第一章单元过关

合集下载

第一章 集合与常用逻辑用语单元检测试卷(基础过关)(原卷版)

第一章 集合与常用逻辑用语单元检测试卷(基础过关)(原卷版)

第一章 集合与常用逻辑语言 单元检测试卷(基础过关)一、单选题1.对于命题:p x R ∃∈,使得210x x ++<,则p ⌝是( )A.:p x R ⌝∀∈,210x x ++>B.:p x R ⌝∃∈,210x x ++≠C.:p x R ⌝∀∈,210x x ++≥D.:p x R ⌝∃∈, 210x x ++< 2.若{}2{1,4,},1,A x B x==且B A ⊆,则x =( ) A.2± B.2±或0 C.2±或1或0 D.2±或±1或03.集合{}*|421A x x N =--∈,则A 的真子集个数是( )A.63B.127C.255D.511 4.集合3{|40}M x x x =-=,则M 的子集个数为( )A.2B.3C.4D.85.设集合A ={0,1,2},B ={m |m =x +y ,x ∈A ,y ∈A },则集合A 与B 的关系为( )A.A B ∈B.A B =C.B A ⊆D.A B ⊆6.设全集为R ,集合{}A |10x x =->,{}B |||2x x =>,则集合()R A B (⋃= ) A.{|1}x x ≤B.{|2x x <-或1}x >C.{|12}x x ≤<D.{|1x x ≤或2}x >7.下列命题错误的是( ) A .命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”B .命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+<”C .若“p 且q ”为真命题,则p ,q 均为真命题D .“1x >-”是“2430x x ++>”的充分不必要条件8.设集合A 是集合*N 的子集,对于*i ∈N ,定义1,()0,i i A A i A ϕ∈⎧=⎨∉⎩,给出下列三个结论:①存在*N 的两个不同子集,A B ,使得任意*i ∈N 都满足()0i A B ϕ=且()1i A B ϕ=;②任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i AB ϕ=()i A ϕ()i B ϕ;③任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i AB ϕ=()+i A ϕ()i B ϕ;其中,所有正确结论的序号是( )A.①②B.②③C.①③D.①②③二、多选题 9.下列说法中正确的是( )A.“A B B =”是“B =∅”的必要不充分条件B.“3x =”的必要不充分条件是“2230x x --=”C.“m 是实数”的充分不必要条件是“m 是有理数”D.“1x =”是“1x =”的充分条件10.设非空集合P ,Q 满足P Q Q ⋂=,且P Q ≠,则下列选项中错误的是( ).A.x Q ∀∈,有x P ∈B.x P ∃∈,使得x Q ∉C.x Q ∃∈,使得x P ∉D.x Q ∀∉,有x P ∉11.下列与集合1(,)|30x y M x y x y ⎧+=⎧⎫=⎨⎨⎬--=⎩⎭⎩表示同一个集合的有( ) A.{(2,1)}-B.{2,1}-C.{(,)|2,1}x y x y ==-D.{2,1}x y ==-E.{(1,2)}-三、填空题12.若集合{}12A x x =≤≤,集合{}B x x k =≥,若A B ⋂≠∅,则k 的取值范围是______.13.已知命题:1p x <-或3x >,命题:31q x m <+或2x m >+,若p 是q 的充分非必要条件,则实数m 的取值范围是________14.已知集合A ={|x x =21,},3n n B +∈Z ={|x x =21,}3n n Z +∈,则集合A B 、的关系为__________. 15.已知全集{}22,3,23U a a =+-,若{},2A b =,{}5U C A =,则实数的a =____________,b =_________.四、解答题16.已知集合{}2,,1,,,0y A x B x x y x ⎧⎫==+⎨⎬⎩⎭,若A B =,求20192018x y +的值.17.已知集合{}2|2A x x -=≤≤,集合{}|1B x x =>.(1)求()R C B A⋂;(2)设集合{}|6M x a x a =<<+,且A M M ⋃=,求实数a 的取值范围.18.设集合A {x |a 1x 2a,a R}=-<<∈,不等式2x 2x 80--<的解集为B.()1当a 0=时,求集合A ,B ;()2当A B ⊆时,求实数a 的取值范围.19.已知命题:“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题.(1)求实数m 的取值集合B ;(2)设不等式(3)(2)0x a x a ---<的解集为A ,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.20.已知两个关于x 的一元二次方程2440mx x -+=和2244450x mx m m -+--=,求两方程的根都是整数的充要条件.21.给定数集A ,若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合.(1)判断集合{4,2,0,2,4},{|3,}A B x x k k Z =--==∈是否为闭集合,并给出证明.(2)若集合A ,B 为闭集合,则A B 是否一定为闭集合?请说明理由. (3)若集合A ,B 为闭集合,且,A R B R ,求证:()A B R ⋃.。

青岛版2020九年级数学上册第一章图形的相似单元综合基础过关练习题(附答案详解)

青岛版2020九年级数学上册第一章图形的相似单元综合基础过关练习题(附答案详解)
求证:相似三角形面积的比等于相似比的平方
22.已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.
(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;
27.在如图所示的两个相似的四边形中,求x,y,∠α的值.
28.如图所示,两个四边形相似,求未知数x,y和角度α的大小.
29. 中, , , , 、 分别为 , 上的两动点, 从点 开始以 的速度向点 运动, 从点 开始以 的速度向点 运动,当一点到达终点时, 、 两点就同时停止运动.设运动时间为 .
4.如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有( )
A.①②③B.①②④C.①③④D.②③④
5.若一对相似三角形的相似比为 ,则这对三角形的面积比为()
A.1:3B.3:1C.1:9D.1:
6.如图,在 中,点D为AC边上一点, 则CD的长为()
解得:r=5.
答:小桥所在圆的半径为5米.
故选:B.
【点睛】
此题主要考查了相似三角形的应用,勾股定理以及垂径定理的应用,根据已知得出关于r的等式是解题关键.
4.B
【解析】
【分析】
根据相似三角形的判定定理对各选项进行逐一判定即可.
【详解】
①阴影部分的三角形与原三角形有两个角相等,故两三角形相似;
②阴影部分的三角形与原三角形有两个角相等,故两三角形相似;
17.两角分别相等的两个三角形___________.

第一单元过关单

第一单元过关单

第一单元知识单元练习
一、给下列加点字注音。

眸.子( ) 镜匣.( ) 嗜.好( ) 半亩.( ) 吩咐
..(.) 趴.下( ) 榨.油()箩.筐()浸.泡()缠.绕( )
二、多音字组词。

觉jué ( )难nàn ( )处chǔ( )
jiào ( )nàn ( ) chù() 便biàn ( ) 钻 zuān ( ) 待dāi ( )
pián ( ) zuàn()dài ( )
三、写出近义词
适宜一()爱慕一()舒适一()精巧一( ) 悠然一( ) 担心一( ) 茂盛一( )
四、认识反义词
生硬一( ) 细腻—( ) 信赖一( )
寻常一( ) 忘却一( ) 爱慕一( )
五、垂点词积累
1.词语搭配。

( )的诗()的菱毛 ( )的鸣叫()的垂蔓( )地印在 ( )地写( )地站立 ( )地钻出2.补充词语。

增之一()素之一( ) ( )中不足香( )十里神气十( )
六、写出下列句子的修辞手法。

1.白鹭实在是一首诗,首韵在骨子里的散文诗。

()
2.它好肥,整个身子好像一个蓬松的球儿。

()
3.但是白鹭本身不就是一首很优美的歌吗?( )
4.那雪白的養毛,那全身的流线型结构,那铁色的长球,那青色的脚,增之一分则嫌长,减之一分则嫌短,素之一忽则嫌白,黛之一忽则嫌黑。

()
七、默写古诗《蝉》。

北师大版2020九年级数学上册第一章特殊平行四边形单元综合基础过关测试题4(附答案详解)

北师大版2020九年级数学上册第一章特殊平行四边形单元综合基础过关测试题4(附答案详解)

北师大版2020九年级数学上册第一章特殊平行四边形单元综合基础过关测试题4(附答案详解)1.如图,已知矩形ABCD 中,BC =2AB ,点E 在BC 边上,连接DE 、AE ,若EA 平分∠BED,则ABE CDE S S 的值为()A .232-B .2332-C .2333-D .233- 2.如图,四边形ABCD 是正方形,点E 、F 分别在线段BC 、DC 上,线段AE 绕点A 逆时针旋转后与线段AF 重合.若40BAE ︒∠=,则旋转的角度是( )A .10︒B .15︒C .40︒D .50︒3.如图,菱形ABCD 的边长为2,45B ∠=︒,AE BC ⊥,则这个菱形的面积是( )A .4B .8C .22D .24.如图,在正方形ABCD 中,4AB =,E 是对角线AC 上的动点,以DE 为边作正方形DEFG ,H 是CD 的中点,连接GH ,则GH 的最小值为( )5.如图P 是等腰三角形ABC 斜边AB 上一个动点,连结CP ,设22x PA PB =+,2y PC =,则下列关于x 与y 关系式正确的是( )A .22x y =B .2x y =C .222x y =D .2x y = 6.如图,已知O 是矩形ABCD 的对角线的交点,∠AOB=60°,作DE ∥AC ,CE ∥BD ,DE 、CE 相交于点E.四边形OCED 的周长是20,则BC=( )A .5B .53C .10D .1037.如图,在Rt ABC 中,90ACB ∠=︒,点D 是AC 上一点,连接BD ,P 点是BD 的中点,若D A BA ∠=∠,8AD =,则CP 的长为( ).A .8B .4C .16D .68.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 上一点,且AB =BE ,∠1=15°,则∠2的度数是( )A .25°B .30°C .35°D .15°9.如图,在ABC 中,90BAC ∠=︒,点D 在BC 的延长线上,且12AD BC =,若40D ∠=︒,则B ∠=( )A .20︒B .30C .15︒D .10︒10.如图,在正方形ABCD 的外侧,作等边△ADE ,AC 、BE 相交于点F ,则∠EFC 为( )A .135°B .145°C .120°D .165°11.如图,矩形ABCD 中,15cm AB =,点E 在AD 上,且9cm AE =,连接EC ,将矩形ABCD 沿直线BE 翻折,点A 恰好落在EC 上的点A'处,则'A C =____________cm .12.如图,菱形ABCD 对角线AC=6cm ,BD=8cm ,AH ⊥BC 于点H ,则AH 的长为_______.13.如图,点E 在正方形ABCD 的边CD 上,以CE 为边向正方形ABCD 外部作正方形CEFG ,O 、O′分别是两个正方形的对称中心,连接OO′.若AB =3,CE =1,则OO′=________.14.E F G H 、、、依次为四边形ABCD 各边的中点,若四边形ABCD 满足__________,那么四边形EFGH 是矩形;若四边形ABCD 满足__________,那么四边形EFGH 是菱形.15.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.16.如图,以ABC 的三边为边分别向三角形外作正方形ABDE 、CAFG 、BCHK .连,则以线段EF、GH、KD为边的结EF、GH、KD.若ABC的面积是72三角形的面积是__________.17.如图,直线过正方形ABCD的顶点B,点A、C到直E的距离分别是1和2,则正方形ABCD面积是____.18.如图,在菱形ABCD中,∠BAD=120°,CF⊥AD于点E,且BC=CF,连接BF交对角线AC于点M,则∠FMC=___.19.将一长方形纸片,按如图的方式折叠,BC,BD为折痕,则∠CBD的度数为_________.20.已知菱形ABCD的边长是4cm,对角线AC=4cm,则菱形的面积是______cm2.21.已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点.(1)求证:四边形BCDE是菱形.(2)若AD=6,BD=8,求四边形BCDE的周长和面积.22.如图,在四边形ABCD 中,AB DC =,点E 是AB 边上一点,,180CE AB A ADC =∠+∠=︒,DF BC ⊥,垂足为点F ,交CE 于点G ,连接,DE EF .(1)四边形ABCD 是平行四边形吗?说明理由;(2)求证:1902AED DCE ∠=︒-∠; (3)若点E 是AB 边的中点,求证:2DEF EFB ∠=∠.23.如图所示,已知直线MN//PQ ,直线AC 交MN 、PQ 于点A 、C ,所得的同旁内角的平分线AB 、BC 和AD 、CD 分别相交于点B 、D .试猜想AC 与BD 的关系,并说明理由.24.(1)(发现证明)如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且∠EAF =45°,求证:EF =DF +BE .小明发现,当把△ABE 绕点A 顺时针旋转90°至△ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)(类比引申)①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且∠EAF =45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且∠EAF =45°,则EF ,BE ,DF 之间的数量关系是 (不要求证明)(3)(联想拓展)如图1,若正方形ABCD 的边长为6,AE =35,求AF 的长. 25.已知:如图,正方形ABCD ,E 为边AD 上一点,△ABE 绕点A 逆时针旋转90°后得到△ADF .⑴ 如果∠AEB =65°,求∠DFE 的度数;⑵ BE 与DF 的数量关系如何?说明理由.26.如图,已知在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:ABM DCM ∆∆≌;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论; (3)当:AB AD =________时,四边形MENF 是正方形(只写结论,不需证明) 27.如图,四边形ABCD 是矩形,点E 是边AB 上一个动点,点F ,M ,N 分别是DC ,DE ,CE 的中点.(1)求证:△DMF ≌△FNC ;(2)若四边形MFNE 是正方形,求AD :AB 的值.28.已知正方形ABCD ,P 为边AB 上一点(P 不与A 、B 重合),过P 作PE CP ⊥,且CP PE =,连接AE .(1)如图1,求EAD ∠的度数;(2)如图2,连接CE 交BD 于G ,求证:22AE DG CD +=;(3)如图2,当10BC =,6PA =,则BG = (直接写出结果)29.(1)如图 1,在平行四边形ABCD 中,点O 是对角线AC 的中点,过点O 的直线分别交,AD BC 于点,E F 若平行四边形ABCD 的面积是 8,则四边形CDEF 的面积是___________ .(2)如图 2,在菱形ABCD 中,对角线相交于点 O ,过点 O 的直线分别交,AD BC 于点,E F ,若5,10AC BD ==,求四边形ABFE 的面积.(3)如图 3,在Rt ABC ∆中,90BAC ︒∠=,延长BC 到点D ,使DC BC =,连结AD ,若3,210AC BD == ,则ABD ∆ 的面积是____________ .30.如图,在平面直角坐标系中,已知矩形AOBC 的顶点C 的坐标是()2,4,动点P 从点A 出发,沿线段AO 向终点O 运动,同时动点Q 从点B 出发,沿线段BC 向终点C 运动.点P 、Q 的运动速度均为每秒1个单位,过点P 作PE AO ⊥交AB 于点E ,一点到达,另一点即停.设点P 的运动时间为t 秒()0t >.(1)填空:用含t 的代数式表示下列各式AP =__________,CQ =__________.(2)①当12PE =时,求点Q 到直线PE 的距离. ②当点Q 到直线PE 的距离等于12时,直接写出t 的值. (3)在动点P 、Q 运动的过程中,点H 是矩形AOBC (包括边界)内一点,且以B 、Q 、E 、H 为顶点的四边形是菱形,直接写出点H 的横坐标.参考答案1.C【解析】【分析】过点A作AF⊥DE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可.【详解】解:如图,过点A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD与△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面积=△AFD的面积=2113AF DF AF3AF22⨯==∵矩形ABCD的面积=AB•BC=2AB2,∴2△ABE的面积=矩形ABCD的面积﹣2△CDE的面积=(23AB2,∴△ABE的面积=(2232AB,∴2ABECDESS-==故选:C.【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB.2.A【解析】【分析】根据正方形的性质可得AB=AD,∠B=∠D=90°,再根据旋转的性质可得AE=AF,然后利用“HL”证明Rt△ABE和Rt△ADF全等,根据全等三角形对应角相等可得∠DAF=∠BAE,然后求出∠EAF=10°,再根据旋转的定义可得旋转角的度数.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵线段AE绕点A逆时针旋转后与线段AF重合,∴AE=AF,在Rt△ABE和Rt△ADF中,==AE AFAD AB⎧⎨⎩,∴Rt△ABE≌Rt△ADF(HL),∴∠DAF=∠BAE,∵∠BAE=40°,∴∠DAF=40°,∴∠EAF=90°-∠BAE-∠DAF=90°-40°-40°=10°,∴旋转角为10°.故选:A.【点睛】本题考查了正方形的性质和旋转的性质,用到的知识点是正方形的性质、旋转的定义、全等三角形的判定与性质,求出Rt △ABE ≌和Rt △ADF 是解题的关键.3.C【解析】【分析】在Rt ABE 中利用三角函数可求出AE 的长,根据菱形的面积=底⨯高,从而可求出答案.【详解】在ABE 中,∵边长AB BC ==2,45B ∠=︒,AE BC ⊥, ∴sin 45AE AB ︒=,∴22AE =,∴AE =ABCD S BC AE =⨯=菱形故选:C【点睛】本题考查了三角函数及菱形的性质,利用正弦函数求得AE 的长是解题的关键.4.A【解析】【分析】取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,再根据正方形及勾股定理求出OE ,即可得到GH 的长.【详解】取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,∵AD=AB=4,∴AO=12AB=2在Rt △AOE 中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得OE=2∴GH 的最小值为2故选A .【点睛】本题考查了正方形的性质,根据题意确定E 点的位置是解题关键.5.B【解析】【分析】过点P 作PD AC ⊥,垂足为D ,作PE BC ⊥,垂足为E ,利用勾股定理表示出2PA ,2PB ,结合90ACB ∠=︒,AC BC =即可得出正确结论.【详解】解:过点P 作PD AC ⊥,垂足为D ,作PE BC ⊥,垂足为E ,如图所示:则四边形CDPE 是矩形,所以PD CE =,CD PE =,∴在Rt ADP ∆中,222PA AD PD =+在Rt PEB ∆中,222PB PE BE =+,∵90ACB ∠=︒,AC BC =,∴45APD BPE A B ∠=∠=∠=∠=︒,∴PE BE =,PD AD =,∴()()222222222222222222PA PB AD PD PE BE PD PE PD PE PD CD PC +=+++=+=+=+= 即:2x y =.故选:B .【点睛】本题主要考查了勾股定理、等腰直角三角形的性质、矩形的判定与性质;熟练掌握勾股定理,正确作出辅助线是解决问题的关键.6.B【解析】【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,得出四边形OCED是菱形,求出菱形的边长,进一步求出AC与AB的长,再利用勾股定理求BC.【详解】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OC=OD=OA=OB,∴四边形OCED是菱形;∵四边形OCED的周长是20∴OD=5∵∠AOB=60°,∴∠COD=60°又∵OC=OD∴△COD是等边三角形,∴OC=OD=CD=5∴AC=2OC=10∵四边形ABCD是矩形,∴AB=CD=5,∠ABC=90°∴在Rt △ABC 中,BC ==故答案选B .【点睛】 此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE 是菱形是解此题的关键.7.B【解析】【分析】由题意推出BD =AD ,然后在Rt △BCD 中,CP =12BD ,即可推出CP 的长度. 【详解】∵D A BA ∠=∠,∴BD =AD=8,∵P 点是BD 的中点,90ACB ∠=︒∴CP =12BD =4, 故选:B .【点睛】本题主要考查等腰三角形的判定和性质、直角三角形斜边上的中线的性质,关键在于根据已知推出BD =AD ,求出BD 的长度.8.B【解析】【分析】根据矩形的性质得出∠ABC =∠BAD =90°,OB =OD ,OA =OC ,AC =BD ,求出OB =OC ,OB =OA ,根据矩形性质和已知求出∠BAE =∠DAE =45°,求出∠OBC =∠OCB =30°,求出△AOB 是等边三角形,推出AB =OB =BE ,求出∠OEB =75°,最后减去∠AEB 的度数,即可求出答案.【详解】解:∵四边形ABCD 是矩形,∴∠ABC =∠BAD =90°,OB =OD ,OA =OC ,AC =BD ,∴OB =OC ,OB =OA ,∴∠OCB=∠OBC,∵AB=BE,∠ABE=90°,∴∠BAE=∠AEB=45°,∵∠1=15°,∴∠OCB=∠AEB﹣∠EAC=45°﹣15°=30°,∴∠OBC=∠OCB=30°,∴∠AOB=30°+30°=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠BAE=∠AEB=45°,∴AB=BE,∴OB=BE,∴∠OEB=∠EOB,∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,∴∠OEB=75°,∵∠AEB=45°,∴∠2=∠OEB﹣∠AEB=30°,故选:B.【点睛】本题考查了矩形的性质,等边三角形的性质,等腰三角形的性质的综合应用,先求出∠OEB 和∠AEB的度数是解此题的关键.9.A【解析】【分析】取BC的中点E,连接AE,根据直角三角形的性质得到AE=12BC=BE,根据等腰三角形的性质,三角形的外角的性质计算即可计算得到∠B的度数.【详解】解:取BC的中点E,连接AE,∵∠BAC=90°,点E是BC的中点,∴AE=12BC=BE,∴∠B=∠EAB,∵AD=12 BC,∴AE=AD,∴∠AED=∠D=40°,∴∠B+∠EAB=40°,∴∠B=20°,故选:A.【点睛】本题考查的是直角三角形斜边的中线的性质,等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.10.C【解析】【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出∠BFC,即可求出∠EFC.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC =∠BAF +∠ABE =45°+15°=60°,∴∠EFC =180°﹣∠BFC =120°;故选:C .【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键. 11.8【解析】【分析】设A ′C=xcm ,先根据已知利用AAS 证明△A ′BC ≌△DCE ,得出A ′C=DE= xcm ,则BC=AD=(9+x )cm ,A ′B=AB=15cm ,然后在Rt △A ′BC 中,由勾股定理可得BC 2=A ′B 2+A ′C 2,即可得方程,解方程即可求得答案【详解】解:∵四边形ABCD 是矩形,∴AB=CD=15cm ,∠A=∠D=90°,AD ∥BC ,AD=BC ,∴∠DEC=∠A ′CB ,由折叠的性质,得:A ′B=AB=15cm ,∠BA ′E=∠A=90°,∴A ′B=CD ,∠BA ′C=∠D=90°,在△A ′BC 和△DCE 中,BA C D A CB DEC A B CD ∠=∠⎧⎪∠=∠=''⎨'⎪⎩∴△A ′BC ≌△DCE (AAS ),∴A ′C=DE ,设A ′C=xcm ,则BC=AD=DE+AE=x+9(cm ),在Rt △A ′BC 中,BC 2=A ′B 2+A ′C 2,即(x+9)2=x 2+152,解得:x=8,∴A ′C=8cm .故答案为:8.【点睛】此题考查了矩形的性质、全等三角形的判定与性质、勾股定理以及折叠的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系.12.245cm【解析】【分析】根据菱形的性质求出BC=5,然后根据菱形ABCD面积等于BC∙AH进一步求解即可.【详解】∵四边形ABCD是菱形,∴CO=12AC=3cm,BO=12BD=4cm,AO⊥BO,∴,∴S菱形ABCD =2BD AC⋅=12×6×8=24cm2,∵S菱形ABCD=BC×AH,∴BC×AH=24,∴AH=245cm.故答案为:245cm.【点睛】本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键.13【解析】【分析】先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.【详解】过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,如图:∵AB 长为3,CE 长为1,点O 和点O′为正方形中心, ∴OH=12×(3+1)=2, O′H=12×(3-1)=12×2=1, ∴在直角三角形OHO′中:222+15【点睛】本题考查了正方形的性质和勾股定理,作出直角三角形是解题关键.14.AC BD ⊥ AC BD =【解析】【分析】根据平行四边形的性质、菱形的性质、中位线的性质求解即可.【详解】根据四个角为直角的平行四边形是矩形可得AC BD ⊥根据菱形的性质、中位线的性质可得AC BD =故答案为:AC BD ⊥,AC BD =.【点睛】本题考查了四边形的证明问题,掌握平行四边形的性质、菱形的性质、中位线的性质是解题的关键.15.AC BD =【解析】【分析】 如下图,根据三角形中位线的定理,可得AG=EF=12AC ,GF=AE=12BD ,再根据菱形四条边相等的性质,可得出AC 与BD 的关系.【详解】如下图,点E、F、G、H分别是AB、BC、CD、DA的中点∵点E、F是AB、BC的中点∴EF=12 AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12 BD.16.376【解析】【分析】可以利用正方形的对边平行且相等,作出一个以EF、GH、KD为边的三角形,即把△AEF 沿AB平移,△HCG沿CB方向平移,使A、C重合于B,F、G重合于I,因此可拼成一个三角形,然后再把△GCH绕C点顺时针旋转90°,得到△BCG′,可得A,C,G′在一条直线上,且C为AG′的中点,进而可得由线段EF、GH、KD为三边构成的△DIK的面积S△DIK =3S△ABC.【详解】解:把△AEF沿AB平移,△HCG沿CB方向平移,使A、C重合于B,F、G重合于I,连接DI,BI,KI,∴△DBI≌△EAF,△BIK≌△CGH,把△GCH绕C点顺时针旋转90°,得到△BCG′,可得A,C,G′在一条直线上,且C为AG′的中点,所以S△BCG′=S△ABC,因此S△BIK=S△ABC,同理可得S△DBK=S△DBI=S△ABC,+,因此以线段EF、GH、KD为三边构成的△DIK的面积S△DIK=3S△ABC=376+.故答案为:376【点睛】本题主要考查对正方形的性质,平移和旋转的性质,三角形中线的性质等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.17.5.【解析】【分析】根据正方形性质得出AB=CB,∠ABC=90°,求出∠EAB=∠FBC,证△AEB≌△BFC,求出BE=CF=2,在Rt△AEB中,由勾股定理求出AB,即可求出正方形的面积.【详解】解:如图,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠ABE+∠CBF=180°-90°=90°,∠ABE+∠EAB=90°,∴∠EAB=∠CBF ,在△AEB 和△BFC 中,AEB BFC EAB CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△BFC (AAS ),∴BE=CF=2,在Rt △AEB 中,由勾股定理得: 222125AB =+=,即正方形ABCD 的面积是5,故答案为:5.【点睛】本题考查了正方形性质,全等三角形的性质和判定,勾股定理的应用,关键是求出BE=CF ,主要考查学生分析问题和解决问题的能力,题型较好,难度适中.18.105°【解析】【分析】利用菱形的性质得出∠BCA=60°,∠ACE=∠DCE=30°,∠CBD=∠ABD=30°,AC ⊥BD ,再利用等腰三角形的性质以及三角形外角的性质得出答案.【详解】∵菱形ABCD 中,∠BAD=120°,CF ⊥AD 于点E ,∴∠BCA=60°,∠ACE=∠DCE=30°,∠CBD=∠ABD=30°,AC ⊥BD ,∴∠BCF=90°,∵BC=CF ,∴∠CBF=∠BFC=45°,∴∠FBD=45°-30°=15°,∴∠FMC=90°+15°=105°.故答案为:105.【点睛】此题考查菱形的性质,等腰三角形的性质,得出∠CBF=∠BFC=45°是解题关键.19.90°【解析】【分析】根据折叠的性质得到ABC A BC ∠=∠',EBD E BD ∠=∠',再根据平角的定义有180ABC A BC EBD E BD ∠+∠'+∠+∠'=︒,易得1180902A BC E BD '+∠'=︒⨯=︒,则90CBD ∠=︒. 【详解】解:一张长方形纸片沿BC 、BD 折叠,ABC A BC ∴∠=∠',EBD E BD ∠=∠',而180ABC A BC EBD E BD ∠+∠'+∠+∠'=︒,1180902A BC E BD ∴∠'+∠'=︒⨯=︒, 即90CBD ∠=︒.故答案为:90︒.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了平角的定义.20.83【解析】【分析】由题意根据勾股定理即可求得BO 的值,进而根据对角线长即可计算菱形ABCD 的面积.【详解】解:由题意作图如下:∵四边形ABCD 是菱形,边长是4cm ,对角线 AC =4cm ,∴12,42AO OC AC cm AB cm ====, ∵AC BD ⊥,∴由勾股定理得BO ===,∴对角线22BD BO ==⨯=,∴菱形的面积:211422AC BD =⨯⨯=.故答案为:【点睛】本题考查菱形对角线互相垂直平分的性质以及勾股定理在直角三角形中的运用,熟练掌握根据勾股定理求出对角线的值以及菱形的面积等于对角线乘积的一半是解题的关键. 21.(1)证明见解析;(2)周长:20;面积:24.【解析】【分析】(1)根据AD ⊥BD ,E 为AB 中点得到BE =DE ,再根据AB ∥CD 和BC =CD ,得到∠EDB =∠EBD =∠CDB =∠CBD ,证明△EBD ≌△CB D,即可求解,(2)勾股定理求出AB=10,进而得到BE=5,求出周长,再求出S △ABD =24,利用S △DEB =12 S △ABD =12即可求出面积. 【详解】证明:(1)∵AD ⊥BD , ∴△ABD 是Rt △∵E 是AB 的中点,∴BE =12AB ,DE =12AB (直角三角形斜边上的中线等于斜边的一半), ∴BE =DE ,∴∠EDB =∠EBD ,∵CB =CD ,∴∠CDB =∠CBD ,∵AB ∥CD ,∴∠EBD =∠CDB ,∴∠EDB =∠EBD =∠CDB =∠CBD ,∵BD =BD ,∴△EBD ≌△CBD (ASA ),∴BE =BC ,∴CB =CD =BE =DE ,∴菱形BCDE .(四边相等的四边形是菱形)(2)∵△ABD 是Rt △,AD =6,BD =8,∴AB =10(勾股定理),∴S △ABD =168242⨯⨯=, ∵E 为AB 中点,∴S △DEB =12S △ABD =12, ∴DE =12AB =5,菱形BCDE 的面积=24, ∴菱形BCDE 的周长=20.【点睛】本题考查了菱形的判定,菱形的周长和面积,属于简单题,熟悉菱形的性质和判定是解题关键. 22.(1)四边形ABCD 是平行四边形,理由见解析;(2)见解析;(3)见解析【解析】【分析】(1)由180A ADC ∠+∠=︒可得AB ∥DC ,再由AB=DC 即可判定四边形ABCD 为平行四边形;(2)由AB ∥DC 可得∠AED=∠CDE ,然后根据CE=AB=DC 可得∠CDE=∠CED ,再利用三角形内角和定理即可推出∠AED 与∠DCE 的关系;(3)延长DA ,FE 交于点M ,由“AAS”可证△AEM ≌△BEF ,可得ME=EF ,由直角三角形的性质可得DE=EF=ME ,由等腰三角形的性质和外角性质可得结论.【详解】(1)四边形ABCD 是平行四边形,理由如下:∵180A ADC ∠+∠=︒∴AB ∥DC又∵AB=DC∴四边形ABCD 是平行四边形.(2)∵AB∥DC∴∠AED=∠CDE又∵AB=DC,CE=AB∴DC=CE∴∠CDE=∠CED∴在△CDE中,2∠CDE+∠DCE=180°∴∠CDE=90°-12∠DCE∴1902AED DCE ∠=︒-∠(3)如图,延长DA,FE交于点M,∵四边形ABCD为平行四边形∴DM∥BC,DF⊥BC∴∠M=∠EFB,DF⊥DM∵E为AB的中点∴AE=BE在△AEM和△BEF中,∵∠M=∠EFB,∠AEM=∠BEF,AE=BE∴△AEM≌△BEF(AAS)∴ME=EF∴在Rt△DMF中,DE为斜边MF上的中线∴DE=ME=EF∴∠M=∠MDE,∴∠DEF=∠M+∠MDE=2∠M=2∠EFB.【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,等腰三角形和直角三角形的性质,熟练掌握平行四边形的判定定理,利用“中线倍长法”构造全等三角形是解题的关键.23.AC与BD相等且互相平分,理由见解析.【解析】【分析】已知MN//PQ,可得∠MAC+∠ACP=180°,已知AB、CB分别平分∠MAC、∠ACP,即∠BAC=12∠MAC,∠BCA=12∠ACP,得到∠BAC+∠BCA=90°,∠ABC=90°,同理可得∠ADC=90°,根据角平分线的性质可得到∠ACB+∠ACD=90°,即∠BCD=90°,证得四边形ABCD是矩形,得到AC与BD相等且互相平分.【详解】AC与BD相等且互相平分,理由如下:∵MN//PQ,∴∠MAC+∠ACP=180°又∵AB、CB分别平分∠MAC、∠ACP∴∠BAC=12∠MAC,∠BCA=12∠ACP∴∠BAC+∠BCA=90°∴∠ABC=90°同理可得∠ADC=90°又∠ACP+∠ACQ=180°,CB、CD分别平分∠ACP、∠ACQ∴∠ACB+∠ACD=90°即∠BCD=90°∴四边形ABCD是矩形∴AC与BD相等且互相平分【点睛】本题考查了平行线的性质定理,两直线平行同旁内角互补;角平分线的定义,以及矩形的判定和性质.证明四边形是矩形,即可得到对角线相等且互相平分.24.(1)证明见解析;(2)①不成立,结论:EF=DF﹣BE;证明见解析;②BE=EF+DF;(3)AF=.【解析】【分析】(1)【发现证明】证明△EAF≌△GAF,可得出EF=FG,则结论得证;(2)【类比引申】①将△ABE绕点A顺时针旋转90°至△ADM根据SAS可证明△EAF≌△MAF,可得EF=FM,则结论得证;②将△ADF绕点A逆时针旋转90°至△ABN,证明△AFE≌△ANE,可得出EF=EN,则结论得证;(3)【联想拓展】求出DG=2,设DF=x,则EF=DG=x+3,CF=6﹣x,在Rt△EFC中,得出关于x的方程,解出x则可得解.【详解】(1)【发现证明】证明:把△ABE绕点A顺时针旋转90°至△ADG,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠F AD=45°,∴∠DAG+∠F AD=45°,∴∠EAF=∠F AG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)【类比引申】①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠F AM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),∴EF=FM=DF﹣DM=DF﹣BE;②如图3,将△ADF绕点A逆时针旋转90°至△ABN,∴AN=AF,∠NAF=90°,∵∠EAF=45°,∴∠NAE=45°,∴∠NAE=∠F AE,∵AE=AE,∴△AFE≌△ANE(SAS),∴EF=EN,∴BE=BN+NE=DF+EF.即BE =EF +DF .故答案为:BE =EF +DF .(3)【联想拓展】解:由(1)可知AE =AG =35,∵正方形ABCD 的边长为6,∴DC =BC =AD =6,∴22DG AG AD =-22(35)6-3.∴BE =DG =3,∴CE =BC ﹣BE =6﹣3=3,设DF =x ,则EF =DG =x +3,CF =6﹣x ,在Rt △EFC 中,∵CF 2+CE 2=EF 2,∴(6﹣x )2+32=(x +3)2,解得:x =2.∴DF =2,∴AF 22AD DF +2262+=10. 【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.25.(1)20°(2)BE ⊥DF ,证明见解析【解析】【分析】(1)根据旋转的性质得AE =AF ,∠AFD =∠AEB =65°,∠EAB =∠FAD =90°,求出∠AFE即可解决问题.(2)延长BE交DF于H,根据旋转的性质得∠ABE=∠ADF,由于∠ADF+∠DFA=90°,则∠ABE+∠DFA=90°,根据三角形内角和定理可计算出∠FHB=90°,于是可判断BH⊥DF.【详解】(1)∵△ABE绕点A按逆时针方向旋转90°得到△ADF,∴AE=AF,∠AFD=∠AEB=65°,∠EAB=∠FAD=90°,∴∠AFE=∠AEF=45°,∴∠DFE=∠DFA−∠AFE=65°−45°=20°(2)结论:BE⊥DF.理由:延长BE交DF于H,∵△ABE绕点A按逆时针方向旋转90°得到△ADF,∴∠ABE=∠ADF,∵∠ADF+∠DFA=90°,∴∠ABE+∠DFA=90°,∴∠FHB=90°,∴BE⊥DF.【点睛】本题考查了旋转的性质,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)详见解析;(2)四边形MENF是菱形,详见解析;(3)1:2【解析】【分析】(1)求出AB=DC,∠A=∠D=90°,AM=DM,根据全等三角形的判定定理推出即可;(2)根据三角形中位线定理求出NE∥MF,NE=MF,得出平行四边形,求出BM=CM,推出ME=MF,根据菱形的判定推出即可;(3)求出∠EMF =90°,根据正方形的判定推出即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB =DC ,∠A =∠D =90°,∵M 为AD 中点,∴AM =DM ,在△ABM 和△DCM ,AM DM A D AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△DCM (SAS );(2)答:四边形MENF 是菱形.证明:∵N 、E 、F 分别是BC 、BM 、CM 的中点,∴NE ∥CM ,NE =12CM ,MF =12CM , ∴NE =FM ,NE ∥FM ,∴四边形MENF 是平行四边形,由(1)知△ABM ≌△DCM ,∴BM =CM ,∵E 、F 分别是BM 、CM 的中点,∴ME =MF ,∴平行四边形MENF 是菱形;(3)解:当四边形MENF 是正方形时,则∠EMF =90°,∵△ABM ≌△DCM ,∴∠AMB =∠DMC =45°,∴△ABM 、△DCM 为等腰直角三角形,∴AM =DM =AB ,∴AD =2AB ,当AB :AD =1:2时,四边形MENF 是正方形.故答案为:1:2.【点睛】本题考查了三角形的中位线,矩形的性质,全等三角形的性质和判定,菱形、平行四边形、正方形的判定的应用.熟练掌握相关定理,并能结合题意分析是解题关键.27.(1)详见解析;(2)AD:AB=1:2.【解析】【分析】(1)由三角形中位线定理可得DM=EM=FN,MF=EN=CN,DF=CF,由“SSS”可证△DMF≌△FNC;(2)由正方形的性质可得EN=NF=EM=MF,NE⊥EM,可得DE=EC,可得∠EDC=∠ECD =45°,可证AD=AE,BC=BE,即可求AD:AB的值.【详解】证明:(1)∵点F,M,N分别是DC,DE,CE的中点.∴DM=EM=FN,MF=EN=CN,DF=CF∴△DMF≌△FNC(SSS)(2)∵四边形MENF是正方形.∴EN=NF=EM=MF,NE⊥EM,∴DE=EC∴∠EDC=∠ECD=45°,∵AB∥CD∴∠AED=∠EDC=45°,∠BEC=∠ECD=45°∴∠A=∠B=90°∴∠AED=∠ADE=45°,∠BEC=∠BCE=45°∴AD=AE,BC=BE,∴AB=AE+BE=2AD∴AD:AB=1:2.【点睛】本题考查了三角形中位线定理、全等三角形的性质以及判定定理、矩形的性质、正方形的性质等.28.(1)∠EAD=45°;(2)证明见详解;(3)72【解析】【分析】(1)如图1中,作EH⊥BA于H.只要证明△HPE≌△CBP,推出BC=PH=AB,HE=PB,推出PB=AH=EH,推出∠HAE=45°,即可解决问题;(2)作EK∥AB交BD于K.首先证明四边形ABKE是平行四边形,再证明△GEK≌△GCD,可得GD=GK,根据BD=2CD,即可解决问题;(3)利用(1)(2)中结论即可解决问题;【详解】(1)如图1中,作EH⊥BA于H.∵四边形ABCD是正方形,∴∠B=∠BAD=∠HAD=90°,AB=BC,∵EP⊥PC,∴∠EPC=90°,∴∠BPC+∠HPE=90°,∠BPC+∠BCP=90°,∴∠HPE=∠BCP,在△HPE和△CBP中,90H BHPE BCPPE PC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△HPE≌△CBP,∴BC=PH=AB,HE=PB,∴PB=AH=EH,∴∠HAE=45°,∴∠EAD=45°.(2)证明:作EK∥AB交BD于K.∵∠EAD=∠ADB=45°,∴AE∥BK,∵AB∥EK,∴四边形ABKE是平行四边形,∴EK=AB=CD,AE=BK,∵AB∥CD,∴EK∥CD,∴∠GEK=∠GCD,∴△GEK≌△GCD,∴GD=GK,∵2CD,BD=BK+DK=AE+2DG,∴2CD.(3)由(1)可知AE=42由(2)可知422∴DG=32∵BD=102∴BG=2【点睛】本题主要考查正方形的综合应用,熟练的在其中找到可以使用的全等三角形,平行四边形并进行证明,可得出相应结论,同时对已证结果的直接使用,也很重要29.(1)4;(2)252;(3)3【解析】【分析】(1)首先根据平行四边形的性质可得AD ∥BC ,OA=OC .根据平行线的性质可得∠EAO=∠FCO ,∠AEO=∠CFO ,进而可根据AAS 定理证明△AEO ≌△CFO ,再根据全等三角形的性质可得结论;(2)根据菱形的性质得到AD ∥BC ,AO=CO=12AC=2.5,BO=12BD=5,根据全等三角形的判定定理得到△AOE ≌△COF ,由于AC ⊥BD ,于是得到结果;(3)延长AC 到E 使CE=AC=3,根据全等三角形的判定定理得到△ABC ≌△CDE ,由全等三角形的性质得到∠E=∠BAC=90°,根据勾股定理得到1DE =,即可得到结论.【详解】(1)∵四边形ABCD 是平行四边形,//,AD BC OA OC ∴=,EAO FCO AEO CFO ∴∠=∠∠=∠在△AOE 和△COF 中EAO FCO AEO CFO AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩AOE COF ∴∆≅∆4CDEF ACD S S ∆∴==(2)∵四边形ABCD 是菱形,1//,5,902AD BC BO BD AOD ︒∴==∠= ,FCO EAO AEO CFO ∴∠=∠∠=∠EAO FCO AEO CFO AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩AOE COF ∴∆≅∆AC DB ∴⊥12522ABFE ABCS S AC BO∆∴==⋅=(3)如图,延长AC到E 使3CE AC==,连结DE,AC ECACB ECDBC DC=⎧⎪∠=∠⎨⎪=⎩ABC EDC∴∆≅∆90E BAC︒∴∠=∠=,∵210BD=∴10BC CD==∴22221031DE CD CE=-=-=132ABD ADES S AE DE∆==⋅=.【点睛】本题考查了全等三角形的判定和性质,平行四边形的性质,菱形的性质,图形面积的计算,熟练掌握全等三角形的判定和性质是解题的关键.30.(1),4t t-;(2)2;(3)74t=或94t=;(4)1013,1045-.【解析】【分析】(1)根据C点坐标(2,4)可知AC=OB=2,AO=BC=4,根据P,Q的运动速度即可表示出AP,CQ 的长;(2)①延长PE交BC于H点,再求出直线AB的解析式,根据12PE=求出E点坐标,得到AP的长求出时间t,故可得到Q点坐标,即可求出点Q到直线PE的距离;②分别表示出Q,H的坐标,根据12QH=,列出方程即可求解;(3)分两种情形依据菱形的邻边相等关系构建方程即可解决问题.【详解】(1)∵C(2,4)∴AC=OB=2,AO=BC=4,∵动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为每秒1个单位,∴AP=t,CQ=BC-BQ=4-t,故答案为:t;4-t;(2)设直线AB的解析式为y=kx+b,把A(0,4),B(2,0)代入得420 bk b=⎧⎨+=⎩,解得24kb=-⎧⎨=⎩,∴直线AB的解析式为y=−2x+4.∵12 PE=∴E(12,3)∴AP=AO-OP=4-3=1=t∴Q(2,1),BQ=1延长PE交BC于H点,∴BH=PO=3 故QH=BH-BQ=3-1=2;②点Q到直线PE的距离等于12时,即12QH=由AP=CH=t,BQ=t,得H(2,4-t),Q(2,t)∴()142t t --=解得74t =或94t = (3)∵OP=4-t ,故E 点的纵坐标为4-t ,代入直线AB 得E (12t ,4−t ) 又Q (2,t ),①如图,当QE =QB 时,可得四边形EQBH 是菱形,∴EQ 2=BQ 2(2−12t )2+[t-(4−t )]2=t 2, 整理得:13t 2−72t +80=0,解得t =2013或4(舍弃), 12t=1013∴点H 的横坐标是1013; ②当BE =BQ 时,如图,可得四边形BQHE 是菱形.EB 2=BQ 2(12t-2)2+(4−t -0)2=t 2, 整理得:t 2−40t +80=0,解得t =20-20+,12t=10-∴点H 的横坐标是10-综上,点H 的横坐标是1013或10-. 【点睛】本题考查一次函数综合题、待定系数法求解析式,平行线的性质,以及菱形的性质和三角形的面积公式的应用等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

北师大版2020-2021九年级数学下册第一章直角三角形的边角关系单元基础过关测试题(附答案详解)

北师大版2020-2021九年级数学下册第一章直角三角形的边角关系单元基础过关测试题(附答案详解)
【详解】
∵AC=6 ,∠C=45°
∴AD=AC⋅sin45°=6 × =6,
∵tan∠ABC=3,
∴ =3,
∴BD= =2,
故选A.
【点睛】
本题主要考查解直角三角形,三角函数的知识,熟记知识点是解题的关键.
7.A
【解析】
【分析】
先根据勾股定理求出第三边,再根据正切函数的定义求出较小锐角的正切值.
【详解】
(2)用公式法解方程:3x2+2x-1=0.
26.在△ABC中,∠C=90°,BC= AC,求∠B的度数(精确到1″).
27.如图,我军某部在一次野外训练中,有一辆坦克准备通过一座小山,已知山脚和山顶的水平距离为1000米,山高为565米,如果这辆坦克能够爬30°的斜坡,试问:它能不能通过这座小山?
【解析】
试题分析:2 ≈2×9.3274=18.6548,
tan87°≈19.0811,
∵18.6548<19.0811,
∴2 <tan87°.
故答案为<.
点睛:本题考查了计算器的使用,要注意一般保留小数点后4位.
12.42
【解析】
试题解析:过点 作 于点D,
∴由勾股定理可知:
的面积为:
故答案为
13.30°
12.如图,在 中, , , ,则 的面积为________.
13.某水库大坝,其坡面AB的坡度i=1∶ ,则斜坡AB的坡角的度数为____°.
14.坡角为α=60°,则坡度i=_____.
15.小明沿着坡度为1: 的坡面向下走了20米的路,那么他竖直方向下降的高度为_____.
16.如图,在高 米,坡角为 的楼梯表面铺地毯,地毯的长度至少需要________米.(精确到 米)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

声学单元测试题
设计人:石爱萍学校:西书院初中电话:3302151
一、填空题
1.发声体都在?_____,发声停止的物体不再_____。

2.声音在15 ℃的空气中的传播速度是_____。

3.声音不仅能在空气中传播,而且也能在_____、_____中传播。

4.登上月球的宇航员,既使相距很近也只能靠无给电交谈,这是因为__________。

5.鱼能被它们喜欢的声音吸引,这表明__________也能传声,“土电话”利用的是_____能传声的性质。

6.如果回声到达人耳比原声晚__________秒以上,人就能把回声跟原声区分开。

7.水中的鱼能被它们喜欢的声音吸引,这表明_____能够传声。

“土电话”表明______也能传声。

8.乐音的三要素是__________、__________和__________,其中__________与频率有关,__________与振幅有关,__________ 与发声体本身有关,__________与距发声体远近有关.
9.大多数人的听觉范围是__________到__________;发声频率范围是__________到__________.
10.一切发声的物体都在__________,__________停止,发声也停止.
二、选择题
1.下列关于声音传播的说法中,不正确的是(?? )。

?? A.声音在固体、液体中比在真空里传播的慢?? ?? B.学生听到老师讲课的声音是靠空气传播的
?? C.真空不能传声????????? ?? D.打锣时,要使锣停止发声,只须用手按住锣面就可以了
2.不能传播声音的是(?? )。

?? A.真空??? B. 木头??? C. 空气??? D. 水
3.比较声音在海水、铁管和空气中的传播速度,按从大到小的顺序排列,正确的是
4.百米赛跑时,终点的计时裁判员正确的计时方法是(?? )。

?? A.听到发令员的枪声开始计时????????? B. 看到发令员的发令枪冒烟开始计时
?? C.听到发令员的最后一声口令开始计时? D. 看到最先起跑的运动员开始计时
5.关于声音的下列说法中,正确的是(?? )。

?? A.一切振动的物体都会发出声音?????? ?? B.物体在振动时偏离原来位置的距离叫做振幅
?? C.物体振动的次数叫频率??????? ?? D.正常人的听觉频率范围是每秒20次~2万次6.有一跟长100米的空气钢管,甲同学在一端敲打钢管一下,乙同学在钢管的另一端可以听到几次响声(?? )。

?? A.一次响声??? B. 两次响声??? C. 三次响声??? D. 四次响声
7.人无法听到飞翔的蝙蝠发出声音的原因是:()
??????? A.蝙蝠没有发出声音品???????????? ??????? B.蝙蝠发出声音的频率太高??????? C.蝙蝠发出声音的频率太低????????????? ??????? D.蝙蝠发出声音的响度太小8.人无法听到飞翔的蝙蝠发出声音的原因是:()
??????? A.蝙蝠没有发出声音??????????????? ??????? B.蝙蝠发出声音的频率太高??????? C.蝙蝠发出声音的频率太低?????????? ??????? D.蝙蝠发出声音的响度太小9.用提琴和胡琴同时演奏一支曲谱,一听声音就能区分出提琴与胡琴声,这是因为它们发出声音的:()
??????? A.音调不同 B.响度不同 C.音色不同 D.音调响度都不同
10.用一块软橡胶以不同力轻敲一下音叉,所产生的声音将有不同的(??? )
A.频率?????????
B.音调?????????
C.音品?????????
D.响度
11 .关于声速,下列说法正确的是(??? )
A.当声音从空气传到水中,声速一定会减小??????????
B.声音被墙壁反射回来后,声速增大C。

声音被墙壁反射回来后,声速不变
12? .琴弦振动时可发出声音,其音调高低的调节方法正确的是(??? )
A.弦越粗音调越低???????????????
B.弦越长音调越低
C.弦越短音调越高???????????????
D.弦越短音调越低
三、计算题
1.观察者在看到闪电后5.5秒钟听到雷声,问打雷处与观察者之间的距离是多少?
2.拍手后0.5秒听到对面墙壁反射回来的回声,问人与墙壁间距离是多少?
3.把恰好设在海面下的钟敲响,钟声传到海底再反射回海面,共经过2.0秒,已知声音在海水中的速度是1500米/秒,问海水的深度?
?
4。

相关文档
最新文档