b) cm或2(12a+5b) cm.【例1】填空:(1)买一个篮球需要m元,买一个排球需要n元,则买3个篮球和5个排球共需要__________元;(2)今天,参加全省课改实验区的初中毕业考试的同学约有15万人,其中男生约有a万人,则女生约有__________万人;(3)1只青蛙1张嘴,2只眼睛4条腿,1声扑通跳下水;2只青蛙2张嘴,4只眼睛8条腿,2声扑通跳下水;3只青蛙3张嘴,6只眼睛12条腿,3声扑通跳下水;……用字母表示这首歌__________;(4)如下图是小明用火柴搭的1条、2条、3条…“金鱼”,则搭n条“金鱼”需要火柴__________根.解析:(1)显然买3个篮球需要3m元,买5个排球需要5n元,则买3个篮球和5个排球共需要(3m +5n)元;(2)女生的人数等于总人数减去男生的人数.由于男女生共15万人,而男生有a万人,则女生有(15-a)万人;(3)青蛙眼睛的数目等于青蛙数目的2倍,腿的数目是青蛙数目的4倍,青蛙嘴的数目和跳水声数目都与青蛙只数相等;(4)观察发现:搭1条“金鱼”需要火柴8根,搭2条“金鱼”需要火柴14根,搭3条“金鱼”需要火柴20根,而8=6×1+2,14=6×2+2,20=6×3+2…所以搭n条“金鱼”需要火柴(6n+2)根.答案:(1)(3m+5n)(2)(15-a)(3)n只青蛙n张嘴,2n只眼睛4n条腿,n声扑通跳下水(4)(6n+2)解技巧表示和或差的式子要加括号注意:“(3m+5n)元”、“(15-a)万人”、“(6n+2)根”中表示和或差的式子一定要加括号.【例2】下列各式中,符合书写要求的有哪些?不符合书写要求的有哪些?①313m;②t-3 ℃;③4÷(x-y);④a×5;⑤52xy.分析:①带分数写成假分数;②当需要注明单位时,若最后一步是加减运算,应将式子加上括号,再注明单位;③当运算出现除法时,应按照分数形式写;④数和字母相乘,数字一般写在字母的前面,并写成省略乘号的形式.解:符合书写要求的只有⑤,不符合的有①②③④.其中①应写成103m;②应写成(t-3) ℃;③应写成4x-y;④应写成5a.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.实数π,0,-1中,无理数是A.πB.C.0 D.-1【答案】A【解析】根据无理数是无限不循环小数,可得答案.【详解】解:0和-1是整数,它们都属于有理数;π是无限不循环小数,故它是无理数;故选择:A.【点睛】本题考查了无理数的概念,掌握无理数的概念是解题的关键.2.如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是( )A.∠A+∠C+∠D+∠E=360°B.∠A-∠C+∠D+∠E=180°C.∠E-∠C+∠D-∠A=90°D.∠A+∠D=∠C+∠E【答案】B【解析】过点C作CG∥AB,过点D作DH∥EF,根据两直线平行,内错角相等可得∠A=∠ACG,∠CDH=∠DCG,两直线平行,同旁内角互补可得∠EDH=180°-∠E,然后表示出∠C,整理即可得答案.【详解】解:如图,过点C作CG∥AB,过点D作DH∥EF,∴∠A=∠ACG,∠EDH=180°-∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D-(180°-∠E),∴∠A-∠C+∠D+∠E=180°.故选B.【点睛】本题考查了平行线的性质,难点在于过拐点作平行线.熟练掌握平行线的性质是即可根据.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.4.由可以得到用表示的式子为( )A.B.C.D.【答案】B【解析】去分母,把含有y的项移到方程的左边,其它的项移到另一边,然后系数化为1就可得出用含x 的式子表示y.【详解】由原式得:2x-5y=105y=2x-10故选:B【点睛】本题考查的是方程的基本运算技能,去分母、移项、合并同类项、系数化为1等.5.若a、c为常数,且,对方程进行同解变形,下列变形错误的是( )A.B.C.D.【答案】C【解析】根据等式的性质,判断即可得到答案.【详解】A、,符合等式性质,正确;B、,符合等式性质,正确;C、,不符合等式性质,错误;D、,符合等式性质,正确;故选择:C.【点睛】此题主要考查了等式的基本性质,正确把握等式的基本性质是解题关键.6.如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是()A.10 B.11 C.16 D.26【答案】C【解析】利用三角形三边关系定理,先确定第三边的范围,进而就可以求出第三边的长,从而求得三角形的周长.【详解】设第三边为acm,根据三角形的三边关系知,2<a<12,由于第三边的长为偶数,则a可以为4cm或6cm或8cm或10cm.∴三角形的周长是5+7+4=16cm或5+7+6=18cm或5+7+8=20cm或5+7+10=22cm.故选:C.【点睛】此题考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.7.下列调查中,不适合采用抽样调查的是()A.了解袁州区中小学生的睡眠时间B.了解宜春市初中生的兴趣爱好C .了解江西省中学教师的健康状况D .了解“天宫二号”飞行器各零部件的质量【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 了解滨湖区中小学生的睡眠时间,不必全面调查,只要了解大概的数据即可,故选项错误; B. 了解无锡市初中生的兴趣爱好,所费人力、物力和时间较多,不适合全面调查,故选项错误; C. 了解江苏省中学教师的健康状况,不适合全面调查,故选项错误;D. 了解“天宫二号”飞行器各零部件的质量,为保证“天宫二号”的成功发射,对每个部件的检查是必须的,因而必须采用普查的方式,故选项正确。
初中七年级数学教案 《字母表示数》教学设计(省一等奖)
北师大七年级上册第三章1.《字母表示数》教学设计教材分析本节是代数式的基础,从具体的数过渡到代数式。
七年级的学生思维方式仍以具体直观为主,因此先呈现一个具体的生活情景,不仅激发学生兴趣,同时也为字母表示数奠定了基础。
随后的一系列问题更是由浅入深,引导学生积极去探索,在操作与思考、表达与交流等过程中,归纳并总结出字母表示数的意义。
在教学过程中,要提供学生充分的思考时间,更鼓励他们用自己的语言来合理表达发现的规律,从而更好地培养学生由特殊到一般看问题的思维方式。
学情分析学生全是从村小刚升入初中不久,他们活泼开朗,爱好学习,掌握了一些基本的数学知识,像小学学过的一些公式、法则等为本课奠定了一定基础,但是抽象思维能力很差,仅很小一部分同学有一定的动手操作能力及语言表达能力,虽然只是用字母表示数,但其意义,特别是“找规律”,大部分同学都存在一定的难度。
所以要用数学的趣味性来调动学生的积极性,尤其要让他们参与到教学过程中,体会到数学就在身边。
教学目标1.知识与技能经历探索规律并用代数式表示规律的过程,感受从具体到抽象的思想。
2.过程与方法能用字母表示运算律、计算公式以及一些简单问题中的数量关系与变化规律。
在具体情境中体会字母表示数的意义,形成初步的符号意识。
3.情感、态度与价值观让学生主动地参与数学活动,通过观察、分析、交流、猜测等探索数学知识,并把数学知识应用于实际当中,激发学习兴趣。
教学重点理解用字母表示数的意义教学难点使学生经历探索并用代数式表示规律的过程。
教学准备学生自备一盒火柴棒试一试:(1)如果用下图的方式摆三角形,那么摆x个三角形需要多少根火柴棒?(2)按下图方式摆放餐桌和椅子,当摆x张餐桌时,可以坐几位同学?教学反思从找规律的集体合作到旧知的梳理,学生学习有张有弛,教师留心观察学生中出现的个别特例,课堂上的独立思考与合作学习形成有机的结合,气氛因此而格外轻松,学生能很快掌握。
儿歌的导入生动又活泼,一开始就吸引住了孩子们的注意力,充分调动了他们积极的情绪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学单元检测题(北师大版)
第三章 字母表示数
班级:_________ 姓名:______________ 学号:_________ 成绩:________
一、 填空题:(每小题3分,共30分)
1. 温度由t℃下降3℃后是_____________℃.
2. 身高由1.36米增长m米后是______________米.
3. 飞机每小时飞行a千米,火车每小时行驶b千米,飞机的速度是火车速度的_______倍. 4. 设n为自然数,则奇数表示为___________,偶数表示为____________,能被5整除的数为__________,被4除余3的数为____________. 5. 在代数式2421yxy中,写出各项的系数________________. 6. 当2265baba时,代数式,=__________. 7. 当1y时yyyy536222=_____________. 8. 已知yxyxyx8465064)1(2,则=___________. 9. 若nmyxyx和25是同类项,则nm52=___________. 10. ))((baba可以解释为_______________________________. 二、选择题:(每小题3分,共30分) 11. 下列各式中是代数式的是( ) A. 022ba B. 4>3 C. a D. 025x 12. 下列结论中正确的是( ) A. 字母a表示任意数 B. 3121不是代数式 C. 3yx是代数式 D. a不是代数式 13. 无论a取什么数,下列算式中有意义的是( ) A. 11a B.a1 C. 121a D. 121a 14. 全班同学排成长方形长队,每排的同学数为a,排数比每排同学数的3倍还多2,那么全班同学数为( )
A. 23·aa B. )23(aa C. 23aa D. )2(3aa
15. 当a=1,b=2,c=3时,代数式))((bcacc=( )
A. 1 B. 2 C. 0 D. 以上均不对
16. ab2的系数为( )
A. 2 B. 2 C. 2 D. 2
17. 下列各组代数式中,是同类项的是( )
A. xyyx5152与 B. 22515yxyx与 C. 22515yxax与 D. 338x与
18. 下列各题中,去括号正确的是( )
A. cbaacbaa232)23(222
B. 1253)125(3cbacba
C. 123)123(yxayxa
D. 22)2()2(cbacba
19. cba32的相反数是( )
A. cba32 B. cba32 C. cba32 D. cba32
20. 已知62yx,则6)2(5)2(32yxyx=( )
A. 84 B. 144 C. 72 D. 360 三、解答题:(满分60分) 21. 计算题:(每小题5分,共15分) (1)2222)(3yyxx (2))104(3)72(5yxyx (3))(61)(31)(212222bababa 22. (6分)先化简,再求值:aaaaaa42()12()34222,其中2a. 23. (12分)(1)当3121ba,时,分别求代数式①222caba②2)(ba的值. (2)当a=5,b=3时,分别求代数式①222caba②2)(ba的值. (3)观察(1)(2)中代数式的值,222caba与2)(ba有何关系? (4)利用你发现的规律,求227.357.357.13527.135的值.
24. (8分)4个球队进行单循环(所有参加比赛球队,每一队都与其他各队比赛一
次),总共比赛的场次是多少?现有8个球队进行比赛,总共需要赛几场?m个
球队呢?
25. (10分)书店售书(向外邮寄),售书数量与售价之间的关系如下:
数量(册) 售价(元)
100 200+200×0.15
200 400+400×0.15
300 600+600×0.15
400 800+800×0.15
(1)每本书的售价是多少?
(2)选择适当字母写出图书售价公式,并利用公式计算320册图书的销售额.
26. (9分)有一串代数式:x,22x,33x,44x,…,1919x,2020x,…
(1)观察特点,用自己的语言叙述这串代数式的规律.
(2)写出第2 003个代数式.
(3)写出第n个,第n+1个代数式.