八年级数学:函数的图像及画法练习(含解析)
2021年人教版数学八年级下册19.1.2《函数的图象》精选练习 (含答案)

19.1.2《函数的图象》精选练习一、选择题1.如图,已知矩形OABC,OA=4,OC=3,动点P从点A出发,沿A→B→C→O的路线匀速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是( )2.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B. C. D.3.如图,在四边形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速前进到D为止.在这个过程中,△APD的面积s随时间t的变化关系用图象表示正确的是()A. B. C. D.4.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.5.下列图象中,表示y是x的函数的是( )6.小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为()A. B.C. D.7.下列各曲线中表示y是x的函数的是()A. B. C. D.8.下列四幅图像近似刻画了两个变量之间关系,图像与下列四种情景对应排序正确的是( )①一辆汽车在公路上匀速行驶 (汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水 (水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中 (温度计的读数与时间的关系);④一杯越来越凉的水 (水温与时间的关系).A.①②④③B.③④②①C.①④②③D.③②④①9.如图,向高为H的圆柱形水杯中注水,已知水杯底面圆半径为 1,那么注水量与水深的函数关系的图象是 ( )A. B. C. D.10.世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点A沿AO匀速直达土楼中心古井点O处,停留拍照后,从点O沿OB也匀速走到点B,紧接着沿弧BCA回到南门,下面可以近似地刻画小王与土楼中心O的距离s随时间t变化的图象是()11.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )A. B. C. D.12.下列四幅图像近似刻画了两个变量之间的关系,图像与下列四种情景对应排序正确的是 ( )①一辆汽车在公路上匀速行驶 (汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水 (水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中 (温度计的读数与时间的关系);④一杯越来越凉的水 (水温与时间的关系).A.①②④③B.③④②①C.①④②③D.③②④①二、填空题13.如图是小明从学校到家里行进的路程S(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走的快.其中正确的有(填序号).14.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8:00从同一地点出发,请你根据图中给出的信息,算出乌龟在点追上兔子.15.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图所示,若返回时上、下坡的速度保持不变,那么小明从学校骑车回家用的时间是分钟.16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.17.如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y表示小明离他家的距离,则小明从学校回家的平均速度为千米∕小时.18.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km.如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息其中正确的是_____________(填写序号).三、解答题19.如图所示的图象,表示张同学骑车离家的距离与时间的关系,他9:00离开家,16:00到家,根据图象回答下列问题;(1)到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息了多长时间?(3)11:00到12:00他骑车行了多少千米?(4)何时距家10km?20.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按相同路线从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S和时间t的关系.象回答下列问题:(1)甲和乙哪一个出发的更早?早出发多长时间?(2)甲和乙哪一个早到达B城?早多长时间?(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少?(4)请你根据图象上的数据,求出乙出发后多长时间追上甲?21.沙沙骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)沙沙家到学校的路程是多少米?(2)在整个上学的途中哪个时间段沙沙骑车速度最快,最快的速度是多少米/分?(3)沙沙在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?22.周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
初中数学专题——函数及其图像的经典例题解析,非常全...

初中数学专题——函数及其图像的经典例题解析,非常全...(一)巧解直角三角形与函数图像例1:如图1所示,已知等边ABC的两个顶点坐标为A(-4,0)、B(2,0),试求:(1)C点的坐标;(2)ABC的面积。
常规策略:设C点的坐标为(x,y),根据等边三角形的性质建立方程,解出x、y,即可求得C点的坐标。
巧妙解法:画龙点睛:利用设元求解点的坐标往往比较复杂,但利用点的坐标的几何意义,可将直角坐标系中的问题转化为解直角三角形的问题来处理。
练习题:图3(二)挖掘隐含条件解题(三)巧用函数图像与x轴的交点例3:已知二次函数的图象经过点P(2,-3),并且以直线x=1为对称轴,若它与x轴交于A(-1,0)点,求二次函数的解析式。
常规策略:用求出点A或点P关于x=1的对称点后,将三点代入y=ax2+bx+c后求解。
巧妙解法:因为抛物线对称轴为x=1,且点(2,-3)和点(-1,0)在抛物线上,所以点(2,-3)和点(-1,0)的对称点(0,-3)和点(3,0)也在抛物线上。
从而设抛物线的解析式为:y=a(x+1)(x-3),把点(0,-3)的坐标代入,得-3=a(0+1)(0-3),解得a=1,所以二次函数的解析式为y=(x+1)(x-3),即y=x2-2x-3画龙点睛:求二次函数的解析式时如知道函数图象与x轴的交点时,应避免用一般式y=ax2+bx+c解题,而应采用两根式解题,可使运算简便。
练习题:2. 已知函数y=-x+m与y=mx-4的图象的交点在x轴的负半轴上,那么m的值为()。
3. 以x为自变量的二次函数y=x2-(2m+2)x+(m2+4m-3)中,m为不小于0的整数,它的图象与x轴交于点A和点B,其中点A在原点左侧,点B在原点右侧。
(1)求这个二次函数的解析式;(2)若一次函数y=kx+b的图象经过A点,与这个二次函数的图象交于点C,且S ABC=10,求一次函数的解析式。
(四)判别式的妙用例4:已知二次函数y=-x2+bx+c的图象与x轴只有一个公共点,且坐标为(2,0),求二次函数的解析式。
人教版八年级下册数学19.1.2 第2课时 画函数图像课件 (共16张PPT)

试画出函数
y6 x
(>0)
的图象:
合作探究
解:从函数
y 6 x
(x>0)可以看出,x的取值范围是:x>0
第一步:列表:
y
6
x ... 1 2 3 4 5 ...
5
y ... 6 3 2 1.5 1.2 ... 4
第二步:描点(x,y) 第三步:连线.
3
y6
x
2
直线从左向右下降, y 随着 x 的增大而减小。
x的取值范围是全体实数
y
3
根据表中数值描点(x,y),
2
并用平滑曲线连接这些点。
1
y=x+0.5
直线从左向右上升, y 随着 x 的增大而增大。
-3 -2 -1 O 1 2 3 x -1 ((--321,,--210..55))
-2
-3
人教版 八年级 下册
第十九章 一次函数
19.1.2 第2课时 画函数图像
学习目标
1 会用描点法画出函数的图像
2 会判断一个点是否在函数的图象上 3 体会数形结合的思想
认真阅读课本第77例3至79页 的内容,完成下面练习并体验知识 点的形成过程 。
合作探究
探究一 用描点法画函数图象
对于x的每一个确定的值,y都有唯一的对应值, 即y是x的函数.
k=___-7____.
实战演练
4、函数y= - 1 x+5的一部分图象如图所示,利用图象回答:
2
(1)自变量x的取值范围 (2)当x取什么值时,最小值是多少? (3)在图中,当x增大时,y的值是怎样变化的?
解:(1)从图象中观察得知:自变量X 的取值范围是:0≤x≤5
(2)从图象中观察得知: 当 x = 3 时,y 有最小值,最小值 y = 2.5
2021-2022学年华东师大版八年级数学下册第十七章函数及其图像必考点解析试题(含答案及详细解析)

八年级数学下册第十七章函数及其图像必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法错误的是( )A .平面内两条互相垂直的数轴就构成了平面直角坐标系B .平面直角坐标系中两条数轴是互相垂直的C .坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D .坐标轴上的点不属于任何象限2、如图,在平面直角坐标系中,已知11,02A ⎛⎫- ⎪⎝⎭,以1OA 为直边构造等腰12Rt OA A ,再以2OA 为直角边构造等腰23Rt OA A ,再以3OA 为直角边构造等腰34Rt OA A ,…,按此规律进行下去,则点1033A 的坐标为( )A .()5152,0-B .()5155152,2-C .()5145142,2-D .()5142,0-3、甲、乙两人沿同一条路从A 地出发,去往100千米外的B 地,甲、乙两人离A 地的距离(千米)与时间t (小时)之间的关系如图所示,以下说法正确的是( )A .甲的速度是60km/hB .乙的速度是30km/hC .甲乙同时到达B 地D .甲出发两小时后两人第一次相遇4、若实数a 、c 满足0a c +=且a c >,则关于x 的一次函数y cx a =-的图像可能是()A .B .C .D .5、如图,树叶盖住的点的坐标可能是( )A .()2,3B .()2,3-C .()3,4--D .()2,4-6、在平面直角坐标系的第二象限内有一点P ,点P 到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标是( )A .(2,3)-B .(3,2)-C .(3,2)-D .(2,3)-7、已知点A (x ,5)在第二象限,则点B (﹣x ,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限8、在平面直角坐标系中,点()8,15-所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9、某工厂投入生产一种机器,每台成本y (万元/台)与生产数量x (台)之间是函数关系,函数y 与自变量x 的部分对应值如表:则y 与x 之间的解析式是( )A .y =80- 2xB .y =40+ 2xC .y =65-1x 2 D .y =60-1x 210、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (单位:kPa )是气体体积V (单位:m 3)的反比例函数,其图象如图所示,当气球内的气压大于144kPa 时,气球将爆炸,为了安全起见,气球的体积应( )A .不大于23m 3 B .不小于23m 3 C .不大于32m 3 D .不小于32m 3 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、一般地,形如y =kx +b (k ≠0,k 、b 为常数)的函数,叫做______函数.注意:k 是常数,k ≠0,k 可以是正数、也可以是负数;b 可以取______ .2、如图,一次函数y kx b =+与3y x的图象相交于点(,5)P m ,则方程组3y x y kx b =+⎧⎨=+⎩的解是________.3、点(1,)A m ,(2,)B n 是直线y x =-上的两点,则m __n .(填<,>或)=4、建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为______,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点______任何象限.如图中,点A 是第______象限内的点,点B 是第______象限内的点,点D 是______上的点.5、如图,直线y =kx +b 交坐标轴于A ,B 两点,则关于x 的不等式kx +b <0的解集是_____.6、将直线2y x =向上平移1个单位后的直线的表达式为______.7、函数y =-7x 的图象在______象限内,从左向右______,y 随x 的增大而______.函数y =7x 的图象在______象限内,从左向右______,y 随x 的增大而______.8、我们用含有两个数的表达方式来表示一个确定的___________,其中两个数各自表示不同的含义,这种________的两个数a 与b 组成的数对,叫做有序数对,记作( ),___ ).注意:①数a 与b 是有顺序的;②数a 与b 是有特定含义的;③有序数对表示平面内的点,每个点与有序数对________.9、若点(),2P m m +在x 轴上,则m 的值为______.10、一般地,任何一个二元一次方程都可以转化为一次函数y =kx +b (k 、b 为常数,且k ≠0)的形式,所以每个二元一次方程都对应一个_____,也对应一条直线.这条直线上每个点的坐标(x ,y )都是这个二元一次方程的解.由含有未知数x 和y 的两个二元次一方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从数的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从形的角度看,解这样的方程组,相当于确定两条相应直线_____的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.三、解答题(5小题,每小题6分,共计30分)1、如图,在平面直角坐标系xOy 中,直线1:1l y x =+与x 轴交于点A ,直线2l :与x 轴交于点(1,0)B ,与2l 相交于点(,3)C m .(1)求直线2l 的解析式;(2)过x 轴上动点(,0)D t ,作垂直于x 轴的直线,分别与直线1l ,2l 交于P ,Q 两点.若2AQC ABC S S =△△,求此时点Q 的坐标.2、某地区现有荔枝树24000棵,计划今后每年栽荔枝树3000棵.(1)试写出荔枝树棵数y 与年数x 之间的函数关系式;(2)求当5x =时,y 的值.3、画出反比例函数6y x=和6y x =-的函数图象,并回答下列问题: (1)可以用函数图象画法 法,步骤为列表、 、连线.(2)观察图象可知,它们都是由两支曲线组成,因此称反比例函数的图象为 .函数6y x =的两支曲线分别位于第 象限;函数6y x=-的两支曲线分别位于第 象限.4、已知y -3与x 成正比例,并且x =4时,y =7,求y 与x 之间的函数关系式.5、如图,ABCD 中,8AB cm =,3BC cm =,E 是DC 中点,P 是线段AB 上一动点,连接PE ,设P ,A 两点间的距离为x cm ,P ,E 两点间的距离为y cm .(当点P 与点A 重合时,x 的值为0)小东根据学习一次函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程:(1)通过取点、画图、测量,得到了x与y的几组值,如下表,请补充完整(说明:相关数值保留一位小数);(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:①当y取最小值时,x的值约为cm.(结果保留一位小数)②当APE是等腰三角形时,PA的长度约为cm.(结果保留一位小数)-参考答案-一、单选题【解析】略2、A【解析】【分析】根据等腰直角三角形的性质得到OA 1=12,OA 2,OA 3OA 1033A 1、A 2、A 3、…,每8个一循环,再回到x 轴的负半轴的特点可得到点A 1033在x 轴负半轴,即可确定点A 1033的坐标.【详解】解:∵等腰直角三角形OA 1A 2的直角边OA 1在x 轴的负半轴上,且OA 1=A 1A 2=12,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=12,OA 22,OA 3=22,……,OA 1033 ∵A 1、A 2、A 3、…,每8个一循环,再回到x 轴的负半轴,1033=8×129+1,∴点A 1033在x 轴负半轴,∵OA 10335152=, ∴点A 1033的坐标为:()5152,0-,故选:A .【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜倍.也考查了直角坐标系中各象限内点的坐标特征.【解析】【分析】根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.【详解】解:由图象可得,甲的速度是(10040)(32)60(/)km h -÷-=,故选项A 符合题意;乙的速度为:60320(/)km h ÷=,故选项B 不符合题意;甲先到达B 地,故选项C 不符合题意; 甲出发240603÷=小时后两人第一次相遇,故选项D 不符合题意; 故选:A .【点睛】本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.4、B【解析】【分析】根据实数a 、c 满足0a c +=可知,a 、c 互为相反数,再根据a c >,可确定a 、c 的符号,进而确定图象的大致位置.【详解】解:∴实数a 、c 满足0a c +=,∴a 、c 互为相反数,∵a c >,∴0a >,0c <,∴0a -<∴一次函数y cx a =-的图像经过二、三、四象限,故选:B .【点睛】本题考查了一次函数图象的性质,解题关键是根据已知条件,确定a 、c 的符号.5、B【解析】【分析】根据平面直角坐标系的象限内点的特点判断即可.【详解】∵树叶盖住的点在第二象限,∴()2,3-符合条件.故选:B .【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.6、C【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵第二象限的点P 到x 轴的距离是2,到y 轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.7、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、D【解析】【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.解:点()8,15-所在的象限是第四象限,故选:D .【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.9、C【解析】略10、B【解析】【分析】根据题意得出当温度不变时,气球内的气体的气压P 是气体体积V 的反比例函数,且其图象过点(1.5,64),求出其解析式.从而得出当气球内的气压不大于144kPa 时,气体体积的范围.【详解】解:设球内气体的气压P (kPa)和气体体积V (m 3)的关系式为k P V=, ∵图象过点(1.5,64), ∴64 1.5k = 解得:k =96, 即96P V=. 在第一象限内,P 随V 的增大而减小,∴当144P ≤时,39621443V m ≥=.【点睛】本题考查了反比例函数的应用.根据图象上的已知点的坐标,利用待定系数法求出函数解析式是解答本题的关键.二、填空题1、一次任意实数【解析】略2、25xy=⎧⎨=⎩##52yx=⎧⎨=⎩【解析】【分析】先利用y=x+3确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求得结论.【详解】解:把P(m,5)代入y=x+3得m+3=5,解得m=2,所以P点坐标为(2,5),所以方程组3y xy kx b=+⎧⎨=+⎩的解是25xy=⎧⎨=⎩,故答案为:25xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.3、>【解析】【分析】根据正比例函数的增减性进行判断即可直接得出.【详解】k=-<,解:10∴y随着x的增大而减小,<,12∴>.m n故答案为:>.【点睛】题目主要考查正比例函数的增减性质,理解题意,熟练掌握运用函数的增减性是解题关键.4、象限不属于一三y轴【解析】略5、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x <-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.6、21y x =+【解析】【分析】直线向上平移1个单位,将表达式中x 保持不变,等号右面加1即可.【详解】解:由题意知平移后的表达式为:21y x =+故答案为21y x =+.【点睛】本题考查了一次函数的平移.解题的关键在于明确一次函数图象平移时左加右减,上加下减.7、 第二、四象限 下降 减少 第一、三象限 上升 增大【解析】略8、 位置 有顺序 a b 一一对应【解析】略9、2-【解析】【分析】根据x 轴上点的纵坐标为0,即可求解.【详解】∵点(),2P m m +在x 轴上,∴20m += ,解得:2m =- .故答案为:2-【点睛】本题考查了x 轴上点的坐标特征,解决本题的关键是熟练掌握坐标轴上的点的坐标的特征:x 轴上的点的纵坐标为0.10、 一次函数 交点【解析】略三、解答题1、 (1)33y x =-(2)点Q 的坐标为(0,3)或(4,9)【解析】【分析】(1)根据直线1l 的解析式求得C 的坐标,然后根据待定系数法即可求得直线2l 的解析式;(2)分两种情况得到Q 的纵坐标,代入直线2l 的解析式即可求得t 的值,从而求得Q 的坐标.(1) 解:直线1:1l y x =+与2l 相交于点(,3)C m .31m ∴=+,解得2m =,(2,3)C ∴,设直线2l 为y kx b =+,直线2l :与x 轴交于点(1,0)B ,与2l 相交于点(2,3)C .∴023k b k b +=⎧⎨+=⎩,解得33k b =⎧⎨=-⎩, ∴直线2l 的解析式为33y x =-;(2)当点D 在B 的左侧时,ΔΔ2AQC ABC S S =,(2,3)C ,(),3Q t ∴-,代入33y x =-得,333t -=-,0t ∴=,()0,3Q ∴-;当点D 在B 的右侧时,ΔΔ2AQC ABC S S =,(2,3)C ,(),9Q t ∴,代入33y x =-得,933t =-,4t ∴=,()4,9Q ∴;综上,点Q 的坐标为(0,3)或(4,9).【点睛】本题是两条直线相交或平行问题,待定系数法求一次是的解析式,一次函数图象上点的坐标特征,求得交点坐标是解题的关键.2、 (1)240003000y x =+;(2)39000y =【解析】【分析】(1)本题的等量关系是:荔枝树的总数=现有的荔枝树的数量+每年栽树的数量×年数,由此可得出关于荔枝树总数与年数的函数关系式.(2)根据(1)即可求出第5年的果树的数量.(1)解:240003000y x =+.(2)解:当5x =时,240003000539000y =+⨯=.【点睛】本题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数式,然后利用函数关系式即可解决题目的问题.3、 (1)描点;描点(2)双曲线;一、三;二、四【解析】略4、y=x+3【解析】【详解】解:依题意,设y-3与x之间的函数关系式为y-3=kx.∵x=4时,y=7,∴7-3=4k,解得k=1.∴y-3=x,即y=x+3.5、 (1)4.5,3.0;(2)见解析;(3)①5.8;②3.3或6.3【解析】【分析】(1)利用测量方法得到答案;(2)利用描点法作图;(3)①通过测量解答;②根据等腰三角形的定义画出图象,并测量x 及y 的值,由此得到答案.(1)解:通过取点、画图、测量可得 2.0x =时, 4.5y cm =, 4.0x =时, 3.0y cm =, 故答案为:4.5,3.0;(2)解:利用描点法,图象如图所示.(3)①由函数图象得,当y 取最小值时,x 的值约为5.8cm ;②当APE ∆是等腰三角形时,有两种情况,如图:0x =时, 6.3y cm =,2 6.3AP cm ∴=,由函数图象得, 3.3x ≈时, 3.3y cm ≈,∴当APE ∆是等腰三角形时,PA 的长度约为3.3或6.3cm .故答案为:①5.8;②3.3或6.3.【点睛】本题考查函数综合题、描点法画函数图象等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题,属于中考常考题型.。
2021年人教版数学八年级下册学案 19.1.2《 函数的图象 》(含答案)

19.1.2 函数的图象第1课时函数的图象学习目标①知道函数图象的意义.②学会用列表、描点、连线画函数图象.③学会观察、分析函数图象信息.④能利用函数的图象解决实际问题重点难点:函数图象的画法;观察、分析、概括图象中的信息.学习过程一、自主学习(阅读教材并完成下列活动)【活动1】思考:如图是某人体检时的心电图,图上点的横坐标x表示时间,纵坐标y表示心脏部位的生物电流,y与x之间的函数关系能用式子表达吗?显然有些函数问题用函数关系式表示出来,然而可以通过来直观反映.【活动2】正方形的边长x与面积S的函数关系式为;在这个函数中,自变量是、它的取值范围是,是的函数,请根据这个函数关x 0 0.5 1 2 3 ……S ……思考与探究:如果把自变量的值当作横坐标,函数S的值作为纵坐标,组成一对有序实数对(x、S),这样的实数对有多少对?请在下面的直角坐标系中描出这些点,你有什么发现?二、探究新知识①一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的、坐标,那么坐标平面内由这些点组成的图形,就是这个函数的。
②画函数图象的一般步骤是:、、。
③在坐标平面内,若点P(x,y)向右上方移动,则y随x的增大而;若点P(x,y)向右下方移动,则y随x的增大而。
第2课时函数的表示方法学习目标①进一步理解函数及其图像的意义.②学会根据自变量的值求函数值;或根据函数值求自变量的值,掌握函数的表示方法.③熟练掌握求函数中自变量的取值范围的方法.重点难点:①怎样根据自变量的值求函数值;②怎样求函数自变量的取值范围;③根据函数图象解决实际问题.学习过程一、自主学习(阅读教材)【活动1】分析并解决下列列问题:1.用解析法表示函数关系优点: . 缺点: . 2.用列表表示函数关系优点: . 缺点: . 3.用图象法表示函数关系优点: . 缺点: . 【活动2】请用原来所学的知识完成下列填空:1、若错误!未找到引用源。
有意义,则x的取值范围是 .2、若错误!未找到引用源。
初二关于函数图像练习题

初二关于函数图像练习题函数图像是初中数学中的一个重要内容。
通过练习题,我们可以进一步巩固对函数图像的理解。
下面是一些初二关于函数图像的练习题。
请你认真思考每个问题,并给出详细的解答。
习题一:已知函数y=f(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数f(x)的定义域是什么?2. 根据图像分析,函数f(x)的值域是什么?3. 根据图像分析,函数f(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。
4. 根据图像分析,函数f(x)在哪些区间上是增函数?在哪些区间上是减函数?习题二:已知函数y=g(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数g(x)的定义域是什么?2. 根据图像分析,函数g(x)的值域是什么?3. 根据图像分析,函数g(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。
4. 根据图像分析,函数g(x)在哪些区间上是增函数?在哪些区间上是减函数?习题三:已知函数y=h(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数h(x)的定义域是什么?2. 根据图像分析,函数h(x)的值域是什么?3. 根据图像分析,函数h(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。
4. 根据图像分析,函数h(x)在哪些区间上是增函数?在哪些区间上是减函数?通过以上练习题,我们能够进一步加深对函数图像的理解。
希望你通过认真思考和分析,能够正确回答以上问题,并在解答过程中巩固对函数图像的知识掌握。
同时,也希望你能够掌握函数图像的绘制方法,通过练习更多的题目,进一步提高自己的能力。
祝你在数学学习中取得更好的成绩!。
初二数学函数图像练习题
初二数学函数图像练习题随着学习的深入,初二的数学课程逐渐涉及到更加复杂的内容。
其中,函数图像是一个重要的学习内容之一。
通过练习题的方式,可以加深对函数图像的理解与掌握。
本文将为大家提供一些初二数学函数图像练习题,并详细解答,希望对同学们加深对这一知识点的学习有所帮助。
1. 下列函数中,哪一个函数的图像是平行于x轴的直线?A. f(x) = 2x + 3B. f(x) = x^2 + 1C. f(x) = 3D. f(x) = √x解析:平行于x轴的直线具有y坐标不变的特点,即与y轴平行。
根据选项中的四个函数,我们可以发现只有C. f(x) = 3的图像是一条平行于x轴的直线,因为无论x取什么值,f(x)始终等于3,即函数的图像位于y = 3这条直线上。
2. 下列函数中,哪一个函数的图像是与y轴平行的直线?A. f(x) = 4x - 2B. f(x) = x^2 - 1C. f(x) = 4D. f(x) = |x|解析:与y轴平行的直线具有x坐标不变的特点,即x的值始终相同。
根据选项中的四个函数,我们可以发现只有A. f(x) = 4x - 2的图像是一条与y轴平行的直线,因为不管x取什么值,4x - 2都只与x有关,与y无关。
3. 下列函数中,哪一个函数的图像是一个抛物线?A. f(x) = 2xB. f(x) = x^2 - 1C. f(x) = 3x + 4D. f(x) = |x|解析:抛物线具有开口方向的特点,其图像通常为一个弯曲的曲线。
根据选项中的四个函数,我们可以发现只有B. f(x) = x^2 - 1的图像是一个抛物线,因为x的平方具有平方函数的特点,其图像为对称的抛物线。
4. 下列函数中,哪一个函数的图像是一个反比例函数?A. f(x) = 2xB. f(x) = x^2 - 1C. f(x) = 3x + 4D. f(x) = 1/x解析:反比例函数具有形如f(x) = k/x的特点,其中k为常数。
八年级数学一次函数图象性质 专项练习题(含答案)
参考答案 1、B 2、C ; 3、A 4、C 5、C 6、B 7、A 8、C 9、A 10、C 11、A 12、D 13、B 14、A 15、A 16、A 17、A 18、C 19、D 20、A 21、 22、y=23、答案为 1. 24、-3 25、一、二、三. 26、2 . 27、3 28、答案是:3. 29、答案为 y=3x+4. 30、(0,-1) ;
m313将直线ykx1向上平移2个单位长度可得直线的解析式为aykx3bykx1cykx3dykx114直线y2xb与x轴的交点坐标是20则关于x的方程2xb0的解是ax2bx4cx8dx1015如图直线ykxb与x轴y轴分别相交于点a30b02则不等式kxb0的解集是ax3bx3cx2dx216同一直角坐标系中一次函数y1k1xb与正比例函数y2k2x的图象如图所示则满足y1y2的x取值范围是ax2bx2cx2dx217点ax1y1点bx2y2是一次函数y2x4图象上的两点且x1x2则y1与y2的大小关系是ay1y2by1y20cy1y2dy1y218已知a320则一次函数yaxb的图象不经过6)在 y=k1x 上∴﹣6=3k1∴k1=﹣2 ∵点 P(3,﹣6)在 y=k2x﹣9 上∴﹣6=3k2﹣9∴k2=1; (2)∵k2=1,∴y=x﹣9∵一次函数 y=x﹣9 与 x 轴交于点 A 又∵当 y=0 时,x=9∴A(9,0). 33、(1) ;(2)23;
八年级数学一次函数图象性质 专项练习题
一、选择题: 1、下列函数(1)y=3πx;(2)y=8x-6;(3)y= ( ) A.4 个 2、函数 A.(3,5); B.3 个 C.2 个 D.1 个
1 ;(4)y= -8x;(5)y=5x2-4x+1 中,是一次函数的有 x
八年级数学下册 14.3.1 函数图象的画法同步练习 北京课改版(2021年整理)
八年级数学下册14.3.1 函数图象的画法同步练习(新版)北京课改版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册14.3.1 函数图象的画法同步练习(新版)北京课改版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册14.3.1 函数图象的画法同步练习(新版)北京课改版的全部内容。
14.3.1函数图象的画法一、夯实基础1、若a﹥0,则点P(-a,2)应在()A.第一象限B.第二象限C.第三象限D.第四象限2、若点P(a,b)在第四象限内,则a,b的取值范围是()A.a﹥0,b﹤0B.a﹥0,﹤0 C。
a﹤0,b﹥0 D。
a﹤0,b﹤03、点A(—3,2)在第_____象限,点D(3,-2)在第__象限,点C(3,2)在第__象限,点F(0,2)在__轴上,点E(2,0)在__轴上.4、点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标是______.二、能力提升5、若点A(a,b)在第二象限,则点B(a—b,b-a)一定在()A.第一象限 B。
第二象限 C。
第三象限 D.第四象限6、1、P(—2,y)与Q(x,—3)关于x轴对称,则x-y的值为()A。
1 B。
—5 C.5 D.-17、点P(m+3,m+1)在x轴上,则点P的坐标为( )A。
(2,0) B。
(0,—2) C。
(4,0) D.(0,—4)8、过点M(3,2)且平行于x轴的直线上点的纵坐标是_______,过点M(3,2)且平行于y 轴的直线上的点的横坐标是_______。
9、点P在第二象限内,P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是___________。
八年级数学下册《函数的图像》练习题及答案(人教版)
八年级数学下册《函数的图像》练习题及答案(人教版)班级姓名考号1.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原来的速度返回,父亲在报亭看报10分钟,然后用15分钟返回家,下面给出的图象中表示父亲离家距离与离家时间的函数关系是()A.B.C.D.2.下列各曲线中不能..表示y是x的函数的是()A.B.C.D.3.梦想从学习开始,事业从实践起步.近来,每天登录“学习强国”APP,学精神增能量、看文化长见识已经成为一种学习新风尚.下面是爸爸上周“学习强国”周积分与学习天数的有数据,则下列说法错误的是()学习天数n(天)1234567周积分w(分)55110160200254300350A.在这个变化过程中,学习天数是自变量,周积分是因变量B.周积分随学习天数的增加而增加C.从第3天到第4天,周积分的增长量为50分D.天数每增加1天,周积分的增长量不一定相同4.函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数284x y x =-+的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.x … 4- 3-2- 1- 0 1 2 3 4 … y … 85 2413 a 85 0 b 2- 2413- 85- … 小明根据他的发现写出了以下三个命题:①当22x -≤≤时,函数图象关于直线y x =对称;①2x =时,函数有最小值,最小值为2-;①11x -<<时,函数y 的值随x 点的增大而减小.其中正确的是( )A .①①B .①①C .①①D .①①①5.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x =-,其图像经过( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限.6.小明和小强两个人开车从甲地出发匀速行驶至乙地,小明先出发.在整个行驶过程中,小明和小强两人的车离开甲地的距离y (千米)与行驶的时间t (小时)之间的函数关系如图所示,有下列结论:①甲、乙两地相距300千米;①小强的车比小明的车晚出发1小时,却早到1个小时;①小强的车出发后1.5小时追上小明的车.其中正确的结论有( )A .①①B .①①C .①①D .①①①7.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:温度/① 76 78 80 82 84蜂每分钟鸣叫的次数 144 152 160 168 176如果这种数量关系不变,那么当室外温度为88①时,蟋蜂每分钟鸣叫的次数是( )A .178B .184C .190D .1928.如图,在长方形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP 的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .249.如图1,点P 从矩形ABCD 的顶点A 出发,沿A →D →B 以2cm/s 的速度匀速运动到点B ,图2是点P 运动时,PBC 的面积y (cm 2)随时间x (s )变化的关系图像,则a 的值为( )A .8B .6C .4D .310.将盛有凉牛奶的瓶子放在热水中(如图甲所示),通过热传递方式改变牛奶的内能,图乙是凉牛奶与热水的温度随时间变化的图像.假设热水放出热量全部被牛奶吸收,下列回答错误..的是( )A .08min 时,热水的温度随时间的增加逐渐降低;B .08min 时,凉牛奶的温度随时间的增加逐渐上升;C .8min 时,热水和凉牛奶的温度相同;D .0min 时,两者的温度差为80C ︒.二、填空题11.一空水池深4.8m ,现以均匀的速度往进注水,注水时间与水池内水的深度之间的关系如表,由表可知,注满水池所需要的时间为______h . 注水时间()h t0.5 1 1.5 2 2.5 … 水的深度()m h0.8 1.6 2.4 3.2 4 …12.李玲用“描点法”画二次函数2y a bx c =++的图象时,列了如下表格,根据表格上的信息回答问题:该二次函数2y a bx c =++当3x =时,y =________.13.甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法其中正确的结论有 ___________.①A 、B 两地相距210千米;①甲车速度为60千米/小时;①乙车速度为120千米/小时;①乙车共行驶132小时.14.如图1,在菱形ABCD 中,∠A=60°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为_______.15.育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了2h 3第一次返回到自己班级,则七(2)班需要_________ h 才能追上七(1)班.三、解答题16.如图所示的是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分钟)变化而变化的图像.(1)摩托车从出发到最后停止共经过了多长时间?离家最远的跑离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?17.在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,所挂物体的质量与弹簧长度的几组对应值如下:x012345所挂物体质量/kgy182022242628弹簧长度/cm(1)上表反映了哪两个变量之间的关系,并指出哪个是自变量,哪个是因变量;(2)不挂物体时,弹簧长________cm;(3)当所挂物体的质量为7kg时,弹簧长度是多少?(4)当弹簧长度为34cm(在弹性限度内)时,所挂物体的质量是多少?18.上海磁悬浮列车在一次运行中速度V(千米/小时)关于时间t(分钟)的函数图象如图,回答下列问题.(1)列车共运行了___分钟(2)列车开动后,第3分钟的速度是___千米/小时.(3)列车的速度从0千米/小时加速到300千米/小时,共用了___分钟.(4)列车从___分钟开始减速.19.测得一弹簧的长度L (厘米)与悬挂物体的质量x (千克)有下面一组对应值:悬挂物体的质量x (千克) 01 2 3 4 5 6 7 8 弹簧的长度L (厘米) 12 12.5 13 13.5 14 14.5 15 15.5 16试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x 千克的物体时的弹簧的长度L .(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?20.如图1,在Rt ABC △中,AC=BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以1cm/s 的速度由F 点出发,沿F E D A B →→→→的路径运动,连接BP ,CP ,BCP 的面积2/cm y 与运动时间/s x 之间的图象关系如图2所示.根据相关信息,解答下列问题:(1)判断EF 的长度;(2)求a ,b 的值;(3)当10x =时,连接,此时与的有怎样的数量关系,请说明理由.1---10CCCCD DDBCD11.312.113.①①①14.2315.216.(1)解:根据距离(千米)随行驶时间(分钟)变化而变化的图像可知摩托车从出发到最后停止共经过了100分钟,离家最远的距离是40千米.(2)解:当020t <≤时,S=10速度为100.5(km /min)20=; 当2050t <≤时401030S =-=速度为40101(km /min)5020-=-; 当50100t <≤时,S=40,速度为400.8(km /min)10050=-; ①20~50分钟这一时段内速度最快,最快速度为1千米/分钟.17.解:表格中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)解:当所挂物体质量为0时,所对应的弹簧长度是18cm故答案为:18;(3)解:由表格中弹簧的长度随所挂物体质量之间的变化关系可知,当所挂物体质量每增加1kg ,弹簧的长度就增长2cm ,所以当所挂物体质量为7kg 时,弹簧的长度为18+2×7=32(cm )答:当所挂物体的质量为7kg 时,弹簧长度是32cm ;(4)解:由弹簧的长度随所挂物体质量之间的变化关系可知,当弹簧长度为34cm 时,所挂物体的质量为34182-=8(kg )答:当弹簧长度为34cm (在弹性限度内)时,所挂物体的质量是8kg .18.(1)解:列车共运行了8分钟;故答案为:8;(2)列车开动后,第3分钟的速度是300千米/小时;故答案为:300;(3)列车的速度从0千米/小时加速到300千米/小时,共用了2分钟;故答案为:2;(4)列车从5分钟开始减速.故答案为:5.19.(1)解①由表格可知,弹簧的长度L 的初始值为12厘米,当弹簧称所挂重物质量x 每增加1千克,弹簧长度L 就增加0.5厘米①L =0.5x +12 ;(2)解:当x =10时,L =0.5x +12=17=0.5×10+12=17(厘米)答①当所挂物体的质量为10千克时,弹簧的长度是17厘米;(3)解:当L = 18厘米时,则18=0.5x + 12 解得①x =12(千克)答①所挂物体质量是12千克.20.(1)解:由图2可知,点P 从点F 到点E 用了5秒 ①()155cm EF =⨯=.(2)解:①四边形CDEF 是正方形①5cm DE EF CD ===①()()55110s a =+÷=由图2可知,点P 从点D 到点A 用了()1313103s a -=-= ①()133cm AD =⨯=①()8cm AC CD AD =+=①8cm AC BC ==当点P 在DE 上时,()2118520cm 22BCP SBC EF =⋅=⨯⨯= ①20b =综上:10,20a b ==;(3)解:当10x =时,如图,点P 和点D 重合 ①四边形CDEF 是正方形①,90CD CF BCD ACF =∠=∠=︒在BCD △和ACF △中 90AC BC BCD ACF CD CF =⎧⎪∠=∠=︒⎨⎪=⎩①()SAS BCD ACF ≌①AF BD =①点P 和点D 重合①AF BP =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学:函数的图像及画法练习(含解析)
1.A,B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.下列说法:①乙晚出发1个小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( C ) A.1 B.2 C.3 D.4
解析:横坐标表示时间,纵坐标表示路程.由题图可知甲先出发,而乙1小时后出发,故乙晚出发1小时,所以①正确;l1和l2的交点表示乙追上甲,从乙出发到追上甲共花时间2小时,所以②错误;甲3小时所走路程为12千米,故速度为4千米/小时,所以③正确;乙追上甲之后,速度不变,且乙的速度比甲的速度大,故乙先到达B地,所以④正确.故选C.
2.①汽车紧急刹车(速度与时间的关系);②人的身高变化(身高与年龄的关系);③运动员跳跃横杆(高度与时间的关系);④一面冉冉上升的红旗(高度与时间的关系).用图来刻画上述情境,正确的顺序是( C )
A.abcd B.dabc C.dbca D.cabd
解析:①汽车紧急刹车时速度随时间的增大而减小,与d符合;②人的身高随着年龄的增加而增大,到一定年龄后身高不再增大,与b符合;③运动员跳跃横杆时高度先逐渐升高,达到最大高度之后高度逐渐减小,与c符合;④红旗升高时高度随着时间的增加而匀速增大,到一定时间高度不再增加,与a符合.故选C.
3.(2017·哈尔滨)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是( D )
A.小涛家离报亭的距离是900 m
B.小涛从家去报亭的平均速度是60 m/min
C.小涛从报亭返回家中的平均速度是80 m/min
D.小涛在报亭看报用了15 min
解析:A.由纵坐标看出小涛家离报亭的距离是1 200 m,故A不符合题意;B.由纵坐标看出小涛家离报亭的距离是1 200 m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80 m/min,故B不符合题意;C.返回时的关系式为y=-60x+3 000,当y=1 200时,x=30,由横坐标看出返回时的时间是50-30=20(min),返回时的速度是 1 200÷20=60 (m/min),故C不符合题意;D.由横坐标看出小涛在报亭看报用了30-15=15(min),故D符合题意.故选D.
4.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图像是( C )
解析:在深水池时,横截面窄,水的深度增加速度快,函数图像坡度大;在浅水池时,横截面宽,水的深度增加速度慢,函数图像坡度小.故选C.
5.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,那么这是一次100 m赛跑,甲、乙两人中先到达终点的是甲.
解析:最大的函数值100为路程;甲12 s到达终点,乙12.5 s到达终点,故甲先到达终点.
6.上午8时,小张自驾小汽车从家出发,带全家人去离家200千米的一个4A级景区游玩,如图表示的是小张驾驶的小汽车离家的距离y(千米)与时间t(小时)之间的函数关系.
(1)小张全家在景区游玩了几个小时;
(2)小张在去景区的路上加油并休息后,平均速度达到100千米/时,问:他加油及休息共用了多少小时?
(3)小张全家什么时间回到家中?
解:(1)由图像信息可知,在离家距离200千米的景区游玩,当图像中显示距离一直不变时为停留时期,所以游玩了15-10.5=4.5(小时).
(2)200-120
100
=0.8(小时),10.5-9.5-0.8=0.2(小时),即他加油及休息共用了0.2小
时.
(3)200÷[(200-120)÷1]=2.5(小时),15+2.5=17.5(小时),故小张全家17时30分回到家中.。