空间向量 高中数学教案

空间向量 高中数学教案
空间向量 高中数学教案

空间向量

1.理解空间向量的概念;掌握空间向量的加法、减法和数乘.

2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算.

3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公

理解空间向

量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解

空间向量的数量积的几何意义;掌

握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直.

第1课时 空间向量及其运算

空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广.本节知识点是:

1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量.(2) 向量相等:方向 且长度 .(3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量

(1)共线向量:表示空间向量的有向线段所在的直线互相 或 .

(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 .

(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在

R t ∈,使 .

4.共面向量

(1) 共面向量:平行于 的向量.

(2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P .

共面向量定理的推论: .5.空间向量基本定理

(1) 空间向量的基底: 的三个向量.

(2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,

基础过关

考纲导读

高考导航 空间向量

定义、加法、减法、数乘运算

数量积

坐标表示:夹角和距离公式

求距离

求空间角

证明平行与垂直

2.线性运算律

(1) 加法交换律:a +b = .

(2) 加法结合律:(a +b )+c = .(3) 数乘分配律:λ(a +b )= .

使 .

空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使 .

6.空间向量的数量积

(1) 空间向量的夹角: .

(2) 空间向量的长度或模: .

(3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b = .空间向量的数量积的常用结论:

(a) cos 〈a 、b 〉= ; (b) ?a ?2= ;

(c) a ⊥b ? .

例1.已知正方体ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y ,求x -y 的值.

解:易求得0

,2

1

=-∴==y x y x 变式训练1. 在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,

=11D A b ,=A A 1c ,则下列向量中与M B 1相等的向量是

( )

A .?2

1a +2

1b +c B .2

1a +2

1b +c

C .2

1a ?2

1b +c

D .?2

1a ?2

1b +c

解:A

例2. 底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点,求证:AB 1∥平面C 1BD.

证明:记,,,1c AA b AC a AB ===则c b CC DC DC b a AD AB DB c a AB +=

+=-=-=+=2

1

,

2

1,111∴11AB c a DC DB =+=+,∴1

1,,

DC DB AB 共

面.

∵B 1?平面C 1BD, AB 1//平面C 1BD.

变式训练2:正方体ABCD -EFGH 中,M 、N 分别是对角线AC 和BE 上的点,且AM =EN .(1) 求证:MN ∥平面FC ; (2) 求证:MN ⊥AB ;

(3) 当MA 为何值时,MN 取最小值,最小值是多少?解:(1) 设

.)1(,BF k BC k MN k AC

MC

EB NB +-===则(2) .0)1(=?-?-=?AB BF k AB BC k AB MN (3) 设正方体的边长为a ,也即时AC AM

21

=

,a MN

22min

=例3. 已知四面体ABCD 中,AB ⊥CD ,AC ⊥BD , G 、H 分别是△ABC 和△ACD 的重心.求证:(1) AD ⊥BC ; (2) GH ∥BD .

典型例题

A

B

C

D A

C 1

B 1

(4) 空间向量的数量积的运算律:

(a ) 交换律a ·b = ;

(b ) 分配律a ·(b +c )= .

证明:(1) AD ⊥BC ?0=?BC AD .因为AB ⊥CD 0=??CD AB ,0=??⊥BD AC BD AC ,而0)()(=+?+=?DC BD BD AB BC AD .

所以AD ⊥BC .

(2) 设E 、F 各为BC 和CD 的中点.欲证GH ∥BD ,只需证GH ∥EF ,AH GA GH +==32(AF EA +)=

3

2

EF . 变式训练3:已知平行六面体1111D C B A ABCD -,E 、F 、G 、H 分别为棱AB C C C D D A 和11111,,的中点.求证:E 、F 、G 、H 四点共面.

解:CG HC HG +==1

GC HC +=1FC GF HC ++=GF FC F A ++11=GF EF +2,

所以EH EG EF ,,共面,即点E 、F 、G 、H 共面.

例4. 如图,平行六面体AC 1中,AE =3EA 1,AF =FD ,AG =GB 2

1,过E 、F 、G 的平面与对角线AC 1交于点P ,求AP:PC 1

的值.

解:设1

AC m AP =∴AF

m AE m AG m AP 23

43++=又∵E 、F 、G 、P 四点共面,∴123

43=++m m m ∴19

3

=

m ∴AP ︰PC 1=3︰16变式训练4:已知空间四边形OABC 中,M 为BC =OC ,求证QN PM ⊥.

证明:法一:)

(2

1OC OB OM +=)(2

1

OC AB OM PO PM +=

+=∴故QN

PM ⊥1.立体几何中有关垂直和平行的一些命题,可通过向量运算来证明.对于垂直,一般是利用a ⊥b ?a ·b =0进行证明.对于平行,一般是利用共线向量和共面向量定理进行证明.

2.运用向量求解距离问题,其一般方法是找出代表相应距离的线段所对向量,然后计算这个向量对应的模.而计算过程中只要运用好加法法则,就总能利用一个一个的向量三角形,将所求向量用有模和夹角的已知向量表示出来,从而求得结果.

3.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角,而求两个向量的夹角则可以利用公式c osθ=b

a

b a ?.

4.异面直线间的距离的向量求法:已知异面直线l 1、l 2,AB 为其公垂线段,C 、D 分别为l 1、l 2上的任意一点,为与共线的向量,则||

|n .

5.设平面α的一个法向量为n ,点P 是平面α外一点,且P o ∈α,则点P 到平面α的距离是d o .

D

F A

G

B B 1

C 1

D 1

A 1

C

E P

小结归纳

法二:PM ·QN =(PQ +QM )·(QM +MN )

=)(21OC AB +·)

(2

1BA OC +=)(4

12

2AB OC -=0

第2课时 空间向量的坐标运算

),,(321a a a ,b =),,(321b b b (1) a

±b =

(2) λa = . (3) a ·b = .

(4) a ∥b ? ;a ⊥b ? . (5) 设),,(),,,(222111z y x B z y x A ==

则AB = ,=AB . AB 的中点M 的坐标为 . 若a =-1),b =(-2,3,5)

(1)若(k a +b )∥(a -3b ),求实数k 的值; (2)若(k a +b )⊥(a -3b ),求实数k 的值; (3)若b a k +取得最小值,求实数k 的值. 解:(1)3

1

-=k ; (2)3106=

k ; (3)27

8

-=k 变式训练1. 已知O 为原点,向量()()3,0,1,1,1,2,,OA OB OC OA BC ==-⊥u u u r u u u r u u u r u u u r u u u r ∥OA u u u

r ,求AC u u u r .

解:设()(),,,1,1,2OC x y z BC x y z ==+--u u u r u u u r

∵,OC OA BC ⊥u u u r u u u r u u u r ∥OA u u u

r ,∴0OC OA ?=u u u r u u u r ,()BC OA R λλ=∈u u u r u u u r ,

∴()()30,

1,1,23,0,1x z x y z λ+=???+--=??,即30,13,10,

2.

x z x y z λλ+=??+=??-=??-=? 解此方程组,得7211

,1,,101010

x y z λ=-==

=。

∴721,1,1010OC ??=- ???u u u r ,3711,1,1010AC OC OA ??=-=-

???

u u u

r u u u r u u u r 。 例2. 如图,直三棱柱111C B A ABC -,底面ABC ?中,CA =CB =1,ο90=∠BCA ,棱21=AA ,M 、N 分别A 1B 1、A 1A 是的中点.

(1) 求BM 的长; (2) 求??11,cos CB BA 的值; (3) 求证:N C B A 11⊥.

典型例题

基础过关

y

解:以C 为原点建立空间直角坐标系xyz O -.

(1) 依题意得B (0,1,0),M (1,0,1)

.3)01()10()01(222=-+-+-=. (2) 依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2)

.

10

30

,cos 11=>=

<∴CB BA . (3) 证明:依题意得C 1(0,0,2),N )0,2

1,21(),2,1,1(),2,2

1,21(11=--=∴C A .

变式训练2. 在四棱锥P -ABCD 中, 底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB =3,BC =1,PA =2,E 为PD 的中点.

(1) 在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出N 点到AB 和AP 的距离; (2) 求(1) 中的点N 到平面PAC 的距离.

解:(1) 建立空间直角坐标系A -BDP ,则A 、B 、C 、D 、P 、E 的坐标分别是A(0, 0, 0)、B(3

, 0, 0)、C(

3

, 1, 0)、D(0, 1,

0)、P(0, 0, 2)、E(0, 2

1

, 1),依题设N(x , 0, z ),则=(-x ,

2

1, 1-z ),由于NE ⊥平面PAC ,

∴????

?=?=?0

即?????=+-=-????????

=?--=?--0

21

3010)0,1,3()1,21,(0)2,0,0()1,21,(x z z x z x ??

???==?163

z x ,即点N 的坐标为(

6

3, 0, 1),

从而N 到AB 、AP 的距离分别为1,

6

3.

(2) 设N 到平面PAC 的距离为d ,则d |

|NE

1233121|

)0,2

1

,63(||

)0,21,63()1,0,63(

|=?=--?.

例3. 如图,在底面是棱形的四棱锥ABCD P -中,,,60a AC PA ABC ===∠οa PD PB 2==,点E 在PD 上,且PE :ED =2:1.

(1) 证明 ⊥PA 平面ABCD ;

(2) 求以AC 为棱,EAC 与DAC 为面的二面角θ的大小;

(3) 在棱PC 上是否存在一点F ,使BF ∥平面AEC ?证明你的结论. 解:(1)证明略; (2)易解得ο30=θ;

(3)解 以A 为坐标原点,直线AP AD ,分别为y 轴、z 轴,过A 点垂直于平面PAD 的直线为x 轴,建立空间直角坐标系(如图).由题设条件,相关各点的坐标为 所以=AE )3

1,3

2

,0(a a ,=AC )0,21,23(

a a ,=AP ),,0,0(a =PC ),2

1,23(a a a - =BP ),21,23(a a a -

,设点F 是棱PC 上的点,==PC PF λ),2

1

,23(a a a λλλ-,其中10<<λ,则 A

B

C

P

E

D

·

))1(),1(21),1(23(λλλ-+-=+=a a a PF BP BF .令AE AC BF 21λλ+=得????

???

??=-+=+=-2

21131)1(3221)1(2

1

23

)1(2

3λλλλλλλa a a a a a a

解得23,21,21

21=

-==λλλ,即21=λ时,2

321+-=.亦即,F 是PC 的中点时,,,共面,又?BF 平面AEC ,所以当F 是PC 的中点时,BF ∥平面AEC .

例4. 如图,多面体是由底面为ABCD 的长方体被截面AEFG 所截而得,其中AB =4,BC =1,BE =3,CF =4. (1) 求和点G 的坐标; (2) 求GE 与平面ABCD 所成的角; (3) 求点C 到截面AEFG 的距离.

解:(1) 由图可知:A(1,0,0),B(1,4,0), E(1,4,3),F(0,4,4) ∴)1,0,1(-= 又∵=,设G(0,0,z),则(-1,0,z) =(-1,0,1) ∴z =1 ∴G(0,0,1) (2)平面ABCD 的法向量).1,0,0(=DG

)2,4,1(=GE ,设GE 与平面ABCD 成角为θ,则

21

21

2|

|||)2

cos(

=

?-GE DG θπ

∴21

21

2arcsin

=θ (3)设0n ⊥面AEFG ,0n =(x 0,y 0,z 0)

∵0n ⊥,0n ⊥,而=(-1,0,1),=(0,4,3)

∴),43,(43

034000000

00

00000z z z n z y z x z y z x -=∴??

?

??-==????=+=+- 取z 0=4,则0n =(4,-3,4)

∵41

41

16|

|),4,0,0(0==

∴=n d 即点C 到截面AEFG 的距离为

41

41

16. 变式训练4. 如图四棱锥P —ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且PG =4,

GD AG 3

1

=

,BG ⊥GC ,GB =GC =2,E 是BC 的中点. (1)求异面直线GE 与PC 所成的角的余弦值; (2)求点D 到平面PBG 的距离;

(3)若F 点是棱PC 上一点,且DF ⊥GC ,求

FC

PF

的值. 解:(1)以G 点为原点,GC 、、

为x 轴、y 轴、z 轴建立空间直角坐标系,则B (2,0,0),C (0,2,0), P (0,0,4),故E (1,1,0),GE =(1,1,0), PC =(0,2,4)。1010

20

22cos =?<,,

y

P

A

G

B

C

D

F

E

∴GE 与PC 所成的余弦值为

10

10

. (2)平面PBG 的单位法向量n =(0,±1,0) .

∵)02323(4343,,-===

BC ,∴点D 到平面PBG 的距离为?GD |n |=2

3. (3)设F (0,y ,z ),则)23

23()02323()0(z y z y ,,,,,,-=--=。

∵GC DF ⊥,∴0=?GC DF ,即032)020()2

3

23(=-=?-y z y ,,,,,

∴23=y , 又PC PF λ=,即(0,2

3

,z -4)=λ(0,2,-4), ∴z =1,

故F (0,

3

,1) ,)1210()3230(-=-=,,,,,PF ,∴

3PF PC ==。 (1) 共线与共面问题;(2) 平行与垂直问题;(3) 夹角问题;(4) 距离问题;(5) 探索

性问题.

运用向量来解决它们有时会体现出一定的优势.用空间向量解题的关键步骤是把所求向量用某个合适的基底表示,本节主要是用单位正交基底表示,就是适当地建立起空间直角坐标系,把向量用坐标表示,然后进行向量与向量的坐标运算,最后通过向量在数量上的关系反映出向量的空间位置关系,从而使问题得到解决.在寻求向量间的数量关系时,一个基本的思路是列方程,解方程.

人教A版高中数学《平面向量的线性运算》教学设计

2.2《平面向量的线性运算》教学设计 【教学目标】 1.掌握向量的加、减法运算,并理解其几何意义; 2.会用向量加、减的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 4.掌握实数与向量的积的定义以及实数与向量的积的三条运算律,会利用实数与向量的积的运算律进行有关的计算; 5.理解两个向量平行的充要条件,能根据条件判断两个向量是否平行; 6.通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想. 【导入新课】 设置情景: 1、 复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、 情景设置: (1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:AC BC AB =+ (2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:=+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:=+ (4)船速为AB ,水速为,则两速度和:AC =+ 新授课阶段 一、向量的加法 A B C A C A B C

O A a a a b b b 1.向量的加法:求两个向量和的运算,叫做向量的加法. 2.三角形法则(“首尾相接,首尾 连”) 如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a. 探究:(1)两相向量的和仍是一个向量; (2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且 |a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |. (4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加. 例1 已知向量a 、b ,求作向量a +b . 作法:在平面内取一点,作a OA = b AB =,则b a OB +=. 4.加法的交换律和平行四边形法则 问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应); A B C a +b a +b a a b b a b b aa

空间向量与立体几何(整章教案)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教

材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 ②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合, 则这些向量叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平 行直线;当我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与

人教A版高中数学必修四 2.4 《平面向量的数量积》教案

§2.4平面向量的数量积 教学目的: 1.掌握平面向量的数量积及其几何意义; 2.掌握平面向量数量积的重要性质及运算律; 3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题; 4.掌握向量垂直的条件. 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课 教 具:多媒体、实物投影仪 内容分析: 本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生 推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识 点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积 的运算律. 教学过程: 一、复习引入: 1. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ, 使b =λa . 2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内 的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e 3.平面向量的坐标表示 分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面 向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

空间向量高中数学教案课程

空间向量 考纲导读 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式; 掌 握 空 间 两 点 间 的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是:

1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量. (2) 向量相等:方向 且长度 . (3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 .(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论: .5.空间向量基本定理 (1) 空间向量的基底: 的三个向量. 2.线性运算律 (1) 加法交换律:a +b = .

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

高中数学教案:2.1.1 向量的概念

课 时 教 案 第 二 单元 第 1 案 总第 18 案 课题 2.1.1向量的概念 2011年 5月17日 教学目标 理解向量、零向量、单位向量、模的意义和向量的几何表示,会用字母表示向量 培养学生的唯物辩证思想和分析辨别能力 了解平行向量、共线向量和相等向量的意义,会判断向量间共线、相等的关系 教学重点 理解向量、零向量、单位向量、向量的模的意义 了解平行向量、共线向量和相等向量的意义 使学生对现实生活的向量和数量有一个清楚的认识 教学难点 理解向量的几何表示,会用字母表示向量 了解平行向量、共线向量和相等向量的意义 高考考点 理解向量、零向量、单位向量、向量的模的意义 理解向量的几何表示,会用字母表示向量 课 型 新授课 教 具 多媒体、三角板、投影仪 教 法 讲练结合 教 学 过 程 教师活动预设 学生活动预设 复习引入 在物理中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.还有一些量,如我们所学习的力、位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量 师:(边画图边讲解)美国“小鹰”号航空母舰导弹发射处接到命令:向1200公里处发射两枚战斧式巡航导弹(精度10米左右,射程超过2000公里),试问导弹是否能击中伊拉克的军事目标? 不能,因为没有给定发射的方向 现实生活中还有哪些量既有大小又有方向?哪些量只有大小没有方向? 力、速度、加速度等有大小也有方向, 温度和长度只有大小没有方向. 讲解新课 向量的概念:我们把既有大小又有方向的量叫向量 注意:数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小 说明:1.有向线段是向量最好的模型 2.向量不能比较大小 有向线段的三要素:起点、方向、长度 以A 为起点、B 为终点的有向线段记作 向量的表示方法:几何方法 代数符号 ①用有向线段表示; ②用字母,a b r r 等表示; ③用有向线段的起点与终点字母:AB u u u r ; ④向量AB 的大小(长度)称为向量的模,记作|AB u u u r |.

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

空间向量及其线性运算(教案)

课 题:空间向量及其线性运算 教学目标: 1.运用类比方法,经历向量及其运算由平面向空间推广的过程; 2.了解空间向量的概念,掌握空间向量的线性运算及其性质; 3.理解空间向量共线的充要条件 教学重点:空间向量的概念、空间向量的线性运算及其性质; 教学难点:空间向量的线性运算及其性质。 教学过程: 一、创设情景 1、蚂蚁爬行的问题引入为什么要研究空间向量. 2、平面向量的概念及其运算法则; 二、建构数学 1.空间向量的概念: 在空间,我们把具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量 ⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算 定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图) b a AB OA OB +=+= b a -=-= )(R a ∈=λλ 运算律: ⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3.平行六面体: 平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A '''',它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。 4.共线向量 与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向 量叫做共线向量或平行向量.a 平行于b 记作b a //. 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同 一直线,也可能是平行直线. 5.共线向量定理: 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,

最新人教版高中数学《平面向量》全部教案

人教版高中数学《平面向量》全部教案

第五章 平面向量 第一教时 教材:向量 目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与 已知向量相等,根据图形判定向量是否平行、共线、相等。 过程: 一、开场白:课本P93(略) 实例:老鼠由A 向西北逃窜,猫在B 处向东追去, 问:猫能否追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了。 二、提出课题:平面向量 1.意义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量 等 注意:1?数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 2?从19世纪末到20世纪初,向量就成为一套优良通性的数学体 系,用以研究空间性质。 2.向量的表示方法: 1?几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 A B A(起点) B (终 a

记作(注意起讫) 2?字母表示法:可表示为(印刷时用黑体字) P95 例 用1cm 表示5n mail (海里) 3.模的概念:向量AB 的大小——长度称为向量的模。 记作:|| 模是可以比较大小的 4.两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意0与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 例:温度有零上零下之分,“温度”是否向量? 答:不是。因为零上零下也只是大小之分。 例:与是否同一向量? 答:不是同一向量。 例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。 三、向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:a ∥b ∥c 规定:0与任一向量平行 2.相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= a b c

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

人教版高中数学《平面向量》全部教案

第五章 平面向量 第一教时 教材:向量 目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。 过程: 一、开场白:课本P93(略) 实例:老鼠由A 向西北逃窜,猫在B 处向东追去, 问:猫能否追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了。 二、 提出课题:平面向量 1.意义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量 等 注意:1?数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大 小; 向量有方向,大小,双重性,不能比较大小。 2?从19世纪末到20世纪初,向量就成为一套优良通性的数学 体系,用以研究空间性质。 2. 向量的表示方法: 1?几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) 2?字母表示法:可表示为(印刷时用黑体字) P95 例 用1cm 表示5n mail (海里) 3. 模的概念:向量 记作:|| 模是可以比较大小的 4. 两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 例:温度有零上零下之分,“温度”是否向量? 答:不是。因为零上零下也只是大小之分。 例:与是否同一向量? A B A(起点) B (终点) a

答:不是同一向量。 例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。 三、 向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:∥∥ 规定:与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 = = = 例:(P95)略 变式一:与向量长度相等的向量有多少个?(11个) 变式二:是否存在与向量长度相等、方向相反的向量?(存在) 变式三:与向量共线的向量有哪些?(,,) 四、 小结: 五、 作业:P96 练习 习题5.1 第二教时 教材:向量的加法 目的:要求学生掌握向量加法的意义,并能运用三角形法则和平行四边形法则作 几个向量的和向量。能表述向量加法的交换律和结合律,并运用它进行向 量计算。 过程: 六、复习:向量的定义以及有关概念 强调:1?向量是既有大小又有方向的量。长度相等、方向相同的向量相等。 2?正因为如此,我们研究的向量是与起点无关的自由向量,即任何 向量可以在不改变它的方向和大小的前提下,移到任何位置。 七、 提出课题:向量是否能进行运算? 5.某人从A 到B ,再从B 按原方向到C , 则两次的位移和:=+ a b c A B C

(完整)空间向量__新高中数学教学教学教案

欢迎阅读 空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距 离公式. 理解空 间向量的夹角的概念;掌握空间向量的数量积的概念、 性质和运算律;了解空间 向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广.本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量.(2) 向量相等:方向 且长度 .(3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 . (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. 基础过关 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直 2.线性运算律 (1) 加法交换律:a +b = . (2) 加法结合律:(a +b )+c = .(3) 数乘分配律:λ(a +b )= .

高中数学必修4第二章平面向量教案完整版

§ 平面向量的实际背景及基本概念 1、数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:; ④向量的大小――长度称为向量的模,记作||. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别: (1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念: ①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段..... 的起点无关..... . 7、共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)..... . 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. A(起点) B (终点) a

2018年北师大版高中数学选修2-1第二章《空间向量与立体几何》教案

北师大版高中数学选修2-1第二章《空间向量与立体几何》 第一课时平面向量知识复习 一、教学目标:复习平面向量的基础知识,为学习空间向量作准备 二、教学重点:平面向量的基础知识。教学难点:运用向量知识解决具体问题 三、教学方法:探究归纳,讲练结合 四、教学过程 (一)、基本概念 向量、向量的模、零向量、单位向量、平行向量、相等向量、共线向量、相反向量、向量的加法、向量的减法、实数与向量的积、向量的坐标表示、向量的夹角、向量的数量积。(二)、基本运算 1、向量的运算及其性质

2、平面向量基本定理: 如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且 只有一对实数21,λλ,使a = ; 注意)(2 1 OB OA OP += ,OA OA OP )1(λλ-+=的几何意义 3、两个向量平行的充要条件: ⑴ //a b 的充要条件是: ;(向量表示) ⑵ 若),(),,(2211y x b y x a == ,则//a b 的充要条件是: ;(坐标表示) 4、两个非零向量垂直的充要条件: ⑴ a b ⊥ 的充要条件是: ;(向量表示) ⑵ 若),(),,(2211y x b y x a == ,则a b ⊥ 的充要条件是: ;(坐标表示) (三)、课堂练习 1.O 为平面上的定点,A 、B 、C 是平面上不共线的三点,若( -)·(+-2)=0,则?ABC 是( ) A .以A B 为底边的等腰三角形B .以B C 为底边的等腰三角形 C .以AB 为斜边的直角三角形 D .以BC 为斜边的直角三角形 2.P 是△ABC 所在平面上一点,若?=?=?,则P 是△ABC 的( ) A .外心B .内心 C .重心D .垂心 3.在四边形ABCD 中,?→ ?AB =?→?DC ,且?→?AC ·?→ ?BD =0,则四边形ABCD 是( ) A . 矩形 B . 菱形 C .直角梯形 D .等腰梯形 4.已知||p = ||3q = ,p 、q 的夹角为45?,则以52a p q =+ ,3b p q =- 为邻边的 平行四边形的一条对角线长为( )

高中数学_第一节 向量的加法教学设计学情分析教材分析课后反思

《2.1.2向量的加法》的教学设计 一、教材分析 《普高中课程标准数学教科书数学(必修(4))》(人教(B版))。第二章2.1平面向量的线性运算的第二节“向量的加法”(80--83页)。高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用。另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具。教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的长度、相等的向量、零向量以及平行向量等基本概念。而本节课是继向量基本概念的第一节课。向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础。它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用。正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限。 二、学情分析 学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。 三、设计理念 教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。 四、教学目标

相关文档
最新文档