刚体力学习题集库

合集下载

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

(完整版)刚体的转动习题

(完整版)刚体的转动习题

17-4图18-4 图F F ρ-O 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。

今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。

4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。

刚体结构力学试题及答案

刚体结构力学试题及答案

刚体结构力学试题及答案一、选择题(每题4分,共20分)1. 刚体的转动惯量与物体的质量和形状有关,以下说法正确的是()。

A. 质量越大,转动惯量越大B. 质量分布越集中,转动惯量越小C. 质量分布越分散,转动惯量越大D. 转动惯量与物体的质量无关答案:C2. 刚体在力的作用下发生旋转,下列说法正确的是()。

A. 力矩的大小与力的大小成正比B. 力矩的大小与力臂的长度成反比C. 力矩的大小与力的大小和力臂的长度都成正比D. 力矩的大小与力的大小和力臂的长度都无关答案:C3. 刚体的角速度与线速度之间的关系是()。

A. 角速度是线速度的两倍B. 线速度是角速度的两倍C. 角速度与线速度成正比D. 角速度与线速度成反比答案:C4. 在刚体的平移运动中,下列说法正确的是()。

A. 刚体上任意两点的位移相同B. 刚体上任意两点的速度相同C. 刚体上任意两点的加速度相同D. 以上说法都正确答案:D5. 刚体的转动惯量与物体的转动轴有关,以下说法正确的是()。

A. 转动轴越靠近物体的重心,转动惯量越小B. 转动轴越远离物体的重心,转动惯量越大C. 转动轴的位置不影响转动惯量D. 转动轴的位置与转动惯量无关答案:A二、填空题(每题4分,共20分)1. 刚体的转动惯量定义为物体的质量与其到转轴的____的乘积。

答案:距离平方2. 刚体在力矩作用下产生的角加速度的大小与力矩成正比,与物体的____成反比。

答案:转动惯量3. 根据牛顿第二定律,刚体的角加速度等于力矩除以物体的____。

答案:转动惯量4. 刚体的角速度和角位移的单位分别是____和____。

答案:弧度每秒,弧度5. 刚体在平面内的运动可以分解为____和____。

答案:平移,旋转三、简答题(每题10分,共30分)1. 请简述刚体的转动惯量与哪些因素有关,并举例说明。

答案:刚体的转动惯量与物体的质量分布和转轴的位置有关。

例如,一个均匀的圆盘绕通过其质心的轴旋转时,其转动惯量较小;而如果绕通过其边缘的轴旋转,其转动惯量则较大。

【精品】刚体力学59

【精品】刚体力学59

刚体力学(一)选择题 1.一刚体以每分钟60转绕z 轴做匀速转动(ω 沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i 157.0 125.6 94.2++=v (B) j i 8.18 1.25+-=v (C) j i 8.18 1.25--=v (D) k 4.31=v [ ] 2.如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]3.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]5.关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6.有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]7.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ]8.质量为m 、长度为l 的匀质细杆AB ,对通过杆的中心C 与杆垂直的轴的转动惯量为12/21ml J =,对通过杆端A (或B )与杆垂直的轴的转动惯量为2231ml J =.O 为杆外一点,AO =d ,AO 与AB 间的夹角为θ,如图所示.若杆对通过O 点并垂直于O 点和杆所在平面的轴的转动惯量为J ,则(A)J =J 1+m (d sin θ)2=ml 2/12+md 2sin 2θ(B)J =J 2+m (d sin θ)2=31ml 2+md 2sin 2θ (C)J =J 2+md 2=31ml 2+md 2 (D)J =J 1+m [(21l )2 +d 2–2(21l )d cos θ ]=31ml 2+md 2-mld cos θ [ ] 9.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为(A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ] 10.光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A)L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L 712v . [ ] 11.如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v . (C) MLm 35v . (D) ML m 47v . [ ] 12.刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ ]13.一人站在旋转平台的中央,两臂侧平举,整个系统以2π rad/s 的角速度旋转,转动惯量为 6.0 kg ·m 2.如果将双臂收回则系统的转动惯量变为2.0 kg ·m 2.此时系统的转动动能与原来的转动动能之比E k / E k 0为(A) 2. (B) 3.(C) 2. (D) 3. [ ]O v 俯视图俯视图14.一均匀细杆可绕垂直它而离其一端l / 4 (l 为杆长)的水平固定轴O在竖直平面内转动.杆的质量为m ,当杆自由悬挂时,给它一个起始角速度ω 0,如杆恰能持续转动而不作往复摆动(一切摩擦不计)则需要(A) ω 0≥l g 7/34. (B) ω 0≥l g /4.(C) ω 0≥()l g /3/4. (D) ω 0≥l g /12.[已知细杆绕轴O 的转动惯量J =(7/48)ml 2] [ ] 15.图(a)为一绳长为l 、质量为m 的单摆.图(b)为一长度为l 、质量为m 能绕水平固定轴O 自由转动的匀质细棒.现将单摆和细棒同时从与竖直线成θ 角度的位置由静止释放,若运动到竖直位置时,单摆、细棒角速度分别以ω 1、ω 2表示.则:(A) 2121ωω=. (B) ω 1 = ω 2. (C) 2132ωω=. (D) 213/2ωω=. [ ] 16.如图所示,一均匀细杆可绕通过其一端的水平光滑轴在竖直平面内自由转动,杆长l = (5/3) m .今使杆从与竖直方向成60°角的位置由静止释放(g 取10 m/s 2),则杆的最大角速度为(A) 3 rad /s . (B) π rad /s . (C) 5 rad /s . (D) 53 rad /s . [ ]17.如图所示,将一根质量为m 、长为l 的均匀细杆悬挂于通过其一端的固定光滑水平轴O 上.今在悬点下方距离x 处施以水平冲力F,使杆开始摆动,要使在悬点处杆与轴之间不产生水平方向的作用力,则施力F 的位置x 应等于(A) 3l / 8. (B) l / 2.(C) 2l / 3. (D) l . [ ]18.一均匀细杆原来静止放在光滑的水平面上,现在其一端给予一垂直于杆身的水平方向的打击,此后杆的运动情况是:(A) 杆沿力的方向平动.(B) 杆绕其未受打击的端点转动.(C) 杆的质心沿打击力的方向运动,杆又绕质心转动.(D) 杆的质心不动,而杆绕质心转动. [ ]19.实心圆柱体、空心圆筒和实心球,三者质量相同,且柱的半径、筒的外径和球的半径均相同.当它们沿同一斜面,由同一高度同时从静止无滑动地滚下时,它们到达斜面底的先后次序是(A) 实心球最先,圆柱体次之,圆筒最后.(B) 圆柱体最先,圆筒次之,实心球最后.(C) 圆筒最先,实心球次之,圆柱体最后.(D) 实心球最先,圆筒次之,圆柱体最后.(E) 圆筒最先,圆柱体次之,实心球最后. [ ]20.质量不同的一个球和一个圆柱体,前者的半径和后者的横截面半径相同.二者放在同一斜面上,从同一高度静止开始无滑动地滚下(圆柱体的轴始终维持水平),则(A) 两者同时到达底部. (B) 圆柱体先到达底部.O l(a)(b)(C) 圆球先到达底部. (D) 质量大的先到达底部. [ ](二)填空题1.一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20 rad/s ,再转60转后角速度为ω2=30 rad /s ,则角加速度β =_____________,转过上述60转所需的时间Δt =________________.2.半径为r =1.5 m 的飞轮,初角速度ω 0=10 rad · s -1,角加速度 β=-5 rad · s -2,则在t =___________时角位移为零,而此时边缘上点的线速度v =___________.3.绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s 时间内飞轮所转过的角度θ =___________________.4.半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________.5.用三根长度为l 、质量为M 的均匀细杆,将四个质量为m 的质点连接起来,成一条直线,如图所示.这一系统对通过端点O 并垂直于杆的轴的转动惯量为________________.6. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度θ,处于静止状态,如图所示.释放后,杆绕O 轴转动.则当杆转到水平位置时,该系统所受到的合外力矩的大小M =_____________,此时该系统角加速度的大小β =________________.7.如图所示,一质量为m 、半径为R 的薄圆盘,可绕通过其一直径的光滑固定轴A A '转动,转动惯量J =mR 2 /4.该圆盘从静止开始在恒力矩M 作用下转动,t 秒后位于圆盘边缘上与轴A A '的垂直距离为R 的B点的切向加速度a t =_____________,法向加速度a n =_____________.8.如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O '轴的转动惯量为____________.9.一定滑轮质量为M 、半径为R ,.在滑轮的边缘绕一细绳,绳的下端挂一物体.绳的质量可以忽略且不能伸长,滑轮与轴承间无摩擦.物体下落的加速度为a ,则绳中的张力T =_________________.10.三根匀质细杆,质量均为m ,长度均为l ,将它们首尾相接构成一个三角架.三角架对通过角顶与架面垂直的轴的转动惯量为____________.11.定轴转动刚体的角动量(动量矩)定理的内容是___________________________________________________________________________,其数学表达式可写成___________________________________________.动量矩守恒的条件是____________________________________________.12.如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的______________守恒,原因是__________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.13.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为31l ,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 ' S ′ m 2m l R 俯视图___________________.14. 质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 /12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________.15.如图所示,一均匀细杆AB ,长为l ,质量为m .A 端挂在一光滑的固定水平轴上,它可以在竖直平面内自由摆动.杆从水平位置由静止开始下摆,当下摆至θ角时,B 端速度的大小v B =________________________.16.一滑冰者开始张开手臂绕自身竖直轴旋转,其动能为E 0,转动惯量为J 0,若他将手臂收拢,其转动惯量变为021J ,则其动能将变为__________________.(摩擦不计) 17.水平桌面上有一圆盘,质量为m ,半径为R ,装在通过其中心、固定在桌面上的竖直转轴上.在外力作用下,圆盘绕此转轴以角速度ω 0转动.在撤去外力后,到圆盘停止转动的过程中摩擦力对圆盘做的功为__________.18.如图所示,一长为l ,质量为M 的均匀细棒悬挂于通过其上端的光滑水平固定轴上.现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以021v 的速度穿出棒.在此射击过程中细棒和子弹系统对轴的____________守恒.如果此后棒的最大偏转角恰为90°,则0v 的大小v 0=________.19.如图所示的质点组A 1、A 2、A 3,其质心坐标为x c =________;y c =________.20.如图所示,一个细杆总长为L ,单位长度的质量为ρ=ρ0+ax ,其中ρ0和a 为正常量.此杆的质心的坐标x c =______________.21.质量为m 、横截面半径为R 的实心匀质圆柱体,在水平面上做无滑动的滚动,如果圆柱体的中心轴线方向不变,且其质心以速度v 作水平匀速运动,则圆柱体的动量的大小为____________,动能等于______________,对中心轴线的角动量大小为____________________.22.如图所示.圆柱体的半径为R ,其上有一半径为r 的固定圆盘(圆盘质量忽略不计),盘周绕有细绳,今沿垂直于圆盘轴的水平方向以力F 拉绳.若使该圆柱体在水平面上作纯滚动,则该柱体与水平面间的静摩擦力f =________.当r =R /2时静摩擦力f =________. (三)计算题1.一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间?2.已知一定轴转动体系,在各个时间间隔内的角速度如下:ω=ω0 0≤t ≤5 (SI)ω=ω0+3t -15 5≤t ≤8 (SI)ω=ω1-3t +24 t ≥8 (SI)式中ω0=18 rad /s(1) 求上述方程中的ω1.(2) 根据上述规律,求该体系在什么时刻角速度为零.3.一作匀变速转动的飞轮在10s 内转了16圈,其末角速度为15 rad /s ,它的角加速度的大小等于多少?4.一电唱机的转盘以n = 78 rev/min 的转速匀速转动. m 0v 俯视图0v(1) 求转盘上与转轴相距r = 15 cm 的一点P 的线速度v 和法向加速度a B .(2) 在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,求转盘在停止转动前的角加速度β及转过的圈数N .5.有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量) 6. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.7.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度. 8.质量分别为m 和2m 、半径分别为r 和2r轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小. 9.质量为M 1=24 kg 的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M 2=5 kg 的圆盘形定滑轮悬有m =10 kg 的物体.求当重物由静止开始下降了h =0.5 m 时,(1) 物体的速度;(2) 绳中张力.(设绳与定滑轮间无相对滑动)10.如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6 N ·m .11.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)12.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?5.2m , lv m '13.有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v ,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间. 14.一均匀木杆,质量为m 1 = 1 kg ,长l = 0.4 m ,可绕通过它的中点且与杆身垂直的光滑水平固定轴,在竖直平面内转动.设杆静止于竖直位置时,一质量为m 2 = 10 g 的子弹在距杆中点l / 4处穿透木杆(穿透所用时间不计),子弹初速度的大小v 0 = 200 m/s ,方向与杆和轴均垂直.穿出后子弹速度大小减为v= 50 m/s ,但方向未变,求子弹刚穿出的瞬时,杆的角速度的大小.(木杆绕通过中点的垂直轴的转动惯量J = m 1l 2 / 12)15.质量为M 、长为l 的均匀直棒,可绕垂直于棒的一端的水平固定轴O 无摩擦地转动.转动惯量231Ml J =.它原来静止在平衡位置上,如图,图面垂直于O 轴.现有一质量为m 的弹性小球在图面内飞来,正好在棒的下端与棒垂直相撞.相撞后使棒从平衡位置摆动到最大角度θ=60°处,(1) 设碰撞为弹性的,试计算小球刚碰前速度的大小v 0. (2) 相撞时,小球受到多大的冲量? 16.如图所示,一长为l 质量为M 的匀质竖直杆可绕通过杆上端的固定水平轴O 无摩擦地转动.一质量为m 的泥团在垂直于轴O 的图面内以水平速度v 0打在杆的中点并粘住,求杆摆起的最大角度. 17.一长为L 、质量为m 的均匀细棒,一端可绕固定的水平光滑轴O 在竖直平面内转动.在O 点上还系有一长为l (<L )的轻绳,绳的一端悬一质量也为m 的小球.当小球悬线偏离竖直方向某一角度时,由静止释放(如图所示).已知小球与静止的细棒发生完全弹性碰撞,问当绳的长度l 为多少时,碰撞后小球刚好停止?略去空气阻力.18.一个半径为R ,质量为m 的硬币,竖直地立放在粗糙的水平桌面上.开始时处于静止状态,而后硬币受到轻微扰动而倒下.求硬币平面与桌面碰撞前(即硬币平面在水平位置)时质心的速度大小.(已知质量为m ,半径为R 的圆盘对沿盘直径的轴的转动惯为241mR ) 19.有质量分别为12 kg 和20 kg 的两球,球心相距4 m ,中间并未连结.二者最初都静止,今以64 N 的恒力沿球心连线方向作用于20 kg 的球上,如图所示.设两球半径相等,求从力开始作用起,第三秒末质心的位置.20.两个人分别在一根质量为m 的均匀棒的两端,将棒抬起,并使其保持静止,今其中一人突然撒手,求在刚撒开手的瞬间,另一个人对棒的支持力f .21.水平桌面上的一圆柱体的质量 m =1 kg ,半径R =0.05 m .今用F =30 N 的水平拉力垂直于柱轴作用于圆柱体的质心C 上(如图).求此圆柱体作纯滚动时的质心加速度a c .(已知圆柱体对其中心轴的转动惯量为221mR J =). (四)理论推导与证明题1.一刚体绕固定轴从静止开始转动,角加速度为一常数.试证明该刚体中任一点的法向加速度和刚体的角位移成正比.2.从牛顿运动定律出发,推导出刚体的定轴转动定律.A m 1 ,l 1v 2v 俯视图3.质量为m 1、半径为r 1的匀质圆轮A ,以角速度ω绕通过其中心的水平光滑轴转动,此时将它放在质量为m 2、半径为r 2的另一匀质圆轮B 上,B 轮原为静止,但可绕通过其中心的水平光滑轴转动.放置后A 轮的重量由B 轮支持,如图所示(水平横杆的质量不计).设两轮间的摩擦系数为μ.A 、B 轮对各自转轴的转动惯量分别为21121r m 和22221r m .证明:A 轮放在B 轮上到两轮间没有相对滑动为止,经过的时间为()21122m m g r m t +=μω 4.一可绕定轴转动的刚体,在合外力矩M 作用下由静止开始转动.试根据合外力矩对刚体所作的功等于刚体动能的增量以及转动定律,证明刚体的动能表示式为221ωJ E k = 式中的J 和ω分别为刚体对于转轴的转动惯量和角速度.5.试证,不同质量,不同半径之均匀实心圆柱体在同一斜面上无滑动地滚下同样距离时圆柱体质心具有同样大小的线速度.6.两质点的质量各为m 1,m 2,试证明它们的质量中心在它们的连线上并且质心到两个质点的距离与两质点的质量成反比.(五)问答题1.绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何?2.刚体转动惯量的物理意义是什么?它与什么因素有关?3.一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么?(2) 转台、人与哑铃组成的系统角动量守恒否?为什么?(3) 每个哑铃的动量与动能守恒否?为什么?22。

刚体力学基础-习题-解答

刚体力学基础-习题-解答

衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题命题教师:郑永春 试题审核人:张郡亮一、填空题(每空1分)1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。

此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__12ma 2_,对通过三角形中心和一个顶点的轴的转动惯量为J B =__21ma 2。

2、两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρB (ρA >ρB ),且两圆盘的总质量和厚度均相同。

设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A < J B 。

3、 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ=__4.0rad4、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。

5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。

如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。

二、单项选择题(每小题2分)( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是:A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零;B.这两个力都垂直于轴作用时,它们对轴的合力矩一定是零;C.当这两个力的合力为零时,它们对轴的合力矩也一定是零;D.当这两个力对轴的合力矩为零时,它们的合力也一定是零。

刚体考试题及答案

刚体考试题及答案

刚体考试题及答案一、选择题(每题2分,共20分)1. 刚体的转动惯量是关于旋转轴的()。

A. 常数B. 函数C. 随机变量D. 无规律变化答案:A2. 刚体绕固定轴的转动惯量I与质量M和半径r的关系是()。

A. I = Mr^2B. I = 2MrC. I = MrD. I = 1/2Mr^2答案:D3. 刚体的平移运动和转动运动的合成是()。

A. 平移运动B. 转动运动C. 螺旋运动D. 不确定答案:C4. 刚体的角速度和线速度的关系是()。

A. 线速度是角速度的两倍B. 线速度是角速度的一半C. 线速度与角速度成正比D. 线速度与角速度无关答案:C5. 刚体的角动量守恒的条件是()。

A. 外力矩为零B. 外力为零C. 外力矩和外力都为零D. 外力矩和外力都不为零答案:A6. 刚体的动能与()有关。

A. 质量B. 速度C. 转动惯量D. 所有以上因素答案:D7. 刚体的角加速度与()有关。

A. 外力矩B. 转动惯量C. 角速度D. 所有以上因素答案:A8. 刚体的进动角速度与()有关。

A. 外力矩B. 转动惯量C. 角速度D. 所有以上因素答案:D9. 刚体的章动周期与()有关。

A. 转动惯量B. 外力矩C. 角速度D. 所有以上因素答案:A10. 刚体的自由振动的周期与()有关。

A. 转动惯量B. 外力矩C. 角速度D. 所有以上因素答案:A二、填空题(每题2分,共20分)1. 刚体的转动惯量是关于旋转轴的________。

答案:常数2. 刚体绕固定轴的转动惯量I与质量M和半径r的关系是I = ________。

答案:1/2Mr^23. 刚体的平移运动和转动运动的合成是________。

答案:螺旋运动4. 刚体的角速度和线速度的关系是线速度与角速度________。

5. 刚体的角动量守恒的条件是外力矩________。

答案:为零6. 刚体的动能与________有关。

答案:所有以上因素7. 刚体的角加速度与________有关。

002刚体力学习题汇总(答案)

2
(3) v l
3 gl sin
10、如图所示,长为 l 的轻杆,两端各固定质量分
别为 m 和 2m 的小球,杆可绕 水平光滑固定轴 O 在竖直面 内转动, 转轴 O 距两端分别为
解:受力分析如图,可建立方程:
2mg T2 2ma ┄① T1 mg ma ┄②
1 2 l和 l. 轻杆原来静止在竖 3 3
2、对于一根质量分布均匀的木棒,质量 m,长度为 L,以木棒端点为轴旋转的转动惯量为 J1=
1 2 ml , 3
以 木 棒 中 点 为 轴 旋 转 的 转 动 惯 量 为 J2=
1 2 ml ,则 J1 是 J2 的 12
3、如图 1 所示的圆锥摆,绳长为 l ,绳子一端固定 在 O 点,另一端系一质量为 m 的质点,以匀角速 度 绕竖直轴线作圆周运动, 绳子与轴线的夹角为
得: t
(2)相碰时小球受到的冲量为
2m2 (v1 v2 ) 。 m1 g
Fdt (mv) mv mv
0
由①式求得
Fdt mv mv
0
J 1 Ml 3 l
-3-
Mr Lee 制作,内部交流
a r , J mr / 2 ┄⑤
2
联立,解得: a
1 11 g , T mg 。 4 8
9、如图所示,一匀质细杆质量为 m ,长为 l ,可绕
杆于水平位置由静止 过一端 O 的水平轴自由转动, 开始摆下.求:
2 2 2l l mv0 l m v l m( ) 2 2m ( ) 2 3 3 3 3
以逆时针为正向,有:
v0
J v ml

刚体力学习题课


解:分两个阶段进行考虑 (1) 子弹射入细杆 , 使细杆获得初 速度。因这一过程进行得很快,细 杆发生偏转极小,可认为杆仍处于 竖直状态。子弹和细杆组成待分 析的系统 , 无外力矩 , 满足角动量 守恒条件。子弹射入细杆前、后 的一瞬间,系统角动量分别为
a
m0
2
L0 m0v0 a
L J
1 2 其中 J m0 a ml 3
定轴转动刚体的角动量守恒定律
由机械能守恒,E = E0, 代入 =300,得:
1 2 l 1 l 1 J mg (a ) m0 ga(1 ) mg (a ) 2 2 2 22
将上式与 J
m0v0 a 联立,并代入J 值,得
1 2 3 v0 (ml 2m0 a)( ml 2 3m0 a 2 ) g m0 a 6
C

f
o
x
力学复习
o
o



r dr dF

dmg
3.26 求 稳 定 转 动 时 的 ? 解 : 在 相 对 杆 静 止 的考 参系 中 , 设、S( 为 取 微 分 元 ) M 1 ( Sdr ) 2 r sin r cos
0 l
M 2 ( Sdr ) g r sin
J A A J B B ( J A J B ) 2 2 J m R 2 , J m R A A B B B 2 A
2 2 m A RA A mB RB B 1 100 rad s 2 2 m A RA mB RB
A
B
A
B

刚体力学习题课
例题2、一个质量为 m、半径为 R 的均匀薄圆盘在水平桌面上 绕中心轴转动,开始角速度为 0,当圆盘与桌面的摩擦系数 为 时,问经过多长时间才能停下来?

第三章 刚体力学 自学辅导习题

第三章 刚体力学自学辅导习题(2012年使用)一、单项选择题.1.质量分别为1m 、2m 的两个质点,用长度为a 的无质量刚性杆相连,并在平面上自由运动。

则此质点系对垂直于该平面并通过质心的轴的转动惯量为:[ ]A.221a m m ;B.22121a m m m m +; C.221a 2m m ; D.221a 2m m +。

1.B2.质量为m 的物体,其转动惯量的大小决定于: [ ]A.转动的快慢;B.质量的分布情况和转轴的选取;C.质量的分布情况;D.转轴的选取。

2.B3.已知一均质棒,其质量为m ,长为A 。

当它绕过其一端并垂直于棒的轴转动时,其转动惯量为2m 31A ,问此棒绕过离棒中心为A 41且与上述轴线平行的另一轴线转动时的转动惯量为: [ ] A.22m 41m 31A A +; B.22m 161m 31A A +; C.22m 161m 121A A +; D.22m 41m 121A A +。

3.C4.质量为M,半径为a 的实心圆柱体对圆柱表面、平行于圆柱体轴的直线的转动惯量为:[ ] A.2Ma 23; B.2Ma 25; C.2Ma 21; D.2Ma 。

4.A5.质量为M,边长为a 和b 的矩形板对垂直于此板并通过一顶点的轴的转动惯量为:[ ]A.)b a (M 22+;B.)b a (M 3122+;C.)b a (M 2122+;D.)b a (M 3222+。

5.B6.在力系的简化中,下列各量与简化中心的位置有关的是:[ ]A.主矢;B.力偶矩;C.主矩;D.合力。

6.C7.质量分别为1m 、2m 的两个质点,用长度为a 的无质量刚性杆相连,并在平面上自由运动。

则此质点系对垂直于该平面并通过质点1m 的轴的转动惯量为:[ ]A.221a m m ;B.21a m ;C. 22a m ;D.221a 2m m +。

7.C8.质量分别为1m 、2m 的两个质点,用长度为a 的无质量刚性杆相连,并在平面上自由运动。

刚体习题和答案


A
所示,滑块 A、重物 B 和滑轮 C
B
的质量分别为 mA、mB 和 mC,滑
轮的半径为
R
,滑 轮 对 轴 的 转 动 惯 量
J

1 2
mC
4
编号 ____________姓名 __________
《大学物理Ⅰ》答题纸
第五 章
R2.滑 块 A 与桌面间、滑轮与轴承之间均无摩
擦,绳的质量可不计,绳与滑轮之间无相对滑
碰前的角mv0动32 l 量为:
碰后的角动量为:
m
1 2
v0
2 3
l
[m( 2 3
l)2
2m(1 l)2 ] 3
所以 mv0
2 3
l
m
1 2
v0
2 3
l
[m( 2 3
l)2
2m(1 l)2 ] 3
得 3v0 2l
6、自测提高(17)如图 5-25 所示,
一质量均匀分布的圆盘,质量为 m0,
O
动.滑块 A 的加速度 a 2mB g 2(mA mB ) mC
【解答】
T
T
由转动定律得:
B
A
TB R TAR J GB TB mBa TA mAa a R
(1)
(2) (3) GB
(4)
4 个方程,共有 4 个未知量: TA 、TB 、 a 和 。可求:
a 2mB g 2mA mB mc
(1 2
mv0 m0 m)R
(2)圆盘的质量面密度 m0 在圆盘上取一 R2
半径为 r,宽为 dr 的小环带,
dM 2rdr 此 环 带 受 到 的 摩 擦 阻 力 矩
dM rgdm rg 2r 2dr
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 刚体力学一、计算题1.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.解:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 2分 对滑轮: TR = J ② 2分 运动学关系: a =R③ 1分将①、②、③式联立得a =mg / (m +21M ) 1分 ∵ v 0=0,∴ v =at =mgt / (m +21M ) 2分2.如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221AA A r m J =和221B B B r m J =) 解:根据转动定律 f A r A = J A A① 1分其中221AA A r m J =,且 f B r B = J B B ② 1分 其中221B B B r m J =.要使A 、B 轮边上的切向加速度相同,应有a = r AA = r BB③ 1分由①、②式,有BB B AA AB A B A B A B A r m r m r J r J f f ββββ== ④ 由③式有 A /B = r B / r A将上式代入④式,得 f A / f B = m A / m B = 212分mM RMR βT mgaB A f Ar B r A3.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① 2分 T r =J ② 2分 由运动学关系有: a = r③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt22-1) 2分4.质量为5 kg 的一桶水悬于绕在辘轳上的轻绳的下端,辘轳可视为一质量为10 kg 的圆柱体.桶从井口由静止释放,求桶下落过程中绳中的张力.辘轳绕轴转动时的转动惯量为221MR ,其中M 和R 分别为辘轳的质量和半径,轴上摩擦忽略不计. 解:对水桶和圆柱形辘轳分别用牛顿运动定律和转动定律列方程mg -T =ma ① 1分 TR =J② 1分 a =R③ 1分由此可得 T =m (g -a )=m ()[]J TR g /∆-那么 mg J mR T =⎪⎪⎭⎫⎝⎛+21将 J =21MR 2代入上式,得mM mMgT 2+==24.5 N 2分5.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为21ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度.解:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转mOrT rβTmgTMRTmglO60°mg ϖ动定律M = J 1分其中 4/30sin 21mgl mgl M ==ο 1分 于是 2rad/s 35.743 ===lgJ M β 1分当棒转动到水平位置时, M =21mgl 1分那么 2rad/s 7.1423 ===lgJ M β 1分6.一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00 kg 的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度0=10.0 rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到=0时,物体上升的高度; (3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.解:(1) ∵ mg -T =ma 1分TR =J 2分 a =R1分∴= mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分(2) ∵ βθωω2202-=当=0 时, rad 612.0220==βωθ 物体上升的高度h = R = 6.12×10-2 m 2分(3) ==βθω210.0 rad/s方向垂直纸面向外. 2分7.一质量为M =15 kg 、半径为R =0.30 m 的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量J =221MR ).现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量m =8.0 kg 的物体.不计圆柱体与轴之间的摩擦,求:mMR ω0TTmga(1) 物体自静止下落, 5 s 内下降的距离; (2) 绳中的张力. 解: J =221MR =0.675 kg ·m 2 ∵ mg -T =ma1分 TR =J 2分 a =R1分∴ a =mgR 2 / (mR 2 + J )=5.06 m / s 2 1分因此(1)下落距离 h =221at =63.3 m 2分 (2) 张力 T =m (g -a )=37.9 N 1分8.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度, (2) 圆柱体的角速度,(3) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉力为多少?解:(1) 圆柱体的角加速度=a / r =4 rad / s 2 2分(2) 根据t t 0βωω+=,此题中0 = 0,则有t = t那么圆柱体的角速度 ====55 t t t βω20 rad/s 1分 (3) 根据转动定律fr = J则 f = J/ r = 32 N 2分9.一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00kg 的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度0=10.0 rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到=0时,物体上升的高度; (3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.解:(1) ∵ mg -T =ma 1分 TR =J 2分 a =R1分mgTTMgaFβ RmMR ω0∴ = mgR / (mR 2+J )()R M m mgMRmR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分(2) ∵ βθωω2202-=当=0 时, rad 612.0220==βωθ 物体上升的高度h = R = 6.12×10-2 m 2分(3) ==βθω210.0 rad/s方向垂直纸面向外. 2分10.一质量为M =15 kg 、半径为R =0.30 m 的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量J =221MR ).现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量m =8.0 kg 的物体.不计圆柱体与轴之间的摩擦,求:(1) 物体自静止下落, 5 s 内下降的距离; (2) 绳中的张力.解: J =221MR =0.675 kg ·m 2 ∵ mg -T =ma1分 TR =J 2分 a =R1分∴ a =mgR 2 / (mR 2 + J )=5.06 m / s 2 1分因此(1)下落距离 h =221at =63.3 m 2分 (2) 张力 T =m (g -a )=37.9 N 1分11.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度, (2) 圆柱体的角速度,(3) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉力为多少?解:(1) 圆柱体的角加速度=a / r =4 rad / s 2 2分(2) 根据t t 0βωω+=,此题中0 = 0,则TTmgamgTTMgaFβ R有 t = t那么圆柱体的角速度 ====55 t t t βω20 rad/s 1分 (3) 根据转动定律fr = J则 f = J / r = 32 N 2分12.长为L 的梯子斜靠在光滑的墙上高为h 的地方,梯子和地面间的静摩擦系数为,若梯子的重量忽略,试问人爬到离地面多高的地方,梯子就会滑倒下来?解:当人爬到离地面x 高度处梯子刚要滑下,此时梯子与地面间为最大静摩擦,仍处于平衡状态 (不稳定的) .1分N 1-f =0, N 2-P =0 1分 N 1h -Px ·ctg =0 1分 f =N 21分解得 222/tg hL h h x -=⋅=μθμ1分13.一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0.设它所受阻力矩与转动角速度成正比,即M =-k (k 为正的常数),求圆盘的角速度从0变为021ω时所需的时间.解:根据转动定律:J d / d t = -k∴t Jkd d -=ωω2分 两边积分: ⎰⎰-=t t Jk 02/d d 100ωωωω得ln2 = kt / J∴ t =(J ln2) / k 3分LhN 1h N 2 PR θ R xR f14.一圆柱体截面半径为r ,重为P ,放置如图所示.它与墙面和地面之间的静摩擦系数均为31.若对圆柱体施以向下的力F =2P 可使它刚好要反时针转动,求(1) 作用于A 点的正压力和摩擦力,(2) 力F ϖ与P ϖ之间的垂直距离d .解:设正压力N A 、N B ,摩擦力f A ,f B 如图.根据力的平衡,有f A +N B = F+P = 3P ① 1分 N A =f B② 1分根据力矩平衡,有Fd = ( f A + f B ) r ③ 2分刚要转动有 A A N f 31=④ B B N f 31= ⑤ 1分(1) 把④及 ②、⑤代入①可求得 N A =0.9P , f A =0.3P 2分 (2) 由③可求得 d = 0.6 r 1分15.一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分ϖϖT 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分a =r2分解上述5个联立方程得: T =11mg / 82分16.质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小.解:受力分析如图. 2分mg -T 2 = ma 2 1分 T 1-mg = ma 1 1分 T 2 (2r )-T 1r = 9mr 2 / 2 2分 2r = a 2 1分r= a11分解上述5个联立方程,得: rg192=β 2分17.质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J =221mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.m2m βT 2 2P ϖ1P ϖTa T 1amrmm 2m2rT 2aT2P ϖ1P ϖβa 1m 1m ,r解:撤去外加力矩后受力分析如图所示. 2分 m 1g -T = m 1a 1分 Tr =J1分 a =r1分 a = m 1gr / ( m 1r + J / r )代入J =221mr , a =mm gm 2111+= 6.32 ms 2 2分∵ v 0-at =0 2分 ∴ t =v 0 / a =0.095 s 1分18.一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2 / 4 )解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下.2分根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T 2-T 1)R =J=MR 2/ 4 ③ 2分因绳与滑轮无相对滑动, a =R ④ 1分①、②、③、④四式联立解得 a =2g / 7 1分m 1 m , rβ0vPTaOBAOB MgT 2 T 1 Mg 21aa β19.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度.解:作示力图.两重物加速度大小a 相同,方向如图.示力图 2分m 1g -T 1=m 1a 1分T 2-m 2g =m 2a 1分设滑轮的角加速度为,则 (T 1-T 2)r =J2分且有 a =r1分由以上四式消去T 1,T 2得:()()J r m m gr m m ++-=22121β2分开始时系统静止,故t 时刻滑轮的角速度.()()Jr m m grtm m t ++-==22121 βω 1分20.质量为M 1=24 kg 的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M 2=5 kg 的圆盘形定滑轮悬有m =10 kg 的物体.求当重物由静止开始下降了h =0.5 m 时,(1) 物体的速度; (2) 绳中张力.(设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为21121R M J =,22221r M J =) 解:各物体的受力情况如图所示. 图2分 由转动定律、牛顿第二定律及运动学方程,可列出以下联立方程:m 2mrm 2gm 1g raaT 1T 2T 2T 1βR M 1M 2rmT 1R =J 11=12121βR M 方程各1分共5分 T 2r -T 1r =J 22=22121βr M mg -T 2=ma , a =R 1=r2 ,v 2=2ah 求解联立方程,得 ()42121=++=m M M mg a m/s 2ah 2=v =2 m/s 1分T 2=m (g -a )=58 N 1分T 1=a M 121=48 N 1分21.两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个组合轮.小圆盘的半径为r ,质量为m ;大圆盘的半径r '=2r ,质量 m '=2m .组合轮可绕通过其中心且垂直于盘面的光滑水平固定轴O 转动,对O 轴的转动惯量J =9mr 2 / 2.两圆盘边缘上分别绕有轻质细绳,细绳下端各悬挂质量为m 的物体A 和B ,如图所示.这一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变.已知r = 10 cm .求: (1) 组合轮的角加速度;(2) 当物体A 上升h =40 cm 时,组合轮的角速度.解:(1) 各物体受力情况如图. 图2分 T -mg =ma 1分 mg -T '=m a ' 1分 T ' (2r )-Tr =9mr 2 / 2 1分a =r1分a '=(2r ) 1分由上述方程组解得:=2g / (19r )=10.3 rad ·s -2 1分 (2) 设为组合轮转过的角度,则=h / r2=2所以,= (2h / r )1/2=9.08 rad ·s -1 2分22.物体A 和B 叠放在水平桌面上,由跨过定滑轮的轻质细绳相互连接,如图所示.今用大小为F 的水平力拉A .设A 、M 1M 2 mgM 2gM 1gN 1 N 2T 1 T 1T 2 maβ β2T 2r m '',m,rAOBmgAB N T T βaT 'T 'a 'BAϖRB 和滑轮的质量都为m ,滑轮的半径为R ,对轴的转动惯量J =221mR .AB 之间、A 与桌面之间、滑轮与其轴之间的摩擦都可以忽略不计,绳与滑轮之间无相对的滑动且绳不可伸长.已知F =10 N ,m =8.0 kg ,R =0.050 m .求:(1) 滑轮的角加速度; (2) 物体A 与滑轮之间的绳中的张力; (3) 物体B 与滑轮之间的绳中的张力.解:各物体受力情况如图. 图2分F -T =ma 1分 T '=ma 1分 (T T '-)R =β221mR 1分 a =R1分由上述方程组解得: =2F / (5mR )=10 rad ·s -2 2分 T =3F / 5=6.0 N 1分T '=2F / 5=4.0 N 1分23.两个大小不同、具有水平光滑轴的定滑轮,顶点在同一水平线上.小滑轮的质量为m ',半径为r ',对轴的转动惯量J =221mr .大滑轮的质量m =2m ,半径r =2r ,对轴的转动惯量221r m J ''='.一根不可伸长的轻质细绳跨过这两个定滑轮,绳的两端分别挂着物体A 和B .A 的质量为m ,B 的质量 m '=2m .这一系统由静止开始转动.已知m =6.0 kg ,r =5.0 cm .求两滑轮的角加速度和它们之间绳中的张力.解:各物体受力情况如图. 2分 T A -mg =ma 1分 (2m)g -T A =(2m )a 1分(T -T A )r =β221mr 1分 (T B -T )(2r )=21(2m )(2r )2β' 1分aBA FTa T β’ T’m,rABmm ' m ', r 'a =r =(2r )β' 1分 由上述方程组解得:=2g / (9r )=43.6 rad ·s -2 1分β'=β21=21.8 rad ·s -2 1分 T =(4/3)mg =78.4 N 1分24.一质量m = 6.00 kg 、长l = 1.00 m 的匀质棒,放在水平桌面上,可绕通过其中心的竖直固定轴转动,对轴的转动惯量J = ml 2 / 12.t = 0时棒的角速度0 = 10.0 rad ·s1.由于受到恒定的阻力矩的作用,t = 20 s 时,棒停止运动.求:(1) 棒的角加速度的大小; (2) 棒所受阻力矩的大小; (3) 从t = 0到t = 10 s 时间内棒转过的角度. 解:(1) 0=0+t=-0 / t =-0.50 rad ·s-22分(2) M r =ml 2/ 12=-0.25 N ·m 2分(3) 10=0t +21t 2=75 rad 1分25.如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6 N ·m ,已知圆盘对过其中心且与盘面垂直的轴的转动惯量为2321r m .解:对两物体分别应用牛顿第二定律(见图),则有m 1g -T 1 = m 1a ①T 2 – m 2g = m 2a ② 2分对滑轮应用转动定律,则有ββ⋅==-'-'232121r m J M r T r T f ③ 2分 对轮缘上任一点,有 a =r ④ 1分βT T A T BT T AT B gm 'mga ABaβ'm 3rm 1m 2又: 1T '= T 1, 2T '= T 2 ⑤ 则联立上面五个式子可以解出rm r m r m M gr m gr m a f3212121++--==2 m/s 2 2分T 1=m 1g -m 1a =156 NT 2=m 2g -m 2 a =118N 3分26.如图所示,一半径为R 的匀质小木球固结在一长度为l 的匀质细棒的下端,且可绕水平光滑固定轴O 转动.今有一质量为m ,速度为0v ϖ的子弹,沿着与水平面成角的方向射向球心,且嵌于球心.已知小木球、细棒对通过O 的水平轴的转动惯量的总和为J .求子弹嵌入球心后系统的共同角速度.解:选子弹、细棒、小木球为系统.子弹射入时,系统所受合外力矩为零,系统对转轴的角动量守恒. 2分mv 0(R + l )cos= [J + m (R + l )2 ] 2分()()20cos l R m J l R m +++=αωv 1分27.如图所示,一半径为R ,质量为m 的水平圆台,正以角速度绕通过其中心的竖直固定光滑轴转动,转动惯量J =221mR .台上原站有2人,质量各等于转台质量的一半,一人站于台边A 处,另一人站于距台中心R 21的B 处.今A 处的人相对于圆台以速率v 顺着圆台转向沿圆周走动,同时B 处的人相对于圆台以速率2v 逆圆台转向沿圆周走动.求圆台这时的角速度.m 1gm 2g m 1 m 21 T rβ2T 'T 'Ol Rαm0v ϖA RB O 2vω R /2解:以转台和二人为研究对象,所受外力只有重力及轴的支撑力,诸力对转轴的合力矩为零,所以系统角动量守恒.各转动惯量分别为2分 221mR J =,221mR J A=,()22/21R m J B=2分以地面为参照系,A 处的人走动的角速度为+(v / R ),B 处的人 1分 走动的角速度为-(2v /21R )=-(4v / R ).由角动量守恒定律 1分 ()02222/212121ω⎥⎦⎤⎢⎣⎡++R m mR mR = ()R mR mR /212122v ++=ωω()R R m /421212v -⎪⎭⎫ ⎝⎛+ω 2分解出=2分28.一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动.(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.1分mv 0R =(21MR 2+mR 2) 2分 R m M m ⎪⎭⎫ ⎝⎛+=210v ω 1分(2) 设表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小m R O0v ϖ为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)σgR 3=(2 / 3)MgR 2分设经过t 时间圆盘停止转动,则按角动量定理有-M ft =0-J=-(21MR 2+mR 2)=- mv 0R 2分 ∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆ 2分29.有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v ϖ和2v ϖ,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131l m J =) 解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即 1分 m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m gM lf 10121d μμ-=⋅-=⎰ ② 2分 由角动量定理 ω210310l m dt M tf -=⎰ ③ 2分由①、②和③解得 gm m t 12122μv v += 2分OAm 1 ,l1v ϖ2ϖ俯视图。

相关文档
最新文档