第四章-2 信号与系统第二章
信号与系统课件:第二章 LTI系统

2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2
信号与系统第二章习题

rt et ht
sin tut ut 1ut ut 1
t
0
sin
d
τ
u
t
ut
2
1
t 1
sin
τ
d
τut
u
t
2
1 1 costut ut 2
X
20
第
例2-4 计算卷积 f1(t) f2(t),并画出波形。
页
f1 t
f2 t
2
1
1 e t1u t 1
则得
A1 A2 3 3A1 2A2 2
解得
A1 A2
4 7
代入(1)得
ht 4e2t 7e3t ut X
18
例2-3
第
页
已知线性时不变系统的一对激励和响应波形如下图所示,
求该系统对激励的 et sin tut ut 1零状态响应。
et
r t
1
1
O 12
t
对激励和响应分别微分一次,得
t0
因为特解为3,所以 强迫响应是3,自由响应是 4 et e2t
X
12
方法二
第
页
零状态响应rzs t是方程
d2 r dt
t
2
3
dr d
t
t
2r
t
2
t
6ut
且满足rzs 0 rzs0 0的解
(5)
由于上式等号右边有 t项 ,故rzst应含有冲激函数,
从而rzs t 将发生跳变,即 rzs 0 rzs 0
d2 rt 3 d rt 2rt 0
dt2
dt
《信号与系统教案》课件

《信号与系统教案》课件第一章:信号与系统概述1.1 信号的概念与分类定义:信号是自变量为时间(或空间)的函数,用以描述物理现象、信息传输等。
分类:模拟信号、数字信号、离散信号、连续信号等。
1.2 系统的概念与分类定义:系统是由信号输入与输出之间关系构成的一个实体。
分类:线性系统、非线性系统、时不变系统、时变系统等。
1.3 信号与系统的处理方法信号处理:滤波、采样、量化、编码等。
系统处理:稳定性分析、频率响应分析、时域分析等。
第二章:连续信号及其运算2.1 连续信号的基本运算叠加原理、时移原理、微分、积分等。
2.2 连续信号的傅里叶级数傅里叶级数的概念与性质。
连续信号的傅里叶级数展开。
2.3 连续信号的傅里叶变换傅里叶变换的概念与性质。
连续信号的傅里叶变换公式。
第三章:离散信号及其运算3.1 离散信号的基本运算叠加原理、时移原理、差分、求和等。
3.2 离散信号的傅里叶变换离散信号的傅里叶变换的概念与性质。
离散信号的傅里叶变换公式。
3.3 离散信号的Z变换Z变换的概念与性质。
离散信号的Z变换公式。
第四章:数字信号处理概述4.1 数字信号处理的基本概念数字信号处理的定义、特点与应用。
4.2 数字信号处理的基本算法滤波器设计、快速傅里叶变换(FFT)等。
4.3 数字信号处理硬件实现数字信号处理器(DSP)、Field-Programmable Gate Array(FPGA)等。
第五章:线性时不变系统的时域分析5.1 线性时不变系统的定义与性质线性时不变系统的数学描述。
线性时不变系统的特点。
5.2 系统的零状态响应与零输入响应零状态响应的定义与求解。
零输入响应的定义与求解。
5.3 系统的稳定性分析系统稳定性的定义与判定方法。
常见系统的稳定性分析。
第六章:频率响应分析6.1 频率响应的概念系统频率响应的定义。
频率响应的性质和特点。
6.2 频率响应的求取直接法、间接法求取频率响应。
频率响应的幅频特性和相频特性。
信号与系统第二章第一讲

则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
《信号与系统》课后习题参考答案

《信号与系统》课后习题参考答案第二章 连续信号与系统的时域分析2-9、(1)解:∵系统的微分方程为:)(2)(3)(t e t r t r '=+',∴r(t)的阶数与e(t) 的阶数相等,则h(t)应包含一个)(t δ项。
又∵系统的特征方程为:03=+α,∴特征根3-=α∴)()(2)(3t u Ae t t h t -+=δ∴)]()(3[)(2)(33t e t u e A t t h t t δδ--+-+'=')()(3)(23t A t u Ae t t δδ+-'=-将)(t h 和)(t h '代入微分方程(此时e(t)= )(t δ),得:)()(3)(23t A t u Ae t t δδ+-'-+3)(2)]()(2[3t t u Ae t t δδ'=+-∴A=-6则系统的冲激响应)(6)(2)(3t u et t h t --=δ。
∴⎰⎰∞--∞--==t td ue d h t g τττδτττ)](6)(2[)()(3⎰∞-=t d ττδ)(2⎰∞---t d u e τττ)(63 )()(6)(203t u d e u t t ⎰-∞--=τττ )()3(6)(203t u e t u t --=-τ)()1(2)(23t u e t u t -+=- )(23t u e t -=则系统的阶跃响应)(2)(3t u et g t -=。
2-11、解:①求)(t r zi : ∵系统的特征方程为:0)3)(2(652=++=++αααα,∴特征根:21-=α,32-=α ∴t t zi e C eC t r 3221)(--+= (t ≥0) ②求)(t r zs :t t e A eA t h 3221)(--+= (t ≥0),可求得:11=A ,12-=A (求解过程略) ∴)()()(32t u e e t h t t ---=∴)(*)()(*)()]()[(*)()(*)()(3232t u e t u e t u e t u e t u e e t u e t h t e t r t t t t t t t zs --------=-==)()2121()()(21)()(3232t u e e e t u e e t u e e t t t t t t t -------+-=---= ③求)(t r :)(t r =)(t r zi +)(t r zs ++=--)(3221t te C e C )2121(32t t t e e e ---+- t tt e C e C e 3221)21()1(21---++-+= (t ≥0) ∵)()(t u Ce t r t -=,21=C 21=C ∴ 011=-C , ∴ 11=C0212=+C 212-=C ∴=-)0(r 21211)0(21=-=+=+C C r zi , ='-)0(r 2123232)0(21-=+-=--='+C C r zi 2-12、解:(1)依题意,得:)(2)(*)()(t u e t h t u t r tzi -=+)()()(t t h t r zi δ=+∴)(2)]()([*)()(t u e t r t t u t r t zi zi -=-+δ)(2)()()()1(t u e t r t u t r t zi zi --=-+∴)()12()()()1(t u e t r t r t zi zi -=---,两边求导得:)()12()(2)()(t e t u e t r t r t t zi ziδ-+-=-'-- )(2)()()(t u e t t r t r t zi zi--=-'δ ∴)(11)(112)()()1(t p p t p t t r p zi δδδ+-=+-=- ∴)()(11)(t u e t p t r t zi -=+=δ (2)∵系统的起始状态保持不变,∴)()(t u e t r t zi -=∵)()()(t t h t r zi δ=+,∴)()()(t u e t t h t--=δ∴)]()([*)()()(*)()()(33t u e t t u e t u e t h t e t r t r t t t zi ----+=+=δ )()()(t u te t u e t u e tt t ----+=)()2(t u e t t --= 2-16、证:∑∑∞-∞=--∞-∞=--=-=k k t k t k t u e k t t u e t r )3()3(*)()()3(δ∑∞-∞=--=k k t k t u e e )3(3 ∵当t-3k>0即3t k <时:u(t-3k)为非零值 又∵0≤t ≤3,∴k 取负整数,则:3003311)(---∞=∞=----===∑∑e e e e e et r t k k k t k t 则t Ae t r -=)(,且311--=e A 。
张宇-信号与系统各章内容整理48学时【最新】

第一章 信号与系统主要内容重点难点1.信号的描述x[n]、x (t ),两者不同之处2.【了解】 信号的功率和能量3.【掌握】自变量变换(计算题目)、理解变换前后图片的缩放或信号的变化4.【了解】 常见信号:指数(j t j n e e w w 、)、正弦(cos cos t n w w 、)、单位冲激(()[]t n d d 、)、单位阶跃(()[]u t u n 、)5.【掌握】用阶跃函数表示矩形函数;冲激与阶跃信号的关系;冲激信号的提取作用;指数信号和正弦信号的周期性。
6.【了解】系统互联7.【掌握】系统的基本性质:记忆与无记忆性、可逆性、因果性、稳定性、时不变与线性。
对已知系统进行性质判断(掌握)1.3、5、71.00cos j n n e w w 、的周期性判断,是周期的条件,若是周期的,则周期:2.00cos j tt e w w 、的周期:自变量变换的量值确定0cos j n n e w w 、的周期性和频率逆转性。
系统的时不变性与线性等性质的证明2T ωπ=02N mωπ=第二章 线性时不变系统第三章 周期信号的傅里叶级数表示FS本章内容安排基本思路:主要内容难点 ✧ 系统的单位冲激响应容易求出:令 ()()x t t d =,对应的输出即为单位冲激响应() h t ;✧ 将任意信号分解为冲激信号()[]t n d d 、的线性组合[][][]; ()()()k x n x k n k x t x t d d t d t t ¥¥-=-=-=-åò✧ 利用L TI 系统的线性和时不变性,在单位冲激响应[]() h t h n 、已知的情况下,推导连续时间和离散时间系统对任意输入x 的响应:[][][]y n =x n * h n ; y(t)=x(t)* h(t)✧ 利用输入输出的卷积关系,根据单位冲激响应[]() h t h n 、,判断ITI 系统的性质1.【掌握】卷积和2.【掌握】卷积积分3.【掌握】用[]() h t h n 、判断L TI 的性质 4.【理解】 初始松弛 5. 【掌握】任意信号与冲激信号、阶跃函数的卷积性质(对比1章冲激信号抽取作用)卷积运算中,求和或者求积时,上下限的确定本章内容安排基本思路:主要内容难点第四章 连续时间傅里变换CFT✧ L TI 系统对复指数信号st ne z 、响应容易求得:()st H s e 、()n H z z 其中()()s H s h e d t t t +--=ò、()[]kk H z h k z+-=-=å✧ 将周期信号分解为0jk tew 的线性组合,即傅立叶级数表示式:()()()0021jk tjk tTk k k k jk t k Tx t a e a e a x t e dt T πωω+∞+∞=-∞=-∞-⎧==⎪⎪⎨⎪=⎪⎩∑∑⎰✧ 傅立叶级数收敛条件分析✧ 从频域分析系统对信号的作用(3.9、3.10)1.【掌握】连续时间周期信号的傅立叶级数公式,求常见信号的傅立叶级数 2.【掌握】收敛条件、傅立叶截断时的吉伯斯现象3..【理解】滤波和频谱的概念,能够判断信号是否能通过一确定的滤波器 5.【掌握】RC 回路实现的滤波器的滤波特性分析,滤波器设计时的折衷思想。
信号与系统课后习题答案
习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
信号与线性系统第二章
i=1
系统方程的 算子表示法
系统的 零输入响应
奇异函数
信号的 脉冲分解
阶跃响应和 冲激响应
叠加积分
卷积及其性质
线性系统响应 的时域求解
三、零输入响应法求解系统的冲激响应
⎪⎧h(n−1) (0+ ) = 1
⎨ ⎪⎩h
(
线性系统响应 的时域求解
二阶系统 求解得:
�求解c1、c2
系统方程的 算子表示法
系统的 零输入响应
奇异函数
信号的 脉冲分解
阶跃响应和 冲激响应
叠加积分
卷积及其性质
线性系统响应 的时域求解
n阶系统
可以写成: 均为单根时,求解得: 有重根的情况:
系统方程的 算子表示法
系统的 零输入响应
奇异函数
信号的 脉冲分解
f(t ) = Aε(t ) − Aε(t − τ )
有始周期矩形脉冲: f(t ) = Aε(t ) − Aε(t − τ ) + Aε(t − T ) − Aε(t − T − τ )
+ Aε(t − 2T ) − Aε(t − 2T − τ ) + ⋅ ⋅ ⋅
∞
= A∑[ε(t − nT ) − ε(t − nT − τ )] n =0
卷积及其性质
线性系统响应 的时域求解
t
f(t ) = ∫0f(τ )δ(t − τ )dτ
系统方程的 算子表示法
系统的 零输入响应
奇异函数
信号的 脉冲分解
阶跃响应和 冲激响应
叠加积分
卷积及其性质
信号与系统总结
第一章 信号与系统分析导论一.信号的描述及分类信号是消息的表现形式与传送载体,消息则是信号的具体内容。
1. 信号的分类:(1)从信号的确定性划分:确定信号 与 随机信号(2)从信号在时间轴上取值是否连续划分:连续信号 与 离散信号 (3)从信号的周期性划分:周期信号 与 非周期信号 (4)从信号的可积性划分:能量信号 与 功率信号 重点讨论:确定信号 特别注意:离散信号 的自变量 要求取整数 2. 能量信号定义: 0 < W < ∞,P = 0。
功率信号定义: W → ∞,0 < P < ∞。
直流信号与周期信号都是功率信号。
二.系统的描述及其分类 1. 描述:(1)数学模型输入输出描述:N 阶微分方程或N 阶差分方程状态空间描述:N 个一阶微分方程组或N 个一阶差分方程组 (2)方框图表示 2. 分类:(一)连续时间系统 与 离散时间系统 (二)线性系统 与 非线性系统 无初始状态:线性:均匀特性 与 叠加特性 见教案例1-3 若: 有:其中 α 、β 为任意常数-------线性系统线性系统的数学模型是线性微分方程式或线性差分方程式 含有初始状态:见教案例1-4完全响应、零输入响应、零状态响应定义从三方面判别:1、具有可分解性: 2、零输入线性3、零状态线性(三)时不变系统 与 时变系统 见教案例1-5 时不变特性:[]k f k )()(),()(2211t y t f t y t f −→−−→−)()()()(2121t y t y t f t f ⋅+⋅−→−⋅+⋅βαβα)()()(t y t y t y f x +=)()(t y t f f −→−)()(00t t y t t f f -−→−-线性时不变系统数学模型:定常系数的线性微分方程式或差分方程式 线性时不变性的判别见教案总结 (四)因果系统 与 非因果系统 -----为因果系统----------非因果系统 (五)稳定系统 与 不稳定系统 本课程重点讨论线性时不变系统 三:信号与系统分析概述1. 信号分析:核心是信号分解2. 系统分析:主要任务是建立系统的数学模型,求线性时不变系统的输出响应学习要求:1. 掌握信号的定义及分类;2. 掌握系统的描述、分类及特性;3. 重点掌握确定信号及线性时不变系统的特性。
信号与系统第二章习题与答案
第二章习题与答案1.求以下序列的z 变换并画出零极点图和收敛域。
分析:Z 变换概念∑∞-∞=-==n nzn x z X n x Z )()()]([,n 的取值是)(n x 的有值范围。
Z 变换的收敛域 是知足∞<=∑∞-∞=-M zn x n n)(的z 值范围。
解:(1) 由Z 变换的概念可知:∞====<<<<z z az a z az a z a az ,0 1, 11,1 零点为:极点为:即:且收敛域:)(21)()2(n u n x n⎪⎭⎫⎝⎛=)1(21)()3(--⎪⎭⎫⎝⎛-=n u n x n)1(,1)()4(≥=n nn x 为常数)00(0,)sin()()5(ωω≥=n n n n x 10,)()cos()()6(0<<+=r n u n Ar n x n Φω)1||()()1(<=a an x nnn nzaz X -∞-∞=⋅=∑)(nn n nn n z a za-∞=---∞=-∑∑+=1nn n nn n z a z a -∞=∞=∑∑+=01))(1()1()1)(1(1111212a z az a z a az az a za az az ---=---=-+-=-解:(2) 由z 变换的概念可知:n n nz n u z X -∞-∞=∑=)()21()( ∑∞=-=0)21(n n n z 12111--=z 211121><⋅z z 即:收敛域: 0 21==z z 零点为:极点为:解:(3)nn n z n u z X -∞-∞=∑---=)1()21()(∑--∞=--=1)21(n n n z∑∞=-=12n n n z zz212--= 12111--=z 21 12 <<z z 即:收敛域:0 21 ==z z 零点为:极点为: 解: (4) ∑-⋅∞==11)(n nz n z X∑∞--=-=•••11)(1)(n n z n n dz z dX 21)(11z z z n n -=-=∑∞=-- ,1||>z。