城东区实验中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载

城北区实验中学2018-2019学年上学期高二数学12月月考试题含解析

城北区实验中学2018-2019学年上学期高二数学12月月考试题含解析

城北区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .32. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且•=4,则实数a的值为( )A .或﹣B .或3C .或5D .3或53. 下列函数中哪个与函数y=x 相等( )A .y=()2B .y=C .y=D .y=4. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A . =1.23x+4B . =1.23x ﹣0.08C . =1.23x+0.8D . =1.23x+0.08 5. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1126. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1) D .[﹣9,1)7. 下列式子表示正确的是( )A 、{}00,2,3⊆B 、{}{}22,3∈C 、{}1,2φ∈D 、{}0φ⊆ 8. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 39. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.10.如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.11.函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,2 12.设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D .二、填空题13.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 . 14.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.15.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅= ,若12PF F ∆______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.16.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .17.阅读下图所示的程序框图,运行相应的程序,输出的n的值等于_________.18.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′()g(x)>f(x)g′(x),且f(x)=a x g (x)(a>0且a≠1),+=.若数列{}的前n项和大于62,则n的最小值为.三、解答题19.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1,(1)求证:直线BC1∥平面D1AC;(2)求直线BC1到平面D1AC的距离.20.(本小题满分12分)111]在如图所示的几何体中,D是AC的中点,DBEF//.(1)已知BCAB=,CFAF=,求证:⊥AC平面BEF;(2)已知HG、分别是EC和FB的中点,求证://GH平面ABC.开始是n输出结束1n=否5,1S T==S T>?4S S=+2T T=1n n=+21.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,求证://MN 平面BCE .22.设函数f (x )=x 3﹣6x+5,x ∈R (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)若关于x 的方程f (x )=a 有3个不同实根,求实数a 的取值范围.23.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .24.(本小题满分12分)已知函数1()ln (42)()f x m x m x m x=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.城北区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】试题分析:()()()()2224(22)2225ai iai a a ii i i+-+++-==++-,对应点在第四象限,故40220aa+>⎧⎨-<⎩,A选项正确.考点:复数运算.2.【答案】C【解析】解:圆x2+y2+2x﹣4y+7=0,可化为(x+)2+(y﹣2)2=8.∵•=4,∴2•2cos∠ACB=4∴cos∠ACB=,∴∠ACB=60°∴圆心到直线的距离为,∴=,∴a=或5.故选:C.3.【答案】B【解析】解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.B.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.C.函数的定义域为R,y=|x|,对应关系不一致.D.函数的定义域为{x|x≠0},两个函数的定义域不同.故选B.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.4.【答案】D【解析】解:设回归直线方程为=1.23x+a∵样本点的中心为(4,5),∴5=1.23×4+a∴a=0.08∴回归直线方程为=1.23x+0.08故选D .【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.5. 【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型.6. 【答案】D【解析】解:函数f (x )=lg (1﹣x )在(﹣∞,1)上递减, 由于函数的值域为(﹣∞,1], 则lg (1﹣x )≤1, 则有0<1﹣x ≤10, 解得,﹣9≤x <1. 则定义域为[﹣9,1), 故选D .【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.7. 【答案】D 【解析】试题分析:空集是任意集合的子集。

东洲区实验中学2018-2019学年上学期高二数学12月月考试题含解析

东洲区实验中学2018-2019学年上学期高二数学12月月考试题含解析

东洲区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()ABCD2. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm3. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2xy -=4. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++=成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.5. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力. 6. 下列命题中正确的是( ) (A )若p q ∨为真命题,则p q ∧为真命题( B ) “0a >,0b >”是“2b aa b+≥”的充分必要条件 (C ) 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”(D ) 命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥7. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③8. 若函数y=f (x )是y=3x 的反函数,则f (3)的值是( ) A .0B .1C .D .39. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .10.已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力. 11.半径R 的半圆卷成一个圆锥,则它的体积为( )A .πR 3B .πR 3C .πR 3D .πR 312.设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 2二、填空题13.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .14.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 . 15.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形. 16.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.17.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .18.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足AB =∅,{}|52A B x x =-<≤,求实数a =__________.三、解答题19.函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|<)的一段图象如图所示.(1)求f (x )的解析式;(2)求f (x )的单调减区间,并指出f (x )的最大值及取到最大值时x 的集合;(3)把f (x )的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.20.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.21.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.22.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.23.已知椭圆,过其右焦点F 且垂直于x 轴的弦MN 的长度为b .(Ⅰ)求该椭圆的离心率;(Ⅱ)已知点A 的坐标为(0,b ),椭圆上存在点P ,Q ,使得圆x 2+y 2=4内切于△APQ ,求该椭圆的方程.24.在平面直角坐标系中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.已知直线l 过点P (1,0), 斜率为,曲线C :ρ=ρcos2θ+8cos θ.(Ⅰ)写出直线l 的一个参数方程及曲线C 的直角坐标方程; (Ⅱ)若直线l 与曲线C 交于A ,B 两点,求|PA|•|PB|的值.东洲区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|==13。

东胜区实验中学2018-2019学年上学期高二数学12月月考试题含解析

东胜区实验中学2018-2019学年上学期高二数学12月月考试题含解析

东胜区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 下列判断正确的是()A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台2. 满足下列条件的函数中,为偶函数的是( ))(x f )(x f A.B.C. D.()||xf e x =2()x xf e e =2(ln )ln f x x =1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.3. 在的展开式中,含项的系数为( )10201511x x ⎛⎫++ ⎪⎝⎭2x (A ) ( B ) (C )(D ) 1030451204. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为()A .B .C .D .5. 已知直线 a A 平面α,直线b ⊆平面α,则( )A .B .与异面C .与相交D .与无公共点a b A 6. 已知双曲线(a >0,b >0)的一条渐近线方程为,则双曲线的离心率为()A .B .C .D .7. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A .B .C .D .8. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线9. 函数是指数函数,则的值是( )2(44)xy a a a =-+A .4B .1或3C .3D .110.若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .211.已知实数,,则点落在区域 内的概率为( )[1,1]x ∈-[0,2]y ∈(,)P x y 20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩………A.B.C.D.34381418【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.12.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④二、填空题13.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .14.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm . 15.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).16.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .17.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 . 18.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 三、解答题19.(本小题满分12分)如图,在四棱锥中,底面为菱形,分别是棱的中点,且ABCD S -ABCD Q P E 、、AB SC AD 、、⊥SE 平面.ABCD(1)求证:平面;//PQ SAD (2)求证:平面平面.⊥SAC SEQ 20.(本小题满分10分)选修4-5:不等式选讲已知函数.()|21|f x x =-(1)若不等式的解集为,求实数的值;1(21(0)2f x m m +≤+>(][),22,-∞-+∞ m (2)若不等式,对任意的实数恒成立,求实数的最小值.()2|23|2yyaf x x ≤+++,x y R ∈a 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.21.已知m ≥0,函数f (x )=2|x ﹣1|﹣|2x+m|的最大值为3.(Ⅰ)求实数m 的值;(Ⅱ)若实数a ,b ,c 满足a ﹣2b+c=m ,求a 2+b 2+c 2的最小值. 22.设p :实数x 满足x 2﹣4ax+3a 2<0,q :实数x 满足|x ﹣3|<1.(1)若a=1,且p ∧q 为真,求实数x 的取值范围;(2)若其中a >0且¬p 是¬q 的充分不必要条件,求实数a 的取值范围.23.已知椭圆:(),点在椭圆上,且椭圆的离心率为.C 22221x y a b +=0a b >>3(1,)2C C 12(1)求椭圆的方程;C (2)过椭圆的右焦点的直线与椭圆交于,两点,为椭圆的右顶点,直线,分别C F C P Q A C PA QA 交直线:于、两点,求证:.4x =M N FM FN ⊥24.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x 年后游艇的盈利为y 万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?东胜区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:①是底面为梯形的棱柱;②的两个底面不平行,不是圆台;③是四棱锥;④不是由棱锥截来的,故选:C . 2. 【答案】D.【解析】3. 【答案】C【解析】因为,所以项只能在10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++ ⎪ ⎪⎝⎭⎝⎭ 2x 展开式中,即为,系数为故选C .10(1)x +2210C x 21045.C =4. 【答案】D 【解析】解:双曲线﹣=1(a >0,b >0)的渐近线方程为 y=±x ,即x ±y=0.根据圆(x ﹣2)2+y 2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴ =,,可得e=.故此双曲线的离心率为:.故选D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.5.【答案】D【解析】//a b试题分析:因为直线a A平面α,直线b⊆平面α,所以或与异面,故选D.考点:平面的基本性质及推论.6.【答案】A【解析】解:∵双曲线的中心在原点,焦点在x轴上,∴设双曲线的方程为,(a>0,b>0)由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c==5t(t>0)∴该双曲线的离心率是e==.故选A.【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.7.【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1⊥PF2.又因为F1F2=2c,所以∠PF1F2=30°,所以.根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2a﹣c.所以2a﹣c=,所以e=.故选D.【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义. 8.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.9.【答案】C【解析】考点:指数函数的概念.10.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.11.【答案】B【解析】12.【答案】A【解析】考点:斜二测画法.二、填空题13.【答案】 2 .【解析】解:整理函数解析式得f(x)﹣1=log a(x﹣1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=1.∴4m+2n≥2=2=2.当且仅当4m=2n,即2m=n,即n=,m=时取等号.∴4m+2n的最小值为2.故答案为:214.【答案】 【解析】解:由题意可得三棱锥B1﹣AA1D1的体积是=,三角形AB1D1的面积为4,设点A1到平面AB1D1的距离等于h,则,则h=故点A1到平面AB1D1的距离为.故答案为:.15.【答案】 180 【解析】解:由二项式定理的通项公式T r+1=C n r a n﹣r b r可设含x2项的项是T r+1=C7r(2x)r可知r=2,所以系数为C102×4=180,故答案为:180.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.16.【答案】 .【解析】解:由题意画出几何体的图形如图由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.在RT△SHO中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.17.【答案】 (﹣∞,]∪[,+∞) .【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).18.【答案】:2x﹣y﹣1=0解:∵P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,∴圆心与点P 确定的直线斜率为=﹣,∴弦MN 所在直线的斜率为2,则弦MN 所在直线的方程为y ﹣1=2(x ﹣1),即2x ﹣y ﹣1=0.故答案为:2x ﹣y ﹣1=0三、解答题19.【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据线面平行的判定定理,可先证明PQ 与平面内的直线平行,则线面平行,所以取中SD 点,连结,可证明,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先F PF AF ,AF PQ //证明线面垂直,根据所给的条件证明平面,即平面平面.⊥AC SEQ ⊥SAC SEQ 试题解析:证明:(1)取中点,连结.SD F PF AF ,∵分别是棱的中点,∴,且.F P 、SD SC 、CD FP //CD FP 21=∵在菱形中,是的中点,ABCD Q AB ∴,且,即且.CD AQ //CD AQ 21=AQ FP //AQ FP =∴为平行四边形,则.AQPF AF PQ //∵平面,平面,∴平面.⊄PQ SAD ⊂AF SAD //PQ SAD考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直, 需熟练掌握判定定理以及性质定理.20.【答案】【解析】(1)由题意,知不等式解集为.|2|21(0)x m m ≤+>(][),22,-∞-+∞ 由,得,……………………2分|2|21x m ≤+1122m x m --≤≤+所以,由,解得.……………………4分122m +=32m =(2)不等式等价于,()2|23|2y y a f x x ≤+++|21||23|22y y a x x --+≤+由题意知.……………………6分max (|21||23|)22y y a x x --+≤+21.【答案】【解析】解:(Ⅰ)f (x )=2|x ﹣1|﹣|2x+m|=|2x ﹣2|﹣|2x+m|≤|(2x ﹣2)﹣(2x+m )|=|m+2|∵m ≥0,∴f (x )≤|m+2|=m+2,当x=1时取等号,∴f (x )max =m+2,又f (x )的最大值为3,∴m+2=3,即m=1.(Ⅱ)根据柯西不等式得:(a 2+b 2+c 2)[12+(﹣2)2+12]≥(a ﹣2b+c )2,∵a ﹣2b+c=m=1,∴,当,即时取等号,∴a 2+b 2+c 2的最小值为.【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.22.【答案】【解析】解:(1)由x 2﹣4ax+3a 2<0得(x ﹣3a )(x ﹣a )<0当a=1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3.由|x ﹣3|<1,得﹣1<x ﹣3<1,得2<x <4即q 为真时实数x 的取值范围是2<x <4,若p ∧q 为真,则p 真且q 真,∴实数x 的取值范围是2<x <3.(2)由x 2﹣4ax+3a 2<0得(x ﹣3a )(x ﹣a )<0,若¬p 是¬q 的充分不必要条件,则¬p ⇒¬q ,且¬q ⇏¬p ,设A={x|¬p},B={x|¬q},则A ⊊B ,又A={x|¬p}={x|x ≤a 或x ≥3a},B={x|¬q}={x|x ≥4或x ≤2},则0<a ≤2,且3a ≥4∴实数a 的取值范围是. 23.【答案】(1) ;(2)证明见解析.22143x y +=【解析】试题分析: (1)由题中条件要得两个等式,再由椭圆中的等式关系可得的值,求得椭圆的方程;c b a ,,b a ,(2)可设直线的方程,联立椭圆方程,由根与系数的关系得,,得P Q 122634m y y m -+=+122934y y m -=+直线,直线,求得点 、坐标,利用得.PA l QA l M N 0=⋅FN FM FM FN ⊥试题解析: (1)由题意得解得22222191,41,2,a b c a a b c ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩2,a b =⎧⎪⎨=⎪⎩∴椭圆的方程为.C 22143xy +=又,,111x my =+221x my =+∴,,则,,112(4,)1y M my -222(4,)1y N my -112(3,1y FM my =- 222(3,1y FN my =- 1212212121222499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++ 22222363499906913434m m m m m -+=+=-=---+++∴FM FN⊥考点:椭圆的性质;向量垂直的充要条件.24.【答案】【解析】解:(1)(x ∈N *) (6)(2)盈利额为…当且仅当即x=7时,上式取到等号 (11)答:使用游艇平均7年的盈利额最大. (12)【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题. 。

城口县实验中学2018-2019学年上学期高二数学12月月考试题含解析

城口县实验中学2018-2019学年上学期高二数学12月月考试题含解析

第 7 页,共 17 页
精选高中模拟试卷
5. 【答案】B 【解析】解:令 f(a)=(3﹣a)(a+6)=﹣ (a)的最大值为 故 故选 B. 【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题. 6. 【答案】 【解析】解:(I)证明:因为四边形 ABCD 是菱形,所以 AC⊥BD, 又因为 PA⊥平面 ABCD,所以 PA⊥BD,PA∩AC=A 所以 BD⊥平面 PAC (II)设 AC∩BD=O,因为∠BAD=60°,PA=AB=2, 所以 BO=1,AO=OC= 坐标系 O﹣xyz,则 P(0,﹣ 所以 ,2),A(0,﹣ =(1, ,﹣2), ,0),B(1,0,0),C(0, ,0) , 以 O 为坐标原点,分别以 OB,OC 为 x 轴、y 轴,以过 O 且垂直于平面 ABCD 的直线为 z 轴,建立空间直角 , (﹣6≤a≤3)的最大值为 = , + ,而且﹣6≤a≤3,由此可得函数 f
二、填空题
第 10 页,共 17 页
精选高中模拟试卷
13.【答案】 27 【解析】解:若 A 方格填 3,则排法有 2×32=18 种, 若 A 方格填 2,则排法有 1×32=9 种, 根据分类计数原理,所以不同的填法有 18+9=27 种. 故答案为:27. 【点评】本题考查了分类计数原理,如何分类是关键,属于基础题. 14.【答案】15 【解析】由条件知 0.9 P0 P0 e
A.
B.1
C.
D.
9. 已知三棱柱 ABC A1 B1C1 的侧棱与底面边长都相等, A1 在底面 ABC 上的射影为 BC 的中点, 则异面直线 AB 与 CC1 所成的角的余弦值为( )
A.
3 4

城区高级中学2018-2019学年上学期高二数学12月月考试题含解析

城区高级中学2018-2019学年上学期高二数学12月月考试题含解析

城区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.三个实数a、b、c成等比数列,且a+b+c=6,则b的取值范围是()A.[﹣6,2] B.[﹣6,0)∪(0,2] C.[﹣2,0)∪(0,6] D.(0,2]2.下列4个命题:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”;②若“¬p或q”是假命题,则“p且¬q”是真命题;③若p:x(x﹣2)≤0,q:log2x≤1,则p是q的充要条件;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2;其中正确命题的个数是()A.1个B.2个C.3个D.4个3.已知a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是()A.b>c>a B.b>a>c C.a>b>c D.c>b>a4.已知函数f(x)=x2﹣2x+3在[0,a]上有最大值3,最小值2,则a的取值范围()A.[1,+∞)B.[0.2} C.[1,2] D.(﹣∞,2]5.已知等比数列{a n}的前n项和为S n,若=4,则=()A.3 B.4 C.D.136.执行如图所示的程序框图,若输入的分别为0,1,则输出的()A .4B .16C .27D .367. 如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+)=( )A .﹣6B .﹣2C .2D .68. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,26 9. 定义运算:,,a a ba b b a b ≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A .22⎡-⎢⎣⎦B .[]1,1-C .⎤⎥⎣⎦D .⎡-⎢⎣⎦ 10.函数y=e cosx (﹣π≤x ≤π)的大致图象为( )A .B .C .D .11.若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0D .212.设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .二、填空题13.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .14.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力. 15.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.16.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN⋅=时,则MN的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力. 17.在△ABC 中,,,,则_____.18.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.三、解答题19.已知函数f (x )=4x ﹣a •2x+1+a+1,a ∈R . (1)当a=1时,解方程f (x )﹣1=0;(2)当0<x <1时,f (x )<0恒成立,求a 的取值范围; (3)若函数f (x )有零点,求实数a 的取值范围.20.求函数f (x )=﹣4x+4在[0,3]上的最大值与最小值.21.如图,边长为2的正方形ABCD 绕AB 边所在直线旋转一定的角度(小于180°)到ABEF 的位置. (Ⅰ)求证:CE ∥平面ADF ;(Ⅱ)若K 为线段BE 上异于B ,E 的点,CE=2.设直线AK 与平面BDF 所成角为φ,当30°≤φ≤45°时,求BK 的取值范围.22.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.(1)将曲线C 的参数方程化为普通方程; (2)求||||PB PA 的最值.23.设p :关于x 的不等式a x >1的解集是{x|x <0};q :函数的定义域为R .若p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.24.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.城区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.2.【答案】C【解析】解:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”,①正确;②若“¬p或q”是假命题,则¬p、q均为假命题,∴p、¬q均为真命题,“p且¬q”是真命题,②正确;③由p:x(x﹣2)≤0,得0≤x≤2,由q:log2x≤1,得0<x≤2,则p是q的必要不充分条件,③错误;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2,④正确.∴正确的命题有3个.故选:C.3.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.4.【答案】C【解析】解:f(x)=x2﹣2x+3=(x﹣1)2+2,对称轴为x=1.所以当x=1时,函数的最小值为2.当x=0时,f(0)=3.由f(x)=3得x2﹣2x+3=3,即x2﹣2x=0,解得x=0或x=2.∴要使函数f(x)=x2﹣2x+3在[0,a]上有最大值3,最小值2,则1≤a≤2.故选C.【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次函数的基本方法.5.【答案】D【解析】解:∵S n为等比数列{a n}的前n项和,=4,∴S4,S8﹣S4,S12﹣S8也成等比数列,且S8=4S4,∴(S8﹣S4)2=S4×(S12﹣S8),即9S42=S4×(S12﹣4S4),解得=13.故选:D.【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.6.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。

城区高级中学2018-2019学年上学期高二数学12月月考试题含解析(3)

城区高级中学2018-2019学年上学期高二数学12月月考试题含解析(3)

城区高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )A .b ≥0B .b ≤0C .b >0D .b <02. 已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ3. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅4. 已知集合A={4,5,6,8},B={3,5,7,8},则集合A ∪B=( ) A .{5,8}B .{4,5,6,7,8}C .{3,4,5,6,7,8}D .{4,5,6,7,8}5. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π106. 数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( ) A .﹣ B .C .﹣1D .17. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .48. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度. 9. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .410.已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .1 11.函数f (x )=tan (2x+),则( )A .函数最小正周期为π,且在(﹣,)是增函数B .函数最小正周期为,且在(﹣,)是减函数 C .函数最小正周期为π,且在(,)是减函数 D .函数最小正周期为,且在(,)是增函数12.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.二、填空题13.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.14.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .15.已知f (x )=x (e x +a e -x )为偶函数,则a =________. 16.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).17.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .18.已知平面向量a r ,b r 的夹角为3π,6=-b a ϖϖ,向量c a -r r ,c b -r r 的夹角为23π,23c a -=r r ,则a ϖ与c ϖ的夹角为__________,a c ⋅r r 的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.三、解答题19.已知椭圆E 的长轴的一个端点是抛物线y 2=4x 的焦点,离心率是.(1)求椭圆E 的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标.20.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.21.已知a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC.(I)求C的值;(Ⅱ)若c=2a,b=2,求△ABC的面积.22.已知双曲线C:与点P(1,2).(1)求过点P (1,2)且与曲线C 只有一个交点的直线方程;(2)是否存在过点P 的弦AB ,使AB 的中点为P ,若存在,求出弦AB 所在的直线方程,若不存在,请说明理由.23.已知函数f (x )=的定义域为A ,集合B 是不等式x 2﹣(2a+1)x+a 2+a >0的解集.(Ⅰ) 求A ,B ;(Ⅱ) 若A ∪B=B ,求实数a 的取值范围.24.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;(2)设(){}1nn n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.城区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:抛物线f(x)=x2+bx+3开口向上,以直线x=﹣为对称轴,若函数y=x2+bx+3在[0,+∞)上单调递增函数,则﹣≤0,解得:b≥0,故选:A.【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.2.【答案】B【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.则A={y|y≥﹣4}.∵x>0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y≥2},∴B⊆A.故选:B.【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.3.【答案】B【解析】解:∵A={1,2,3,4},B={3,4,5,6},∴A∩B={3,4},∵全集I={1,2,3,4,5,6},∴∁I(A∩B)={1,2,5,6},故选B.【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.4.【答案】C【解析】解:∵A={4,5,6,8},B={3,5,7,8},∴A∪B={3,4,5,6,7,8}.故选C5.【答案】B【解析】考点:球与几何体6.【答案】D【解析】解:∵a1=3,a n﹣a n•a n+1=1,∴,得,,a4=3,…∴数列{a n}是以3为周期的周期数列,且a1a2a3=﹣1,∵2016=3×672,∴A2016 =(﹣1)672=1.故选:D.7.【答案】D【解析】解:由题意,S k+2﹣S k=,即3×2k=48,2k=16,∴k=4.故选:D.【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.8.【答案】A【解析】9.【答案】A【解析】解:①在区间(0,+∞)上,函数y=x﹣1,是减函数.函数y=为增函数.函数y=(x﹣1)2在(0,1)上减,在(1,+∞)上增.函数y=x3是增函数.∴有两个是增函数,命题①是假命题;②若log m3<log n3<0,则,即lgn<lgm<0,则0<n<m<1,命题②为真命题;③若函数f(x)是奇函数,则其图象关于点(0,0)对称,∴f(x﹣1)的图象关于点A(1,0)对称,命题③是真命题;④若函数f(x)=3x﹣2x﹣3,则方程f(x)=0即为3x﹣2x﹣3=0,也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题④为真命题.∴假命题的个数是1个.故选:A.【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.10.【答案】【解析】选C.由题意得log2(a+6)+2log26=9.即log2(a+6)=3,∴a+6=23=8,∴a=2,故选C.11.【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+∈(,),函数f(x)=tan(2x+)单调递增,故选:D.12.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力二、填空题13.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++.14.【答案】 ﹣3<a <﹣1或1<a <3 .【解析】解:根据题意知:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,两圆圆心距d=|a|, ∴2﹣1<|a|<2+1, ∴﹣3<a <﹣1或1<a <3. 故答案为:﹣3<a <﹣1或1<a <3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,属中档题.15.【答案】【解析】解析:∵f (x )是偶函数,∴f (-x )=f (x )恒成立, 即(-x )(e -x +a e x )=x (e x +a e -x ), ∴a (e x +e -x )=-(e x +e -x ),∴a =-1. 答案:-1 16.【答案】②【解析】解:由MP ,OM 分别为角的正弦线、余弦线,如图,∵,∴OM <0<MP . 故答案为:②.【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.17.【答案】 4 .【解析】解:由题意得f ′(1)=3,且f (1)=3×1﹣2=1所以f (1)+f ′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f (a )与f ′(a ).18.【答案】6π,18123+. 【解析】三、解答题19.【答案】【解析】解:(1)由题意,椭圆的焦点在x 轴上,且a=,…1分c=e •a=×=,故b===,…4分所以,椭圆E的方程为,即x2+3y2=5…6分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k2﹣5=0;…7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=﹣,x1x2=;…8分∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣﹣,要使上式与k无关,则有6m+14=0,解得m=﹣;∴存在点M(﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.20.【答案】【解析】解:(Ⅰ)由题意得,2c=2,=1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2≠k1矛盾.当k1≠0时,直线PM:y=k1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M(,),同理N(,),由直线MN与y轴垂直,则=;∴(k2﹣k1)(4k2k1﹣1)=0,∴k2k1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.21.【答案】【解析】解:(I)∵a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC,∴sinCsinA=sinAcosC,∴sinCsinA﹣sinAcosC=0,∴sinC=cosC,∴tanC==,由三角形内角的范围可得C=;(Ⅱ)∵c=2a,b=2,C=,∴由余弦定理可得c2=a2+b2﹣2abcosC,∴4a2=a2+12﹣4a•,解得a=﹣1+,或a=﹣1﹣(舍去)∴△ABC的面积S=absinC==22.【答案】【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点所以l的方程为…(ⅱ)当2﹣k2≠0,即k≠±时△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.所以l的方程为3x﹣2y+1=0…综上知:l的方程为x=1或或3x﹣2y+1=0…(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12﹣y12=2,2x22﹣y22=2,两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…又∵x1+x2=2,y1+y2=4,∴2(x1﹣x2)=4(y1﹣y2)即k AB==,…∴直线AB的方程为y﹣2=(x﹣1),…代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,由于判别式为482﹣4×15×34>0,则该直线AB存在.…【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.23.【答案】【解析】解:(Ⅰ)∵,化为(x﹣2)(x+1)>0,解得x>2或x<﹣1,∴函数f(x)=的定义域A=(﹣∞,﹣1)∪(2,+∞);由不等式x2﹣(2a+1)x+a2+a>0化为(x﹣a)(x﹣a﹣1)>0,又a+1>a,∴x>a+1或x<a,∴不等式x2﹣(2a+1)x+a2+a>0的解集B=(﹣∞,a)∪(a+1,+∞);(Ⅱ)∵A∪B=B,∴A⊆B.∴,解得﹣1≤a≤1.∴实数a的取值范围[﹣1,1].24.【答案】【解析】(1)设等差数列{}n a 的首项为1a ,公差为d , 则由990S =,15240S =,得119369015105240a d a d +=⎧⎨+=⎩,解得12a d ==,……………3分所以2(n 1)22n a n =+-⨯=,即2n a n =,(1)22(1)2n n n S n n n -=+⨯=+,即1n S n n =+().……………5分。

东区第二中学2018-2019学年上学期高二数学12月月考试题含解析.doc

优选高中模拟试卷东区第二中学 2018-2019 学年上学期高二数学12 月月考试题含分析班级 __________姓名 __________分数 __________一、选择题1.两座灯塔 A 和 B 与大海察看站C 的距离都等于a km ,灯塔 A 在察看站C 的北偏东20°,灯塔 B 在察看站 C 的南偏东40°,则灯塔 A 与灯塔 B 的距离为() A .akmB .akmC . 2akmD .akm2.已知函数f ( x )=是 R 上的增函数,则a 的取值范围是() A .﹣ 3≤a <0 B .﹣ 3≤a ≤﹣2 C . a ≤﹣2 D . a < 0 3. 设长方体的长、宽、高分别为2a 、 a 、 a ,其极点都在一个球面上,则该球的表面积为()A .3πa 2B . 6πa 2C . 12πa 2D . 24πa 24. 已知某工程在很大程度上受当地年降水量的影响,施工时期的年降水量 X (单位: mm )对工期延迟天数Y 的影响及相应的概率 P 如表所示:降水量 XX< 100100 X200200 X 300X300≤ <≤ <≥工期延迟天数 Y51530概率 P0.40.20.10.3在降水量 X 起码是 100 的条件下,工期延迟不超出 15 天的概率为()A .0.1B . 0.3C . 0.42D . 0.52 2A 、B ,O 是坐标原点,且,那么实数5. 已知直线 x+y+a=0 与圆 x +y =1 交于不一样的两点 a 的取值范围是()A .B .C .D .6. 以下结论正确的选项是()A .若直线 l ∥ 平面 α,直线 l ∥ 平面 β,则 α∥β.B .若直线 l ⊥ 平面 α,直线 l ⊥ 平面 β,则 α∥β.C .若直线 l 1, l 2 与平面 α所成的角相等,则 l 1∥ l 2D .若直线 l 上两个不一样的点 A , B 到平面 α的距离相等,则 l ∥ α7. 已知 a= , b=2 0.5, c=0.50.2,则 a b c 三者的大小关系是( ), , A .b > c > a B . b > a > c C . a > b > c D . c > b > a8. 已知直线 m :3x 4 y 11 0 与圆 C :(x 2)2y 2 4 交于 A 、 B 两点, P 为直线 n :3x 4 y 4 0 上随意第1页,共18页一点,则PAB 的面积为() A .23B.33C.33D.4329.履行以下图的程序框图,假如输入的t = 10,则输出的i =() A .4 B . 5 C . 6D . 710.=( )A .﹣ iB . iC . 1+iD . 1﹣ i11.设会合M={ ( x , y ) |x 2+y 2=1, x ∈R , y ∈R} , N={ ( x , y ) |x 2﹣ y=0, x ∈R ,y ∈R} ,则会合M ∩N 中元素的个数为()A .1B .2C .3D .412.以下图,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为()A .22B .C.D .42+2二、填空题13.椭圆 C :+=1( a > b > 0)的右焦点为( 2,0),且点( 2,3)在椭圆上, 则椭圆的短轴长为.第2页,共18页14.关于会合M ,定义函数关于两个会合A , B ,定义会合A △ B={x|f A( x) f B( x)=﹣ 1} .已知 A={2 ,4,6,8,10} ,B={1 ,2,4,8,12} ,则用列举法写出会合A △ B 的结果为.15.已知三次函数f ( x) =ax3 +bx2+cx+d 的图象以下图,则=.16.设双曲线﹣ =1, F1, F2是其两个焦点,点M 在双曲线上.若∠ F1 MF2 =90°,则△F1MF 2的面积是.17.已知平面向量a,b的夹角为, a b 6 ,向量 c a , c b 的夹角为22 3 ,则a与, c a3 3c 的夹角为__________,a c的最大值为.【命题企图】此题考察平面向量数目积综合运用等基础知识,意在考察数形联合的数学思想与运算求解能力. 18.设会合 A={ ﹣3, 0, 1} , B={t 2﹣ t+1} .若 A ∪ B=A ,则 t= .三、解答题19.【常熟中学 2018 届高三 10 月阶段性抽测(一)】如图,某企业的LOGO 图案是多边形ABEFMN ,其设计创意以下:在长 4cm 、宽 1cm 的长方形 ABCD 中,将四边形 DFEC 沿直线EF翻折到 MFEN (点F是线段AD 上异于 D 的一点、点 E 是线段BC上的一点),使得点N落在线段 AD 上.( 1)当点N与点A重合时,求NMF面积;( 2)经察看丈量,发现当2NFMF 最小时,LOGO最雅观,试求此时LOGO 图案的面积 .第3页,共18页20.(此题满分12 分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你能够在 1,2, 3, 4,5, 6 点中任选一个,并押上赌注m元,而后掷 1 颗骰子,连续掷 3 次,若你所押的点数在 3 次掷骰子过程中出现 1 次, 2 次, 3 次,那么本来的赌注仍还给你,而且庄家分别赐予你所押赌注的1 倍,2 倍,3 倍的奖赏 .假如 3 次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家充公.( 1)求掷 3 次骰子,起码出现1 次为 5 点的概率;( 2)假如你打算试试一次,请计算一下你赢利的希望值,并给大家一个正确的建议.21.【淮安市淮海中学2018 届高三上第一次调研】已知函数f x3x a. 3x 1 b3x的x的取值;( 1)当a b 1 时,求知足 f x( 2)若函数f x 是定义在R 上的奇函数①存在 t R ,不等式 f t2 2t f 2t2 k 有解,求 k 的取值范围;② 若函数g x 知足1 x xf xg x 2 3 3 ,若对随意 x R ,不等式g 2x 恒成立,3 m g x 11务实数 m 的最大值.23ax f 0 =b a b22 .已知三次函数 f ( x)的导函数 f ′(x) =3x ﹣为实数.,(),、第4页,共18页( 1)若曲线 y=f (x)在点( a+1, f ( a+1))处切线的斜率为12,求 a 的值;( 2)若 f (x)在区间 [﹣ 1, 1]上的最小值、最大值分别为﹣2、1,且 1<a< 2,求函数f( x)的分析式.23.已知 f( x) =log 3( 1+x)﹣ log3( 1﹣ x).(1)判断函数 f( x)的奇偶性,并加以证明;(2)已知函数 g( x) =log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.24.(本小题满分10 分)选修4-5:不等式选讲已知函数f ( x)| x2 || x1 |, g( x)x .( 1)解不等式f ( x)g ( x) ;( 2)对随意的实数,不等式f ( x)2x2g ( x)m(mR) 恒成立,务实数m 的最小值.111]第5页,共18页东区第二中学 2018-2019 学年上学期高二数学 12 月月考试题含分析(参照答案)一、选择题1.【答案】 D【分析】解:依据题意,△ABC 中,∠ACB=180 °﹣ 20°﹣40°=120°,∵AC=BC=akm ,∴由余弦定理,得cos120°=,解之得 AB=akm,即灯塔 A 与灯塔 B 的距离为akm,应选: D.【评论】此题给出实质应用问题,求大海上灯塔A 与灯塔 B 的距离.侧重考察了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.2.【答案】 B【分析】解:∵函数是R上的增函数设 g(x) =﹣ x2﹣ ax﹣ 5( x≤1), h( x) =(x>1)由分段函数的性质可知,函数g( x)=﹣ x2﹣ ax﹣ 5 在(﹣∞, 1]单一递加,函数h( x) =在(1,+∞)单一递加,且g( 1)≤h( 1)∴第6页,共18页∴解可得,﹣ 3≤a≤﹣2应选 B3.【答案】 B【分析】解:依据题意球的半径R 知足(2R)2=6a2,所以 S 球 =4πR2=6πa2.应选 B4.【答案】 D【分析】解:降水量 X 起码是 100 的条件下,工期延迟不超出15 天的概率 P,设:降水量 X 起码是100 为事件 A ,工期延迟不超出15 天的事件 B ,P( A) =0.6, P( AB ) =0.3,P=P(B 丨 A )= =0.5,故答案选: D.5.【答案】 A【分析】解:设 AB 的中点为 C,则由于,所以 |OC|≥|AC|,由于 |OC|= , |AC|2=1 ﹣ |OC|2,2)2≥1,所以(所以 a≤﹣1 或 a≥1,由于< 1,所以﹣<a<,所以实数a 的取值范围是,应选: A.【评论】此题考察直线与圆的地点关系,考察点到直线的距离公式,考察学生的计算能力,属于中档题.6.【答案】 B第7页,共18页【分析】 解: A 选项中,两个平面能够订交,l 与交线平行即可,故不正确; B 选项中,垂直于同一平面的两个平面平行,正确;C 选项中,直线与直线订交、平行、异面都有可能,故不正确;D 中选项也可能订交. 应选: B .【评论】此题考察平面与平面,直线与直线,直线与平面的地点关系,考察学生剖析解决问题的能力,比较基 础.7.【答案】 A【分析】 解:∵ a=0.50.5, c=0.5 0.2,∴0< a < c <1, b=2 0.5> 1, ∴b > c > a , 应选: A . 8.【答案】C【分析】 分析:此题考察圆的弦长的计算与点到直线、两平行线的距离的计算.圆心 C 到直线m 的距离 d1,| AB |2 r 2d 22 3 ,两平行直线 m 、 n 之间的距离为d3 ,∴PAB 的面积为1| AB | d 3 3 ,选C . 29.【答案】【分析】 分析:选B. 程序运转序次为 第一次 t = 5, i = 2; 第二次 t = 16, i = 3; 第三次 t = 8, i = 4;第四次 t = 4, i = 5,故输出的i = 5. 10.【答案】B【分析】 解:===i . 应选: B .【评论】此题考察复数的代数形式混淆运算,复数的除法的运算法例的应用,考察计算能力. 11.【答案】 B【分析】 解:依据题意,M ∩N={ (x , y ) |x 2+y 2=1, x ∈R ,y ∈R} ∩{ ( x , y ) |x 2﹣ y=0 ,x ∈R , y ∈R} ═ { ( x ,y ) |}第8页,共18页将 x2﹣ y=0 代入 x2+y2 =1,得 y2+y﹣ 1=0,△ =5> 0,所以方程组有两组解,所以会合M ∩N 中元素的个数为2 个,应选 B.【评论】此题既是交集运算,又是函数图形求交点个数问题12.【答案】 C【分析】考点:平面图形的直观图.二、填空题13.【答案】.【分析】解:椭圆 C:+ =1 ( a> b> 0)的右焦点为(2, 0),且点( 2, 3)在椭圆上,可得 c=2, 2a= =8,可得 a=4,2 2 2b =a ﹣c =12 ,可得 b=2,椭圆的短轴长为: 4 .故答案为: 4 .【评论】此题考察椭圆的简单性质以及椭圆的定义的应用,考察计算能力.14.【答案】{1 , 6,10, 12} .【分析】解:要使f A( x)f B( x) =﹣ 1,必有 x∈{x|x ∈A 且 x?B} ∪ {x|x ∈B 且 x? A}={6 ,10} ∪ {1 , 12}={1 , 6, 10, 12, } ,所以 A △ B={1 ,6, 10, 12} .故答案为 {1 ,6, 10, 12} .【评论】此题是新定义题,考察了交、并、补集的混淆运算,解答的重点是对新定义的理解,是基础题.第9页,共18页15.【答案】﹣5.【分析】解:求导得: f ′( x) =3ax2+2bx+c ,联合图象可得x= ﹣ 1,2 为导函数的零点,即 f ′(﹣ 1) =f ′( 2) =0,故,解得故==﹣5故答案为:﹣516.【答案】9.【分析】解:双曲线﹣=1 的 a=2, b=3 ,可得 c2=a2+b2=13 ,又 ||MF 1|﹣ |MF 2||=2a=4, |F1F2|=2c=2,∠F1MF2=90°,在△ F1AF 2中,由勾股定理得:|F1F2|2 =|MF 1 |2+|MF 2|2=( |MF 1|﹣ |MF 2|)2+2|MF 1||MF 2|,即 4c2=4a2+2|MF 1||MF 2|,可得 |MF1||MF 2|=2b2=18 ,即有△ F1MF 2的面积 S= |MF 1||MF 2|sin∠ F1 MF2 = ×18×1=9.故答案为: 9.【评论】此题考察双曲线的简单性质,侧重考察双曲线的定义与a、b、c 之间的关系式的应用,考察三角形的面积公式,考察转变思想与运算能力,属于中档题.17.【答案】,18 12 3.6【分析】第10页,共18页18.【答案】0或1 .【分析】解:由 A ∪B=A 知 B? A ,∴t2﹣ t+1= ﹣ 3① t2﹣ t+4=0 ,①无解或 t2﹣ t+1=0 ②,②无解或 t2﹣ t+1=1 , t2﹣ t=0,解得t=0 或 t=1 .故答案为0 或 1.【评论】此题考察会合运算及基本关系,掌握好观点是基础.正确的转变和计算是重点.三、解答题19 .【答案】()15cm 2;()43 2.1162 cm3【分析】试题剖析:( 1)设MF x ,利用题意联合勾股定理可得x2 1 x 4 ,则x 15 ,8第11页,共18页据此可得NMF 的面积是 1 1 15 15cm 2 ;2 8 16试题分析:( 1)设MF x ,则 FD MF x ,NF x2 1 ,∵ NF MF 4 ,∴x2 1 x 4 ,解之得 x 15 ,NMF 的面积是11515cm 2 ;8∴ 12 8 16( 2)设NEC ,则NEF ,NEB FNE ,2∴MNF2,2∴NFMN 1 1 cos MNF ,cos sin2MF FD MN tan MNF tancos,2 sin∴ 2NF MF 2 cos.sin1 cos∵ 1 NF FD 4 ,∴1 4 ,即1 tan 4 ,sin 2∴2 ( tan 4 且,2),4 3∴ 2 ( tan 4 且3 , ),2 2设 f 2 cos ,则f 1 2cos ,令 f 0 得 2 ,sin sin2 3 列表得第12页,共18页∴ 当2MF 取到最小值,时, 2NF3此时,NEF CEF NEB FNE NFE NFM ,MNF ,3 6在 Rt MNF 中, MN 1, MF3 2 3, NF ,3 3在正NFE 中, NF EF NE 2 3 ,3在梯形 ANEB 中,AB 1 , AN 4 3,BE2 3 4 ,3∴S六边形ABEFMN SMNF S EFN S梯形ABEN3 3 132 31 43 6 34 43.2 3答:当 2NF MF 最小时,LOGO图案面积为 4 3cm2. 3点睛:务实质问题中的最大值或最小值时,一般是先设自变量、因变量,成立函数关系式,并确立其定义域,利用求函数的最值的方法求解,注意结果应与实质状况相联合.用导数求解实质问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依照实质意义,该极值点也就是最值点.20.【答案】【分析】【命题企图】此题考察了独立重复试验中概率的求法,对峙事件的基天性质;对化归能力及对实质问题的抽象能力要求较高,属于中档难度.第13页,共18页21. 【答案】 (1) x 1 (2)① 1,,② 6【分析】试题3x 1x3x 22 3x 1 0分析:( 1)由题意, 3 ,化简得 33x 11解得 3x1 舍 或3x1,3所以 x1第14页,共18页( 2)由于 fxf xf x 0 ,所以3x a3x a是奇函数,所以x 1bx 13x3 x33b化简并变形得: 3a b 2ab 6 0要使上式对随意的x 成立,则 3a b 0且 2ab 6解得: {a 1或{a1 ,由于 f x 的定义域是 R ,所以 { a1 舍去b 3 b3b 3 所以 a1,b 3 ,所以 fx 3x 13x13① fx 3x 1 1123x 13 33x1对随意 x 1, x 2 R, x 1x 2 有:f x 1f x 212223x23x13 3x 113x21 33x113x21由于 x 1 x 2 ,所以 3x 2 3x10 ,所以 f x 1fx 2 ,所以 f x 在 R 上递减.由于 f t 2 2tf 2t 2 k ,所以 t 2 2t 2t 2k ,即 t 2 2t k 0 在时有解所以4 4t0 ,解得: t 1,所以 的取值范围为 1,②由于 f xg x 2 1 3 x3 x,所以 g x3 x 3x 233 f x即 gx 3x 3 x所以 g 2x 32 x32x3x3x22不等式 g 2xm g x11 恒成立,即 3x 3 x 22 m 3x3 x11 ,即: m3x 3 xx9 x 恒成立3 3 9令 t3x3 x ,t 2 ,则 m t 在 t 2 时恒成立9 9 t令 h tt , h' t 1tt 2,t 2,3 时, h ' t 0 ,所以 h t 在 2,3 上单一递减第15页,共18页t 3, 时, h ' t 0 ,所以 h t 在 3, 上单一递加所以 h t min h 3 6 ,所以m 6所以,实数m 的最大值为 6考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,第一要结构函数,利用导数研究函数的单一性,求出最值,从而得出相应的含参不等式,从而求出参数的取值范围;也可分别变量,结构函数,直接把问题转变为函数的最值问题。

大东区实验中学2018-2019学年上学期高二数学12月月考试题含解析

大东区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 已知平面向量与的夹角为,且,,则()3π32|2|=+1||==||A . B .C .D . 32. 下列函数中,定义域是R 且为增函数的是()A.xy e -= B.3y x =C.ln y x =D.y x=3. 有以下四个命题:①若=,则x=y .②若lgx 有意义,则x >0.③若x=y ,则=.④若x >y ,则 x 2<y 2.则是真命题的序号为( )A .①②B .①③C .②③D .③④4. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内5. 数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( )A .﹣B .C .﹣1D .16. ∃x ∈R ,x 2﹣2x+3>0的否定是( )A .不存在x ∈R ,使∃x 2﹣2x+3≥0B .∃x ∈R ,x 2﹣2x+3≤0C .∀x ∈R ,x 2﹣2x+3≤0D .∀x ∈R ,x 2﹣2x+3>07. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)8. 以下四个命题中,真命题的是( )A .2,2x R x x ∃∈≤-B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++<C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+ D .已知,表示两条不同的直线,,表示不同的平面,并且,,则“”是m n αβm α⊥n β⊂αβ⊥ “”的必要不充分条件//m n 【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.9. 已知,,其中是虚数单位,则的虚部为( )i z 311-=i z +=32i 21z z A .B .C .D .1-54i -i 54【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.10.设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( )A .﹣13B .6C .79D .3711.已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( )A .0B .1C .2D .312.若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( )A .¬p 为假命题B .¬q 为假命题C .p ∨q 为假命题D .p ∧q 真命题二、填空题13.若x ,y 满足约束条件,若z =2x +by (b >0)的最小值为3,则b =________.{x +y -5≤02x -y -1≥0x -2y +1≤0)14.在复平面内,复数与对应的点关于虚轴对称,且,则____.15.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.16.【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两()2,0,{,0x x x f x x lnx x a+≤=->个零点,则正实数的值为______.a 17.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1③f (x )=x 2+1④f (x )=其中是“H 函数”的有 (填序号) 18.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 . 三、解答题19.(本题满分12分)在长方体中,,是棱上的一点,是棱1111D C B A ABCD -a AD AA ==1E CD P 1AA 上的一点.(1)求证:平面;⊥1AD D B A 11(2)求证:;11AD E B ⊥(3)若是棱的中点,是棱的中点,求证:平面.E CD P 1AA //DP AE B120.(本题满分12分)在中,已知角所对的边分别是,边,且ABC ∆,,A B C ,,a b c 72c =,又的面积为,求的值.tan tan tan tan A B A B +=A ABC ∆ABC S ∆=a b +21.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.22.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.23.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;Ⅱ商店记录了50天该商品的日需求量单位:件,整理得下表:日需求量n89101112频数91151051①假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.24.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.大东区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C考点:平面向量数量积的运算.2. 【答案】B 【解析】试题分析:对于A ,为增函数,为减函数,故为减函数,对于B ,,故xy e =y x =-xy e -=2'30y x =>3y x =为增函数,对于C ,函数定义域为,不为,对于D ,函数为偶函数,在上单调递减,0x >R y x =(),0-∞在上单调递增,故选B. ()0,∞考点:1、函数的定义域;2、函数的单调性.3. 【答案】A【解析】解:①若=,则,则x=y ,即①对;②若lgx 有意义,则x >0,即②对;③若x=y >0,则=,若x=y <0,则不成立,即③错;④若x >y >0,则 x 2>y 2,即④错.故真命题的序号为①②故选:A . 4. 【答案】B【解析】解:假设过点P 且平行于l 的直线有两条m 与n ∴m ∥l 且n ∥l 由平行公理4得m ∥n这与两条直线m 与n 相交与点P 相矛盾又因为点P 在平面内所以点P 且平行于l 的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型. 5.【答案】D【解析】解:∵a1=3,a n﹣a n•a n+1=1,∴,得,,a4=3,…∴数列{a n}是以3为周期的周期数列,且a1a2a3=﹣1,∵2016=3×672,∴A2016 =(﹣1)672=1.故选:D.6.【答案】C【解析】解:因为特称命题的否定是全称命题,所以,∃x∈R,x2﹣2x+3>0的否定是:∀x∈R,x2﹣2x+3≤0.故选:C.7.【答案】B【解析】解:∵f(x)是偶函数∴f(﹣x)=f(x)不等式,即也就是xf(x)>0①当x>0时,有f(x)>0∵f(x)在(0,+∞)上为减函数,且f(2)=0∴f(x)>0即f(x)>f(2),得0<x<2;②当x<0时,有f(x)<0∵﹣x>0,f(x)=f(﹣x)<f(2),∴﹣x>2⇒x<﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)故选B8.【答案】D9. 【答案】B【解析】由复数的除法运算法则得,,所以的虚部为.i i i i i i i i z z 54531086)3)(3()3)(31(33121+=+=-+-+=++=21z z 5410.【答案】 D 【解析】二项式系数的性质.【专题】二项式定理.【分析】由含x 一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m 、n 为正整数,可得m=3、n=2,从而求得含x 2项的系数.【解答】解:由于多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m 、n 为正整数,可得m=3、n=2,故含x 2项的系数是(﹣2)2+(﹣5)2=37,故选:D .【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.11.【答案】C【解析】解:集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z}={1,2},P ∩Q ≠∅,可得b 的最小值为:2.故选:C .【点评】本题考查集合的基本运算,交集的意义,是基础题. 12.【答案】A 【解析】解:时,sinx 0=1;∴∃x 0∈R ,sinx 0=1;∴命题p 是真命题;由x 2+1<0得x 2<﹣1,显然不成立;∴命题q是假命题;∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;∴A正确.故选A.【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.二、填空题13.【答案】【解析】约束条件表示的区域如图,当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.答案:114.【答案】-2【解析】【知识点】复数乘除和乘方【试题解析】由题知:所以故答案为:-215.【答案】 4 【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,故后排有三个,故此几何体共有4个木块组成.故答案为:4.16.【答案】e【解析】考查函数,其余条件均不变,则:()()20{x x x f x ax lnx+≤=-当x ⩽0时,f (x )=x +2x ,单调递增,f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点;则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,即有有且只有一个实根。

高二12月月考(数学)试题含答案

高二12月月考(数学)(考试总分:150 分)一、单选题(本题共计8小题,总分40分)1.(5分)1.直线x﹣y+1=0的斜率为()A.B.﹣C.D.﹣2.(5分)2.已知向量=(2,3,1),=(1,2,0),则|+|等于()A.B.3C.D.93.(5分)3.如图,在三棱柱ABC﹣A1B1C1中,M为A1C1的中点,若=,=,=,则下列向量与相等的是()A.﹣﹣+B.+﹣C.﹣++D.++4.(5分)4.《周髀算经》是中国最古老的天文学和数学著作,书中提到冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是40.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为()A.6.5尺B.13.5尺C.14.5尺D.15.5尺5.(5分)5.在正方体ABCD﹣A1B1C1D1中,M、N分别为棱A1B1和BB1的中点,那么异面直线AM和CN所成角的余弦值是()A.B.C.D.﹣6.(5分)6.历时23天嫦娥五号成功携带月球样品返回地球,标志着中国航天向前迈出一大步.其中2020年11月28日晚,嫦娥五号成功进行首次近月制动,进入一个大椭圆轨道.该椭圆形轨道以月球球心为一个焦点F1,若其近月点A(离月球表面最近的点)与月球表面距离为r1公里,远月点B(离月球表面最远的点)与月球表面距离为r2公里,并且F1,A,B在同一直线上已知月球的半径为R公里,则该椭圆形轨道的离心率为()A.B.C.D.7.(5分)7.已知动点P在直线l1:3x﹣4y+1=0上运动,动点Q在直线l2:6x+my+4=0上运动,且l1∥l2,则|PQ|的最小值为()A.B.C.D.8.(5分)8.若等差数列{a n}的前n项和为S n,首项a1>0,a2020+a2021>0,a2020•a2021<0,则满足S n>0成立的最大正整数n是()A.4039B.4040C.4041D.4042二、多选题(本题共计4小题,总分20分)9.(5分)9.关于双曲线C1:=1与双曲线C2:=1,下列说法正确的是()A.它们的实轴长相等B.它们的渐近线相同C.它们的离心率相等D.它们的焦距相等10.(5分)10.已知圆C1:x2+y2=1和圆C2:x2+y2﹣4x=0的公共点为A,B,则()A.|C1C2|=2B.直线AB的方程是x=C.AC1⊥AC2D.|AB|=11.(5分)11.若数列{a n}满足a1=1,a2=1,a n=a n﹣1+a n﹣2(n≥3,n∈N+),则称数列{a n}为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用则下列结论成立的是()A.a7=13B.a1+a3+a5+……+a2019=a2020C.S7=54D.a2+a4+a6+……+a2020=a202112.(5分)12.已知正方体ABCD﹣A1B1C1D1的棱长为2,点E,F在平面A1B1C1D1内,若|AE|=,AC⊥DF,则()A.点E的轨迹是一个圆B.点F的轨迹是一个圆C.|EF|的最小值为﹣1D.AE与平面A1BD所成角的正弦值的最大值为三、填空题(本题共计3小题,总分15分)13.(5分)13.若直线x﹣y+1=0与直线mx+3y﹣1=0互相垂直,则实数m的值为.14.(5分)14.若双曲线的渐近线为,则双曲线C的离心率为.15.(5分)16.在平面直角坐标系中,O为坐标原点,过点(,0)的直线l与圆C:x2+y2﹣4x+8=0交于A,B两点,则四边形OACB面积的最大值为.四、解答题(本题共计7小题,总分75分)16.(5分)15.已知四面体ABCD的顶点分别为A(2,3,1),B(1,0,2),C(4,3,﹣1),D(0,3,﹣3),则点D到平面ABC的距离.17.(10分)17.在:①圆C与y轴相切,且与x轴正半轴相交所得弦长为2;②圆C经过点A(4,1)和B(2,3);③圆C与直线x﹣2y﹣1=0相切,且与圆Q:x2+(y﹣2)2=1相外切。

市中区实验中学2018-2019学年上学期高二数学12月月考试题含解析


姓名__________
分数__________
2 3. 已知角 的终边经过点 (sin15 , cos15 ) ,则 cos 的值为( A.
1 3 2 4

B.
1 3 2 4
3 4
D.0
4. 如果函数 f(x)的图象关于原点对称,在区间上是减函数,且最小值为 3,那么 f(x)在区间上是 ( A.增函数且最小值为 3 B.增函数且最大值为 3
C.减函数且最小值为﹣3 D.减函数且最大值为﹣3 5. 某中学有高中生 3500 人,初中生 1500 人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取 一个容量为 n 的样本,已知从高中生中抽取 70 人,则 n 为( A.100 B.150 C.200 D.250 6. 已知平面 α、β 和直线 m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.为使 m∥β,应选择 下面四个选项中的( A.①④ B.①⑤ ,若 A. B. C. ) C.②⑤ D.③⑤ , ) )
【解析】解:①、终边在 y 轴上的角的集合是{a|a= ②、设 f(x)=sinx﹣x,其导函数 y′=cosx﹣1≤0,
,k∈Z},故①错误;
第 10 页,共 18 页
精选高中模拟试卷
∴f(x)在 R 上单调递减,且 f(0)=0, ∴f(x)=sinx﹣x 图象与轴只有一个交点. ∴f(x)=sinx 与 y=x 图象只有一个交点,故②错误; ③、由题意得,y=3sin[2(x﹣ ④、由 y=sin(x﹣ 故答案为:③. 【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换, 及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中 4 个命题的真假,是解答本题的关键. 16.【答案】 ﹣ . +α)= , ﹣( +α)] )+ ]=3sin2x,故③正确;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城东区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设数集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,如果把b ﹣a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是()A.B.C.D.2.487被7除的余数为a(0≤a<7),则展开式中x﹣3的系数为()A.4320 B.﹣4320 C.20 D.﹣203.若函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,则该函数的最大值为()A.5 B.4 C.3 D.24.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A.i≤5?B.i≤4?C.i≥4?D.i≥5?5.下列满足“∀x∈R,f(x)+f(﹣x)=0且f′(x)≤0”的函数是()A.f(x)=﹣xe|x| B.f(x)=x+sinxC.f(x)=D.f(x)=x2|x|6.5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为()A.35B.C.D.537.已知d为常数,p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件8. 在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=9. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .10.已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .1211.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .12.已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则OP Q ∆的面积等于( )A .B .C .2 D .4二、填空题13.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .14.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .15.不等式()2110ax a x +++≥恒成立,则实数的值是__________. 16.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= . 17. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.18.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.三、解答题19.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.20.已知函数f (x )=a x (a >0且a ≠1)的图象经过点(2,). (1)求a 的值;(2)比较f (2)与f (b 2+2)的大小;(3)求函数f (x )=a (x ≥0)的值域.21.如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.(1)求证:BC1∥平面A1CD;(2)若四边形BCCB1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.122.一艘客轮在航海中遇险,发出求救信号.在遇险地点A南偏西45方向10海里的B处有一艘海难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;中,求角B的正弦值.(2)若最短时间内两船在C处相遇,如图,在ABC23.设函数f (x )=kx 2+2x (k 为实常数)为奇函数,函数g (x )=a f (x )﹣1(a >0且a ≠1).(Ⅰ)求k 的值; (Ⅱ)求g (x )在[﹣1,2]上的最大值;(Ⅲ)当时,g (x )≤t 2﹣2mt+1对所有的x ∈[﹣1,1]及m ∈[﹣1,1]恒成立,求实数t 的取值范围.24.(本题满分15分)已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;(2)若a bx cx x g +-=2)(,当1≤x 时,求)(x g 的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.城东区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M与N应分别在区间[0,1]的左右两端,故M∩N的长度的最小值是=.故选:C.2.【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a(0≤a<7),∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x﹣3的系数为=﹣4320,故选:B..3.【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x∈[﹣2,2],函数的最大值为:5.故选:A.【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.4.【答案】B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s 的,则判断框中应填入的条件是i ≤4. 故选:B .【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5. 【答案】A【解析】解:满足“∀x ∈R ,f (x )+f (﹣x )=0,且f ′(x )≤0”的函数为奇函数,且在R 上为减函数, A 中函数f (x )=﹣xe |x|,满足f (﹣x )=﹣f (x ),即函数为奇函数,且f ′(x )=≤0恒成立,故在R 上为减函数,B 中函数f (x )=x+sinx ,满足f (﹣x )=﹣f (x ),即函数为奇函数,但f ′(x )=1+cosx ≥0,在R 上是增函数,C 中函数f (x )=,满足f (﹣x )=f (x ),故函数为偶函数;D 中函数f (x )=x 2|x|,满足f (﹣x )=f (x ),故函数为偶函数, 故选:A .6. 【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D .【点评】本题主要考查分步计数原理的应用,属于基础题.7. 【答案】A【解析】解:p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列, 则¬p :∃n ∈N *,a n+2﹣a n+1≠d ;¬q :数列 {a n }不是公差为d 的等差数列,由¬p ⇒¬q ,即a n+2﹣a n+1不是常数,则数列 {a n }就不是等差数列,若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A.【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.8.【答案】C【解析】解:A.在定义域内没有单调性,∴该选项错误;B.时,y=,x=1时,y=0;∴该函数在定义域内不是减函数,∴该选项错误;C.y=﹣x|x|的定义域为R,且﹣(﹣x)|﹣x|=x|x|=﹣(﹣x|x|);∴该函数为奇函数;;∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;∴该函数在定义域R上为减函数,∴该选项正确;D.;∵﹣0+1>﹣0﹣1;∴该函数在定义域R上不是减函数,∴该选项错误.故选:C.【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.9.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C10.【答案】D【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质. 11.【答案】 D【解析】解:∵g (x )=﹣f (2﹣x ),∴y=f (x )﹣g (x )=f (x )﹣+f (2﹣x ),由f (x )﹣+f (2﹣x )=0,得f (x )+f (2﹣x )=,设h (x )=f (x )+f (2﹣x ), 若x ≤0,则﹣x ≥0,2﹣x ≥2,则h (x )=f (x )+f (2﹣x )=2+x+x 2,若0≤x ≤2,则﹣2≤﹣x ≤0,0≤2﹣x ≤2,则h (x )=f (x )+f (2﹣x )=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2, 若x >2,﹣x <﹣2,2﹣x <0, 则h (x )=f (x )+f (2﹣x )=(x ﹣2)2+2﹣|2﹣x|=x 2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2+≥,故当=时,h (x )=,有两个交点,当=2时,h (x )=,有无数个交点,由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.12.【答案】C 【解析】∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得218m =,∴12y y -==.∴1212S OF y y =-=. (由1212420y y y y =-⎧⎨+=⎩,得12y y ⎧=⎪⎨=⎪⎩12y y ⎧=-⎪⎨=⎪⎩考点:抛物线的性质.二、填空题13.【答案】5 【解析】试题分析:'2'()323,(3)0,5f x x ax f a =++∴-=∴=. 考点:导数与极值. 14.【答案】 60° .【解析】解:∵|﹣|=,∴∴=3,∴cos <>==∵∴与的夹角为60°. 故答案为:60° 【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.15.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足2(1)40a a a >⎧⎨∆=+-≤⎩,即20(1)0a a >⎧⎨-≤⎩,解得1a =.1考点:不等式的恒成立问题.16.【答案】7-. 【解析】考点:向量的夹角.【名师点睛】平面向量数量积的类型及求法 (1)求平面向量的数量积有三种方法:一是定义cos a b a b θ⋅=;二是坐标运算公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简 17.【答案】①②④ 【解析】18.【解析】三、解答题19.【答案】(1)证明见解析;(2)【解析】试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,进而有线面垂直的判定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC =,利用棱锥的体积公式可得结果.考点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式.20.【答案】【解析】解:(1)f(x)=a x(a>0且a≠1)的图象经过点(2,),∴a2=,∴a=(2)∵f(x)=()x在R上单调递减,又2<b2+2,∴f(2)≥f(b2+2),(3)∵x≥0,x2﹣2x≥﹣1,∴≤()﹣1=3∴0<f(x)≤(0,3]21.【答案】【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,∵D为AB的中点,∴DO∥BC1,∵BC1⊄平面A1CD,DO⊂平面A1CD,∴BC1∥平面A1CD.解:∵底面△ABC是边长为2等边三角形,D为AB的中点,四边形BCCB1是正方形,且A1D=,1∴CD⊥AB,CD==,AD=1,∴AD2+AA12=A1D2,∴AA1⊥AB,∵,∴,∴CD ⊥DA 1,又DA 1∩AB=D ,∴CD ⊥平面ABB 1A 1,∵BB 1⊂平面ABB 1A 1,∴BB 1⊥CD , ∵矩形BCC 1B 1,∴BB 1⊥BC , ∵BC ∩CD=C ∴BB 1⊥平面ABC , ∵底面△ABC 是等边三角形, ∴三棱柱ABC ﹣A 1B 1C 1是正三棱柱.以C 为原点,CB 为x 轴,CC 1为y 轴,过C 作平面CBB 1C 1的垂线为z 轴,建立空间直角坐标系,B (2,0,0),A (1,0,),D (,0,),A 1(1,2,),=(,﹣2,﹣),平面CBB 1C 1的法向量=(0,0,1),设直线A 1D 与平面CBB 1C 1所成角为θ,则sin θ===.∴直线A 1D 与平面CBB 1C 1所成角的正弦值为.22.【答案】(1)23小时;(2)14. 【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在C 处相遇. 在ABC ∆中,4575120BAC ∠=+=,10AB =,9AC t =,21BC t =.由余弦定理得:2222cos BC AB AC AB AC BAC =+-∠, 所以2221(21)10(9)2109()2t t t =+-⨯⨯⨯-,化简得2369100t t --=,解得23t =或512t =-(舍去). 所以,海难搜救艇追上客轮所需时间为23小时.(2)由2963AC =⨯=,221143BC =⨯=.在ABC ∆中,由正弦定理得6sin 6sin1202sin 1414AC BAC B BC⨯∠====. 所以角B 的正弦值为14. 考点:三角形的实际应用.【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,AC BC ,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键. 23.【答案】【解析】解:(Ⅰ)由f (﹣x )=﹣f (x )得 kx 2﹣2x=﹣kx 2﹣2x ,∴k=0.(Ⅱ)∵g (x )=a f (x )﹣1=a 2x ﹣1=(a 2)x﹣1①当a 2>1,即a >1时,g (x )=(a 2)x ﹣1在[﹣1,2]上为增函数,∴g (x )最大值为g (2)=a 4﹣1.②当a 2<1,即0<a <1时,∴g (x )=(a 2)x 在[﹣1,2]上为减函数, ∴g (x )最大值为.∴(Ⅲ)由(Ⅱ)得g (x )在x ∈[﹣1,1]上的最大值为,∴1≤t 2﹣2mt+1即t 2﹣2mt ≥0在[﹣1,1]上恒成立令h (m )=﹣2mt+t 2,∴即 所以t ∈(﹣∞,﹣2]∪{0}∪[2,+∞). 【点评】本题考查函数的奇偶性,考查函数的最值,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.24.【答案】【解析】(1)]0,222[-;(2)2.(1)由1=a 且c b =,得4)2()(222b b b x b bx x x f -++=++=,当1=x 时,11)1(≤++=b b f ,得01≤≤-b ,…………3分故)(x f 的对称轴]21,0[2∈-=b x ,当1≤x 时,2min max ()()124()(1)11b b f x f b f x f ⎧=-=-≥-⎪⎨⎪=-=≤⎩,………… 5分 解得222222+≤≤-b ,综上,实数b 的取值范围为]0,222[-;…………7分112≤+=,…………13分且当2a =,0b =,1c =-时,若1≤x ,则112)(2≤-=x x f 恒成立, 且当0=x 时,2)(2+-=x x g 取到最大值2.)(x g 的最大值为2.…………15分。

相关文档
最新文档