运筹学单纯形法的灵敏度分析
运筹学 03 对偶理论及灵敏度分析

目标函数取值 变量 目标函数系数 常数 约束条件系数 变量 - 约束 约束 - 变量
例2:将下述线性规划作为原问题,请转换为 对偶问题 max z=5x1+3x2+2x3+4x4 5x1+x2+x3+8x4≤8 2x1+4x2+3x3+2x4=10 x1≥0,x2≥0,x3任意,x4任意
1 对偶理论
对偶问题的提出 原问题与对偶问题的数学模型 原问题与对偶问题的对应关系 对偶问题的基本性质 影子价格 对偶单纯形法
对偶问题的提出
例1:某厂利用现有资源(设备A、设备B、 调试工序)生产两种产品(产品Ⅰ、产品Ⅱ),有 关数据如下表。问如何安排生产,使厂家利润 最大? 产品Ⅰ 产品Ⅱ 资源限量 0 5 15 6 2 24 1 1 5 2 1
CX*=bTY*
从弱对偶性可得到以下重要结论: (1)极大化问题(原问题)的任一可行解所对应的目 标函数值是对偶问题最优目标函数值的下界。 (2)极小化问题(对偶问题)的任一可行解所对应的 目标函数值是原问题最优目标函数值的上界。 (3)若原问题可行,但其目标函数值无界,则对偶 问题无可行解。 (4)若对偶问题可行,但其目标函数值无界,则原 问题无可行解。 (5)若原问题有可行解而其对偶问题无可行解,则 原问题目标函数值无界。 (6)对偶问题有可行解而其原问题无可行解,则对 偶问题的目标函数值无界。
原问题与对偶问题的数学模型
原问题 max z=2x1+x2 5x2≤15 6x1+2x2≤24 x1+x2≤5 x1,x2≥0 互为对偶问题 厂 家 对偶问题 min w=15y1+24y2+5y3 6y2+y3≥2 5y1+2y2+y3≥1 y1,y2,y3≥0
运筹学第11讲灵敏度分析1

12.5 x1 7 / 2 1 0 0 1/ 4 1/ 2
12 x2 3/ 2 0 1 0 1/ 4 3/ 2
cj zj
0 0 0 11//84 19//24
第14页
例2-1
产品Ⅰ利润降至1.5百元/单位,产品Ⅱ的利润 增至2百元/单位,生产计划如何变化?
解:(2) 将产品Ⅰ、Ⅱ的利润变化反映在最终单纯形表中,可得
一、含义和研究对象
1、什么是灵敏度分析?
是指研究线性规划模型的某些参数(bi, cj, aij) 或限制量(xj, 约束条件)的变化对最优解的影响及 其程度的分析过程<也称为优化后分析>。
n
max z c j x j
s.t.
n
j 1
aij xj bi (i 1,
j1
x
j
0
(j 1,
2 1 1c2 0 0 0
x1 x2 x3 x4 x5
0 0 1 5/ 4 15/ 2 1 0 0 1/ 4 1/ 2 0 1 0 1/ 4 3/ 2
1 c2 0; 1 3c2 0
44
22
cj zj
0
0
0 14 1/44c2
121/
23c2 2
即故当产品Ⅱ的13利 润c在2 [12
,
1→1+△c2
s.t.
n
j 1
aij xj bi (i 1,
j1
x
j
0
(j 1,
, m) , n)
3. 分析增加一个变量 xj 的变化 4. 分析增加一个约束条件的变化
系数矩阵A
5. 分析系数 aij 的变化
第5页
初 始
基变量 基变量 基可
运筹(第二章对偶与灵敏度分析)(1)

5x2 3x3 30
x1 0, x2无约束,x3 0
2023/2/22
17
解:将原问题模型变形, 令x1 x1
min z 7x1 4x2 3x3
4x1 2x2 6x3 24
3x1 6x2 4x3 15 5x2 3x3 30
y1 y2 y3
x1 0, x2无约束,x3 0
则对偶问题是
max w 24 y1 15y2 30 y3
4 y1 3y2
7
x1
2 y1 6 y2 5 y3 4
x2
6 y1 4 y2 3x3 3
x3
y1, y2 0, x3无约束
2023/2/22
18
小结:对偶问题与原问题的关系:
目标函数:MAX
原 约束条件:m个约束
对
问
y1 y2
ym
2023/2/22
12
类似于前面的资源定价问题,每一个约束条件对 应一个“ 对偶变量”,它就相当于给各资源的单 位定价。于是我们有如下的对偶规划:
min W b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym c1 a12y1 a22y2 am2ymc2 a1n y1 a2n y2 amn ym cn y1, y2 ,, ym 0
分别是原问题和对偶问题的可行解,则恒有
n
m
c j x j bi yi
j 1
i 1
m
n
考虑利用 c j aij yi 及
aij x j bi
i 1
j 1
代入。
2、无界性 如果原问题(对偶问题)有无界解,则
其对偶问题(原问题)无可行解。
2023/2/22
运筹学第二章第6讲

例题4:写出以下模型的对偶问题
max z = 3 x1 − 2 x2 − 5 x3 + 7 x4 + 8 x5 x2 − x3 + 3 x4 − 4 x5 = −6 2 x1 + 3 x2 − 3 x3 − x4 ≥ 2 − x1 + 2 x3 − 2 x4 ≤ −5 s.t. − 2 ≤ x1 ≤ 10 5 ≤ ≤ 25 x2 , ≥ 0, 为自由变量 x5 x3 x4
OR1
对偶问题(或原问题) 对偶问题(或原问题) 目标函数 MinW
约束条件数: 约束条件数:n 第i个约束条件类型为“≥” 个约束条件类型为“ ” 个约束条件类型为 个约束条件类型为“ ” 第i个约束条件类型为“≤” 个约束条件类型为 个约束条件类型为“ 第i个约束条件类型为“=” 个约束条件类型为 对偶变量数: 个 对偶变量数:m个 第i个变量 个变量≥0 个变量 个变量≤0 第i个变量 个变量 第i个变量是自由变量 个变量是自由变量
OR1
15
2 弱对偶性:极大化原问题的任一可行解的目标 弱对偶性: 函数值不大于其对偶问题任意可行解的目标函数 值。即: C X≤ Yb
证明:设原问题为maxZ=CX, AX ≤b ,X ≥0. ≥0. 证明: 原问题为maxZ=CX,
为原问题的可行解, ≤b, X 为原问题的可行解,有AX ≤b,
二.对偶线性规划的定义 对偶线性规划的定义
max Z = CX ( LP ) AX ≤ b S .T . X ≥ 0
称线性规划(DLP)为线性规划 为线性规划(LP)的对偶线性规划 称线性规划 为线性规划 的对偶线性规划
minω = yb ( DLP ) yA ≥ C S .T . y ≥ 0
运筹学 线性规划灵敏度分析

可变单元格 单元格 名字 $B$4 可变单元格→ Max Z=∑cjxj $C$4 可变单元格→ 约束 单元格 名字 $D$7 a1j→ ∑aijxj $D$8 a2j→ ∑aijxj $D$9 a3j→ ∑aijxj 终 阴影 约束 允许的 允许的 值 价格 限制值 增量 减量 2 0 4 1E+30 2 12 150 12 6 6 18 100 18 6 6 终 递减 目标式 允许的 允许的 值 成本 系数 增量 减量 2 0 300 450 300 6 0 500 1E+30 300
线性规划
不是最优表, 继续迭代, 得, 最优解 X*=(5/3,13/2, 7/3,0,0)生产品种保持 不变。最优值变为
7/3 0 500 300 13 / 2 3750 5/3
300
xB
x3
500
0
0
0
b’ 2 6 2
x1
0 0 1
x2
0 1 0 0
x3
1 0 0 0
x4
1/3 1/2 -1/3 -150
x5
-1/3 0 1/3 -100
x2 x1
-3600 200
总利润增加了 150 元。
运筹学
设 b1 , b2 , b3 的增量为 b1 , b2 , b3
2 1 1 / 3 1 / 3 b1 b * b B 1b 6 0 1 / 2 0 b2 2 0 1 / 3 1 / 3 b 3 2 b1 b2 / 3 b3 / 3 2 b1 b2 / 3 b3 / 3 6 b2 / 2 6 b2 / 2 2 b / 3 b / 3 2 b / 3 b / 3 2 3 2 3 若要解仍可行,则 b * 0 ,即
运筹学第2章 对偶理论01-对偶问题及影子价格、对偶单纯形法

第2章对偶理论及灵敏度分析主要内容对偶理论⏹线性规划对偶问题⏹对偶问题的基本性质⏹影子价格⏹对偶单纯形法灵敏度分析⏹灵敏度问题及其图解法⏹灵敏度分析⏹参数线性规划线性规划的对偶问题⏹对偶问题的提出⏹原问题与对偶问题的数学模型⏹原问题与对偶问题的对应关系实例:某家电厂家利用现有资源生产两种产品,有关数据如下表:设备A设备B 调试工序利润(元)612521115时24时5时产品Ⅰ产品ⅡD一、对偶问题的提出如何安排生产,使获利最多?厂家设Ⅰ产量–––––Ⅱ产量–––––1x 2x ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=052426155 2max 212121221x x x x x x x s.t.x x z ,设设备A ——元/时设备B ––––元/时调试工序––––元/时1y 2y 3y 收购付出的代价最小,且对方能接受。
出让代价应不低于用同等数量的资源自己生产的利润。
设备A 设备B 调试工序利润(元)0612521115时24时5时ⅠⅡD ⏹厂家能接受的条件:⏹收购方的意愿:32152415min yy y w ++=单位产品Ⅰ出租收入不低于2元单位产品Ⅱ出租收入不低于1元出让代价应不低于用同等数量的资源自己生产的利润。
1252632132≥++≥+y y y y y52426155 2212121221⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=x x x x x x x s.t.x x z ,max ⎪⎩⎪⎨⎧≥≥++≥+++=0y 125265241532132132321y y y y y y y t s y y y w ,,.min 对偶问题原问题收购厂家一对对偶问题⎩⎨⎧≥≥=⇒⎩⎨⎧≥≤=00bY C YA s.t.Yb w X AX t s CX z min ..max ),(21c c C =⎪⎪⎫ ⎛=1x x X )(ij a A =()321,y ,y y Y =⎪⎪⎪⎫ ⎛=321b b b b 3个约束2个变量2个约束3个变量原问题对偶问题其它形式的对偶问题?特点:1.原问题的约束个数(不包含非负约束)等于对偶问题变量的个数;2.原问题的价值系数对应于对偶问题右端项;3.原问题右端项对应于对偶问题的价值系数;4.原问题约束矩阵转置就是对偶问题约束矩阵;5.原问题为求最大,对偶问题是求最小问题;6.原问题不等约束符号为“≤”,对偶问题不等式约束符号为“≥”;二、原问题与对偶问题的数学模型1.对称形式的对偶当原问题对偶问题只含有不等式约束时,称为对称形式的对偶。
运筹学第8讲:对偶单纯形法及灵敏度分析简介
② 原问题有可行解(b≥0), 对偶问题无可行解(存在δj>0),采 用单纯形法继续求解
③ 原问题无可行解(存在bi<0), 对偶问题有可行解( δ≤0 ), 采用对偶单纯形法继续求解
④ 原问题无可行解(存在bi<0), 对偶问题无可行解(存在δj>0), 设法使bi>0,并引入人工变量,采用大M 法继续求解
P38:例3.6
某公司生产甲、乙、丙、丁四种产品,已知制造单件产品时分
别占用的设备A、B的台时,设备A、B每天可用于生产的能力 以及单件产品的收益情况如下表所示。问该公司应该如何制定 最优生产计划? 项目 甲 乙 丙 丁 每天可用能力
设备A(h) 设备B(h)
单件利润(元)
3 2
4
2 3
3
1 2
上式两边左乘B-1,得到
题的最优基B不变,我们可以直接 求出新问题的最优解
X B B1b B1NX N
(1)
运筹学
第8讲:对偶单纯形法及灵敏度分析简介
设 Pj
为初始单纯形表中的第j 列列向量,
设 Pj’为最终单纯形表中的第j 列列向量 例如: 3 P 1 2 我们不难得到:
运筹学
第8讲:对偶单纯形法及灵敏度分析简介
同时,
Pj ' B1Pj
(3)
例如:
3 5 2 5 3 1 B P 1 1 2 0 P ' 2 5 3 5
1
再考察式(1),由于XN=[0, 0]T,因而
X B * B1b
(2) 解:设乙的收益c2直接反映到原问题的最终单纯形表中,得到
为使最优生产计划不变,则δ3, δ4 ,δ5, δ6 ≤0,得到
运筹学第二章灵敏度分析
CB
-3 -5 -Z’
xB x1 X2
2.4 对偶解的经济解释
一、对偶线性规划 的解: P55
Cj xB x3 x1 x2 z b 7/2 7/2 3/2 x1 1 0 0 y4 Cj yB b y1 15/2 0 原问题变量 x2 0 0 1 0 y5 对偶问题变量 y2 y3 x3 1 0 0 0 y1 原问题变量 x4 5/4 1/4 -1/4 1/4 y2 x5 -15/2 -1/2 3/2 1/2 y3
T.G.Koopman(库普曼)和 L.V.Kamtorovich(康脱罗维奇)
二人因此而共同分享了1975年的第7届诺贝尔经 济学奖。
2.5 灵敏度分析
一、灵敏度分析的含义 是指系统或事物因周围条件变化显示出来的敏感性程度的分析。 对于线性规划问题的灵敏度分析是指参数A,b,C变化引起的 对原问题解的变化的分析。 其中:A为技术参数矩阵,b为资源向量,C为价值向量 可以用参数变化后的问题重新用单纯形法求解? 没必要,意义不大,有些问题看不出来。 把相应的变化反映到最终单纯形表中,再根据情况用相应的方 法求解。
Z 50 x1 30 x2
2.1 线性规划的对偶问题与对偶理论
假设现有乙公司准备租借用(购买)该木器厂的木工和 油漆工两种劳力的劳务,需要考虑这两种劳务以什么 样的价格租入最合算?而同时甲公司要以什么条件才 会租让?甲公司肯定会以自己利用两种劳力的劳务组 织生产所获得的利润最大为条件,设每个木工的租用 价格为y1,每个油漆工的租用价格为y2,则乙公司愿 意租用的出资为:
0 变量 0 无限制
型 约束 型 型
0 变量 0 无限制
型 约束 型 型
对偶单纯形法灵敏度分析
汇报人:XX
单击输入目录标题 对偶单纯形法概述 对偶单纯形法灵敏度分析的步骤 对偶单纯形法灵敏度分析的优点和局限性 对偶单纯形法灵敏度分析的改进方向 对偶单纯形法灵敏度分析的实际应用案例
添加章节标题
对偶单纯形法概述
对偶单纯形法的定义
对偶单纯形法是一种线性规划 算法
它基于对偶理论,通过迭代寻 找最优解
结论:对偶单纯形法灵敏度分析在资源分配问题中具有广泛的应用前景,能够为企业带来巨大 的经济效益。
THANK YOU
汇报人:XX
各变量对目标函数的影响程度。
求解最优解
确定初始对偶解
确定迭代步长
计算对偶方向 更新最优解
计算灵敏度
计算对偶问题的 最优解
确定最优解对应 的基变量和自由 变量
计算基变量的灵 敏度
计算自由变量的 灵敏度
对偶单纯形法灵敏度分析的优 点和局限性
优点
计算简单:对偶单 纯形法在计算上相 对简单,易于理解 和实现。
对偶单纯形法适用于求解标准 型线性规划问题
它具有简单、高效、可靠等优 点
对偶单纯形法的原理
对偶性:将原问题转化为对偶问题,通过对偶问题的最优解得到原问题 的近似最优解 单纯形法:利用线性规划的迭代方法,通过不断迭代寻找最优解
灵敏度分析:分析决策变量变化对最优解的影响,为决策提供参考
对偶单纯形法的应用场景
分析灵敏度结果:根据灵敏度系数的大 小和符号,分析各变量对目标函数的灵
敏度,为决策提供依据。
添加标题
添加标题
添加标题
添加标题
确定约束条件和目标函数:在分析过程 中,首先需要确定问题的约束条件和目 标函数,这是对偶单纯形法灵敏度分析
常见的运筹学灵敏度分析
14
例18 对于下列规划问题的最优解,若由于工艺改进,y1的 技术系数改为p3=(1,1)T,试讨论最优解的变化。
max Z 4 x1 3 x2 2 y1
2 s.t.3
x1 x1
灵敏度分析的方法是在目前最优基B下进行的。即当参 数A、b、c中的某一个或几个发生变化时,考察是否影响 以下两式的成立?
B 1b 0
C B B
1A C
0
3
1、对于参数b的灵敏度分析
从矩阵形式的单纯形表中可以看出,b的变化只影响最优 解的变化和最优值的变化。
b
X
XB
B-1b
响到y1的检验数,因此为使最优解不变,只需 3 0
即
C3 2 3 / 5 13/ 5
若C3=3,则
cj
CB
XB
3
x2
4
x1
Z
2
3 5
代入最优单纯形表中相应位置
4
320
0
b
x1
x2
y1
x3
x4
4
0
1 -1/5 3/5 -2/5
6
1
0 4/5 -2/5 3/5
36
0
0 -2/5 1/5
若σn+1=CBB-1Pn+1-Cn+1<0,则应投产 若σn+1=CBB-1Pn+1-Cn+1>0,则不应投入。
即新产品的机会成本小于目前的市场价格时,应投产 否则不应投产。
例19 现有一新产品丙,经预测其单位利润为3,技术消耗 系数为P5=(2,2)T,问该产品是否值得投产?