抛物线的简单几何性质练习
抛物线的简单几何性质有答案

2.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4 ,则C的实轴长为()
A. B.2
C.4D.8
【解析】设C: - =1.
∵抛物线y2=16x的准线为x=-4,联立 - =1和x=-4得A(-4, ),B(-4,- ),
∴|AB|=2 =4 ,∴a=2,∴2a=4.
【解析】由抛物线y2=8x的焦点为(2,0),得直线的方程为y=x-2,代入y2=8x,得(x-2)2=8x,即x2-12x+4=0,∴x1+x2=12,弦长=x1+x2+p=12+4=16.
【答案】16
4.已知AB是过抛物线2x2=y的焦点的弦,若|AB|=4,则AB的中点的纵坐标是________.
这时,直线l与抛物线只有一个公共点 .
(2)当k≠0时,方程①的判别式为
Δ=-16(2k2+k-1).
①由Δ=0,即2k2+k-1=0,
解得k=-1或k= .
于是,当k=-1或k= 时,方程①只有一个解,从而方程组(*)只有一个解.这时,直线l与抛物线只有一个公共点.
②当Δ>0,即2k2+k-1<0,解得-1<k< .
(2)当a=0时,方程只有一解x=- ,这时直线与抛物线的对称轴平行或重合.
2.直线与抛物线相切和直线与抛物线公共点的个数的关系:直线与抛物线相切时,只有一个公共点,但是不能把直线与抛物线有且只有一个公共点统称为相切,这是因为平行于抛物线的对称轴的直线与抛物线只有一个公共点,而这时抛物线与直线是相交的.
[小组合作型]
抛物线的几何性质
(1)抛物线顶点在坐标原点,以y轴为对称轴,过焦点且与y轴垂直的弦长为16,则抛物线方程为________.
专题3.5抛物线的标准方程及简单几何性质(八个重难点突破)(原卷版)-高二数学上学期重难点和易错突破

专题3.5抛物线的标准方程及简单几何性质知识点一抛物线的定义我们把平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.注意:①“p ”是抛物线的焦点到准线的距离,所以p 的值永远大于0;②只有顶点在坐标原点,焦点在坐标轴上的抛物线方程才有标准形式.知识点二抛物线的标准方程及简单几何性质标准方程()220y px p =>()220y px p =->()220x py p =>()220x py p =->图象性质范围0x y ≥∈R,0x y ≤∈R ,0x y ∈≥R ,0x y ∈≤R ,对称轴x 轴y 轴顶点()0,0O 焦点,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线2p x =-2p x =2p y =-2p y =离心率1e =知识点三通径与焦半径1.通径过焦点垂直于对称轴的弦称为抛物线的通径,其长为2p .2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点00(),A x y ,则四种标准方程形式下的焦半径公式为标准方程()220y px p =>()220y px p =->()220x py p =>()220x py p =->焦半径AF0||2p AF x =+0||2p AF x =-0||2p AF y =+0||2p AF y =-重难点1抛物线定义及应用1.已知抛物线22(0)y px p =>上任意一点到焦点F 的距离比到y 轴的距离大1,则抛物线的标准方程为()A .2y x=B .22y x=C .24y x=D .28y x=2.若抛物线22x py =(0p >)上一点(),3M m 到焦点的距离是5p ,则p =()A .34B .32C .43D .233.已知抛物线C :()220y px p =>的顶点为O ,经过点()0,2A x ,且F 为抛物线C 的焦点,若3AF OF =,则p =()A .12B .1C D .24.已知抛物线C :22(0)y px p =>的焦点为F ,点A 在y 轴上,线段AF 的延长线交C 于点B ,若||||6AF FB ==,则p =.5.已知抛物线22x py =上一点()0,2A x 到焦点的距离是该点到x 轴距离的2倍,则p =.6.已知抛物线()220y px p =>的焦点为F ,直线4y =与抛物线交于点M ,且4MF =,则p =.重难点2抛物线的标准方程与焦点、准线7.已知抛物线22(0)y px p =>的焦准距(焦点到准线的距离)为2,则抛物线的焦点坐标为()A .()0,1B .()0,2C .()1,0D .()2,08.圆22420x x y y -+-=的圆心在抛物线22y px =上,则该抛物线的焦点坐标为()A .1,08⎛⎫ ⎪⎝⎭B .1,04⎛⎫ ⎪⎝⎭C .1,02⎛⎫ ⎪⎝⎭D .()1,09.在同一坐标系中,方程22221x y a b+=与()200ax by a b +=>>的曲线大致是()A .B .C .D .10.焦点坐标为()1,0-的抛物线的标准方程是()A .22y x=-B .22x y=C .24x y=-D .24y x=-11.已知抛物线的焦点在y 轴上,且焦点到坐标原点的距离为1,则抛物线的标准方程为()A .22x y =B .22x y =或22x y =-C .24x y=D .24x y =或24x y=-12.抛物线21:4C y x =-绕其顶点顺时针旋转90︒后得到抛物线2C ,则2C 的准线方程为.13.已知两抛物线的顶点在原点,而焦点分别为()12,0F ,()20,2F ,求经过它们的交点的直线方程.重难点3根据抛物线的方程求参数14.设第四象限的点(),P m n 为抛物线28y x =上一点,F 为焦点,若6PF =,则n =()A .-4B .-C .-D .-3215.已知O 为坐标原点,P 是焦点为F 的抛物线C :22y px =(0p >)上一点,2PF =,π3PFO ∠=,则p =()A .1B .32C .2D .316.已知点(),2A m 为抛物线()2:20C y px p =>上一点,过点A 作C 准线的垂线,垂足为B .若AOB (O为坐标原点)的面积为2,则p =)A .12B .1C .2D .417.已知抛物线22(0)x py p =>上一点0(,3)A x ,F 为焦点,直线AF 交抛物线的准线于点B ,满足2AB AF =,则0x =()A .3±B .±C .±D .±18.已知抛物线C :22y px =()2p >上一点(,P m 到其焦点F 的距离为3,则p =()A .3B .72C .4D .519.已知抛物线C :28y x =的焦点为F ,曲线()0ky k x=>与C 交于点M ,MF x ⊥轴,则k =.20.顶点在原点,焦点在y 轴上的抛物线上一点(),2P m -到焦点F 的距离等于4,则m =.重难点4抛物线的对称性21.在平面直角坐标系xOy 中,抛物线2:8,C y x P =为x 轴正半轴上一点,线段OP 的垂直平分线l 交C 于,A B 两点,若120OAP ∠=︒,则四边形OAPB 的周长为()A .B .64C .D .8022.已知O 为坐标原点,垂直抛物线()2:20C y px p =>的轴的直线与抛物线C 交于,A B 两点,0OA OB ⋅= ,则AB 4=,则p =()A .4B .3C .2D .123.已知圆221x y +=与抛物线()220y px p =>交于A ,B 两点,与抛物线的准线交于C ,D 两点,若四边形ABCD 是矩形,则p 等于()A B .5C .2D 24.抛物线22(0)x py p =>与椭圆221122x y +=交于A ,B 两点,若AOB (其中O 为坐标原点),则p =()A .2B .3C .4D .625.抛物线22(0)y px p =>上一点到准线和抛物线的对称轴距离分别为10和6,则该点的横坐标是.26.已知点00(,)P x y 关于x 轴的对称点在曲线:C y =上,且过点P 的直线2y x =-与曲线C 相交于点Q ,则PQ =.重难点5抛物线的焦半径公式27.已知ABC 的顶点在抛物线22y x =上,若抛物线的焦点F 恰好是ABC 的重心,则||||||FA FB FC ++的值为()A .3B .4C .5D .628.已知抛物线2:4C y x =的焦点为F ,准线为l ,过C 上一点A 作l 的垂线,垂足为B .若3AF =,则AFB △的外接圆面积为().A .27π8B .64π27C .9π4D .25π1629.O 为坐标原点,F 为抛物线2:8C y x =的焦点,M 为C 上一点,若||6=MF ,则MOF △的面积为()A .B .C .D .830.已知抛物线2:20C y pxp =>()的焦点为F ,直线l 与抛物线C 交于,A B 两点,AF BF ⊥,线段AB 的中点为M ,过点M 作抛物线C 的准线的垂线,垂足为N ,则AB MN的最小值为()A .1B C .2D .231.(多选)设抛物线28y x =的顶点为O ,焦点为F .点M 是抛物线上异于O 的一动点,直线OM 交抛物线的准线于点N ,下列结论正确的是()A .若4MF =,则OM =B .若4MF =,则O 为线段MN 的中点C .若8MF =,则OM =D .若8MF =,则3OM ON=32.(多选)已知抛物线2:4E y x =的焦点为,F A 为E 上一点,则下列命题或结论正确的是()A .若AF 与x 轴垂直,则2AF =B .若点A 的横坐标为2,则3AF =C .以AF 为直径的圆与y 轴相切D .AF 的最小值为233.如图,M 是抛物线210y x =上的一点,F 是抛物线的焦点,以Fx 为始边、FM 为终边的角π3xFM ∠=,则MF =.重难点6抛物线的轨迹问题34.已知动点(),M x y 的坐标满足方程3412x y =+-,则动点M 的轨迹是()A .椭圆B .双曲线C .抛物线D .以上都不对35.动点(),M x y 满足方程3412x y =++,则点M 的轨迹是()A .圆B .椭圆C .双曲线D .抛物线36.已知点()1,0A ,直线:1l x =-,两个动圆均过A 且与l 相切,若圆心分别为1C 、2C ,则1C 的轨迹方程为;若动点M 满足22122C M C C C A =+,则M 的轨迹方程为.37.若动点(),M x y 到点()4,0F 的距离比它到直线30x +=的距离大1,则M 的轨迹方程是.38.已知直线l 平行于y 轴,且l 与x 轴的交点为(4,0),点A 在直线l 上,动点P 的纵坐标与A 的纵坐标相同,且OA OP ⊥,求P 点的轨迹方程,并说明轨迹方程的形状.39.一圆经过点()0,3F ,且和直线30y +=相切,求圆心的轨迹方程,并画出图形.重难点7抛物线的距离最值问题40.抛物线C 的顶点为原点,焦点为(2,0)F ,则点(5,0)B 到抛物线C 上动点M 的距离最小值为()A .B .C .5D .41.已知抛物线2:8C y x =的焦点为F ,点P 在C 上,若点()6,3Q ,则PQF △周长的最小值为().A .13B .12C .10D .842.设P 是抛物线28y x =上的一个动点,F 为抛物线的焦点,点()3,1B ,则PB PF +的最小值为.43.已知点M 为拋物线22y x =上的动点,点N 为圆22(4)5x y +-=上的动点,则点M 到y 轴的距离与点M 到点N 的距离之和最小值为.44.已知()3,2A ,若点P 是抛物线28y x =上任意一点,点Q 是圆22(2)1x y -+=上任意一点,则PA PQ +的最小值为.45.设动点P 在抛物线214y x =上,点P 在 x 轴上的射影为点 M ,点A 的坐标是()2,0,则PA PM +的最小值是.46.已知点()0,4M ,点P 在抛物线28x y =上运动,点Q 在圆22(2)1x y +-=上运动,则2||PM PQ的最小值.重难点8抛物线的实际应用47.南宋晚期的龙泉窑粉青釉刻花斗笠盏如图1所示,忽略杯盏的厚度,这只杯盏的轴截面如图2所示,其中光滑的曲线是抛物线的一部分,已知杯盏盛满茶水时茶水的深度为3cm ,则该抛物线的焦点到准线的距离为()A .27cm 4B .9cm2C .27cm 8D .23cm 648.上世纪90年代,南京江宁区和陕西洛南县就建立了深厚的友谊,1993年江宁区出资帮助洛南修建了宁洛桥,增强了两地之间的友谊.如今人行道两侧各加宽6米,建成了“彩虹桥”(图1),非常美丽.桥上一抛物线形的拱桥(图2)跨度30m AB =,拱高5m OP =,在建造时每隔相等长度用一个柱子支撑,则支柱11A B 的长度为m .(精确到0.01m )49.(多选)上甘岭战役是抗美援朝中中国人民志愿军进行的最著名的山地防御战役.在这场战役中,我军使用了反斜面阵地防御战术.反斜面是山地攻防战斗中背向敌方、面向我方的一侧山坡.反斜面阵地的构建,是为了规避敌方重火力输出.某反斜面阵地如图所示,山脚A ,B 两点和敌方阵地D 点在同一条直线上,某炮弹的弹道DCE 是抛物线Γ的一部分,其中E 在直线AB 上,抛物线的顶点C 到直线AB 的距离为100米,DE长为400米,CD CE =,30CAB ∠= ,建立适当的坐标系使得抛物线Γ的方程为()220x py p =->,则()A .200p =B .Γ的准线方程为100y =C .Γ的焦点坐标为()0,50-D .弹道CE 上的点到直线AC 50.一种卫星接收天线的轴截面如图所示.卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处.已知接收天线的口径(直径)为4.8m ,深度为0.5m.(1)试建立适当的坐标系,求抛物线的标准方程和焦点坐标;(2)为了增强卫星波束的接收,拟将接收天线的口径增大为5.2m ,求此时卫星波束反射聚集点的坐标.51.如图,探照灯反射镜由抛物线的一部分绕对称轴旋转而成,光源位于抛物线的焦点处,这样可以保证发出的光线经过反射之后平行射出.已知灯口圆的直径为60cm ,灯的深度为40cm.(1)将反射镜的旋转轴与镜面的交点称为反射镜的顶点.光源应安置在旋转轴上与顶点相距多远的地方?(2)为了使反射的光更亮,增大反射镜的面积,将灯口圆的直径增大到66cm ,并且保持光源与顶点的距离不变.求探照灯的深度.52.某农场为节水推行喷灌技术,喷头装在管柱OA 的顶端A 处,喷出的水流在各个方向上呈抛物线状,如图所示.现要求水流最高点B 离地面5m ,点B 到管柱OA 所在直线的距离为4m ,且水流落在地面上以O 为圆心,以9m 为半径的圆上,求管柱OA 的高度.53.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4km,OP ,现要在河岸边的某处修建一座码头,并修建两条公路,一城镇P位于点O的北偏东30°处,10km条连接城镇,一条垂直连接公路l,以便建立水陆交通网.(1)建立适当的坐标系,求抛物线C的方程;(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(结果精确到0.001km).。
抛物线的性质

1
.
(5)一次项系数的绝对值越大,开口越大
图 形
y
l O F
方程
焦点 准线 范围 顶点 对称轴
x≥0 y∈R x≤0 x轴
e
y2 = 2px p p F ( , 0 ) x x (p>0) 2 2
l
y
F O
y2 = -2px p p F ( ,0) x 2 x(p>0) 2 x2 = 2py p p F (0, ) y 2 2 x (p>0) x2
5 8
思考题:抛物线的方程为x=ay2
(a≠0)求它的焦点坐标和准线 方程?
抛物线的方程为x=ay2(a≠0)求它的 焦点坐标和准线方程?
1 1 2 解:抛物线标准方程为:y = a x ∴2p= a p 1 ①当a>0时, 2 = 4a , 抛物线的开口向右
∴焦点坐标是( ②当a<0时,
p 2
p x1 x2
p ( x1 x2 )
p y1 y2
坐标原点, 并且过点M (2, 2 2) ,求它的标准方程.
解:因为抛物线关于 x 轴对称,它的顶点在原 点,并且经过点M (2, 2 2) ,所以,可设它的方程 2 为
例1. 已知抛物线关于 x 轴对称,它的顶点在
y 2 px p 0,
解:依题意直线 l 的方程为 y 1 k ( x 2)
y 1 k ( x 2) 2 消去 可得 ky 4 y 4(2k 1) 0 (Ⅰ) x 联立 2 (*) y 4x 你认为是消 呢,还是消 y 呢? 当 k 0 时,方程(Ⅰ )只有一解,∴x 直线与抛物线只有一个公共点 .
最新抛物线及其性质知识点大全和经典例题及解析资料

抛物线及其性质【考纲说明】1、掌握抛物线的简单几何性质,能运用性质解决与抛物线有关问题。
2、通过类比,找出抛物线与椭圆,双曲线的性质之间的区别与联系。
【知识梳理】1.抛物线定义:平面内到一定点F和一条定直线I的距离相等的点的轨迹称为抛物线.2.抛物线四种标准方程的几何性质:3•抛物线y 2 =2px(p 0)的几何性质:(1) 范围 因为p>0,由方程可知x >0,所以抛物线在 y 轴的右侧,当x 的值增大时,| y |也增大,说明抛物线向右上方和右下方无限延伸.(2) 对称性:对称轴要看一次项,符号决定开口方向.⑶顶点(0, 0),离心率:e = 1,焦点F (卫,0),准线x = - P ,焦准距p .2 2⑷ 焦点弦:抛物线 y 2 =2px(p 0)的焦点弦 AB , AX’yJ , B(x 2, y 2),则 | AB |= X ! • x 2 • p .弦长|AB|=x i +X 2+p,当x i =X 2时,通径最短为 2p 。
4.焦点弦的相关性质: 焦点弦 AB , A(X 1,yJ , Bgy),焦点 F(±0) 222p2(1)若AB 是抛物线y =2px ;p0)的焦点弦(过焦点的弦),且, B (X 2, y ?),则:年2,%丫2一卩。
4若AB 是抛物线y 2=2pXp 0)的焦点弦,且直线 AB 的倾斜角为a ,贝U AB - 2p(%工0 )。
sin 2 a焦点弦中通径最短长为 2p 。
通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.(5)两个相切:①以抛物线焦点弦为直径的圆与准线相切 •⑦过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
5.弦长公式:A(X 1,yJ , B(X 2,y 2)是抛物线上两点,则AB = J(X 1 _X 2)2 +(比 _y 2)2 =P1 +k 2 |X 1 —X 2 1= j 1 + 占 M -丫2 I【经典例题】(1)抛物线一一二次曲线的和谐线椭圆与双曲线都有两种定义方法,可抛物线只有一种:至L 个定点和一条定直线的距离相等的所有点的集合•其已知直线AB 是过抛物线y2=2px(p 0)焦点F ,1 1 AF BF ------- I ----------- = -------------------------AF BF AF *BFAB 2 AF *BF p离心率e=1,这使它既与椭圆、双曲线相依相伴,又鼎立在圆锥曲线之中.由于这个美好的1,既使它享尽和谐之美,又生出多少华丽的篇章•k 2 X 1 , X 2 ,• X 1 x^7•••方程(1 )之二根为 【例1】P 为抛物线y 2 =2px 上任一点, F 为焦点,则以PF 为直径的圆与y 轴( A.相交 B.相切 C.相离 【解析】如图,抛物线的焦点为 F '-,0 :准线是 12丿| : X = _卫•作PHL I 于H,交y 轴于Q,那么PF = PH 2 且QH =0F =卩•作MN L y 轴于N 则MN 是梯形PQOF 勺 21 1 1中位线, MN = —(|0F + PQ )=_ PH =— PF .故以2 2 2PF 为直径的圆与y 轴相切,选B.【评注】相似的问题对于椭圆和双曲线来说,其结论则 分别是相离或相交的•(2)焦点弦常考常新的亮点弦有关抛物线的试题,许多都与它的焦点弦有关•理解并掌握这个焦点弦的性质,对破解这些试题是大有帮助的【例2】过抛物线y 2 =2px p - 0的焦点F 作直线交抛物线于 A x 1,y 1 , B x 2, y 2两点,求证:(1)AB =% +x 2 + p(2)1 AF1 BF【证明】(1)如图设抛物线的准线为I ,作AA 丄丨A ,BR 丄I 于^,则AF=人人|=咅+# ,BF | =|BB | =X2十匕两式相加即得:2AB| =咅 + x 2 + p(2)当AB 丄x 轴时,有AF BF =p,,丄〜AF BF二—成立;当AB 与x 轴不垂直时,设焦点弦 AB 的方程为:y 二k X -卫•代入抛物线方程:I 2丿f¥k 2x 遗=2px .化简得:2k 2x 2 - p k 2 2 x 丄k 2 =04D.位置由P 确定1 1AF "BFAA 1BB 1 1 1------- + ---------p px 1 x2 2 2 py X 1 X 2 p x-! x 2 p2P P X 1X 2 - X 2 4 1 -+- 1 2 -_ 一成立 AF BF p 故不论弦AB 与x 轴是否垂直,恒有(3)切线——抛物线与函数有缘 有关抛物线的许多试题,又与它的切线有关.理解并掌握抛物线的切线方程,是解题者不可或缺的基本功 【例3】证明:过抛物线2 y = 2 px 上一点M( x o , y o )的切线方程是: y o y=p (x+x o ) 【证明】对方程y 2=2px 两边取导数:2yy 〉2p ,.切线的斜率 y , p p 2k = y x% = — •由点斜式方程: y — y ° =—(x —沧)=> y °y = px — px ° 十 y ° (1) y o y o* * 2 1 yo =2px o ,代入())即得:y o y=p (x+x °) (4)定点与定值 --- 抛物线埋在深处的宝藏抛物线中存在许多不不易发现,却容易为人疏忽的定点和定值 .掌握它们,在解题中常会有意想不到的收获 .例如:1•一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x ,2=0相切,则此动圆必过定点 ( ) A 4,0 B. 2,O C. O,2 D. 0,-2 显然.本题是例1的翻版,该圆必过抛物线的焦点,选 B. 22. 抛物线y =2px 的通径长为2p ;3. 设抛物线y 2 =2px 过焦点的弦两端分别为 A ^,y 1 ,B x 2, y 2,那么:目诃2 - - p 2 以下再举一例【例4】设抛物线y 2 =2px 的焦点弦AB 在其准线上的射影是 A 1B 1,证明:以A 1B 1为直径的圆必过一定点 【分析】假定这条焦点弦就是抛物线的通径,那么 AB=AB=2p 而AB 与AB 的距离为p ,可知该圆必过抛物线的 焦点.由此我们猜想:一切这样的圆都过抛物线的焦点 .以下我们对AB 的一般情形给于证明. 【证明】如图设焦点两端分别为A x 1, y 1 ,B x 2,y 2 ,2 2那么:y 』2 =_p 二 |CA CB i =|yi y 2 = P •设抛物线的准线交 x 轴于C,那么CF| = p.A AA^FB,中 CF = CA CB j .故Z AFB J =90。
圆锥曲线方程-抛物线(知识点、典型例题、考点、练习)

抛物线 典例剖析知识点一 抛物线概念的应用已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时P 点的坐标.解将x=3代入抛物线方程 y 2=2x ,得y=〒6.6>2,∴点A 在抛物线内部.设抛物线上点P 到准线l : x=21的距离为d ,由定义知|PA|+|PF|=|PA|+d , 当PA ⊥l 时,|PA|+d 最小, 最小值为27,即|PA|+|PF|的最小值为27, 此时P 点纵坐标为2,代入y 2=2x ,得x=2, ∴点P 坐标为(2,2).知识点二 求抛物线的标准方程求适合下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x -2y -4=0上.分析 设出抛物线的标准形式,依据条件求出p 的值.解 (1)设抛物线标准方程为y 2=-2px 或x 2=2py (p >0),则将点(-3,2)代入方程得2p =43,或2p =92,故抛物线的标准方程为y 2=-43x ,或x 2=92y .(2)①令x =0,由方程x -2y -4=0,得y =-2. ∴抛物线的焦点为F (0,-2).设抛物线方程为x 2=-2py ,则由p2=2,得2p =8.∴所求的抛物线方程为x 2=-8y .②令y =0,由x -2y -4=0,得x =4. ∴抛物线的焦点为F (4,0).设抛物线方程为y 2=2px ,由p2=4,得2p =16.∴所求抛物线方程为y 2=16x .知识点三 抛物线在实际中的应用汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线焦点处,已知灯口的直径是24 cm ,灯深10 cm ,那么灯泡与反射镜的顶点(即截得抛物线顶点)距离是多少?分析 确定抛物线方程,求出抛物线的焦点到其顶点的距离解 取反射镜的轴即抛物线的对称轴为x 轴,抛物线的顶点为坐标原点,建立直角坐标系xOy ,如图所示.因灯口直径|AB|=24.灯深|OP|=10, 所以点A 的坐标是(10,12).设抛物线的方程为y 2=2px(p>0).由点A(10,12)在抛物线上,得122=2p ×10, ∴p=7.2.抛物线的焦点F 的坐标为(3.6,0).因此灯泡与反射镜顶点的距离是3.6 cm.知识点四 抛物线几何性质的简单应用抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程.分析 先确定抛物线方程的形式,再依条件求待定参数.解 椭圆9x 2+4y 2=36可化为x 24+y 29=1,得抛物线的对称轴为x 轴.设抛物线的方程为y 2=ax (a ≠0), 又抛物线的焦点到顶点的距离为3,则有|a4|=3,∴|a |=12,即a =±12.故所求抛物线方程为y 2=12x ,或y 2=-12x .知识点五 直线与抛物线已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.解 焦点F (p2,0),设A (x 1,y 1)、B (x 2,y 2),若AB ⊥Ox ,则|AB |=2p <52p ,不合题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0.由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.韦达定理得,y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+1k 2)·(y 1-y 2)2=1+1k2·(y 1+y 2)2-4y 1y 2=2p (1+1k 2)=52p .解得k =±2.∴AB 所在直线方程为y =2(x -p 2),或y =-2(x -p 2).知识点六 抛物线的焦点弦问题AB 是过抛物线y 2=2px (p >0)焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN ⊥l ,N 为垂足.求证:(1)AN ⊥BN ; (2)FN ⊥AB ;(3)若MN 交抛物线于Q ,则Q 平分MN .证明 (1)作AC ⊥l ,垂足为C ,作BD ⊥l ,垂足为D ,在直角梯形ABDC 中, ∵|AF|=|AC|,|BF|=|BD|, ∴|MN|=21(|AC|+|BD|) =21(|AF|+|BF|) =21|AB|, 由平面几何知识可知△ANB 是直角三角形,即AN ⊥BN. (2)∵|AM|=|NM|, ∴∠MAN=∠MNA , ∵AC ∥MN ,∴∠CAN=∠MNA ,∴∠MAN=∠CAN.在△ACN 和△AFN 中,|AN|=|AN|,|AC|=|AF|, 且∠CAN=∠FAN ,∴△ACN ≌△AFN , ∴∠NFA=∠NCA=90°, 即FN ⊥AB.(3)在Rt △MNF 中,连结QF , 由抛物线的定义及(2)的结论得 |QN|=|QF|⇒∠QNF=∠QFN ,且∠QFN=90°-∠QFM ,∠QMF=90°-∠QNF , ∴∠QFM=∠QMF ,∴|QF|=|QM|, ∴|QN|=|QM|,即Q 平分MN.知识点七 抛物线的综合问题过抛物线y 2=2px (p >0)的焦点F 作倾斜角为θ的直线交抛物线于A 、B 两点,设△AOB 的面积为S (O 为原点).(1)用θ、p 表示S ;(2)求S 的最小值;当最小值为4时,求抛物线的方程.解 (1)设直线y =k ⎝⎛⎭⎫x -p2,代入y 2=2px , 得y 2=2p ⎝⎛⎭⎫y k +p 2,即y 2-2pk y -p 2=0,∴y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |= 1+1k2·(y 1+y 2)2-4y 1y 2= k 2+1k 2·4p 2k2+4p 2=(1+1k 2)2p =(1+1tan 2θ)2p=2p sin 2θ.① 当直线AB ⊥x 轴时,①也成立.∴S =12|OF ||AF |sin θ+12|OF ||BF |sin(π-θ)=12|OF ||AB |sin θ =12·p 22p sin 2θsin θ=p 22sin θ. (2)当θ=90°时,S min =12p 2.若S min =4,则12p 2=4.∴p =2 2.∴此时抛物线的方程为y 2=42x .考题赏析1.(辽宁高考)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172 B .3 C. 5 D.92解析 如图所示,由抛物线的定义知,点P 到准线x =-12的距离d 等于点P 到焦点的距离|PF |.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P到点F 的距离之和,其最小值为点M (0,2)到点F ⎝⎛⎭⎫12,0的距离,则距离之和的最小值为4+14=172.答案 A2.(全国Ⅰ高考)已知抛物线y =ax 2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________.解析 ∵y =ax 2-1,∴y +1=ax 2.令y +1=y ′,x =x ′,则y ′=ax ′2,∴x ′2=2×12ay ′,∴x ′2=1a y ′的焦点坐标为⎝⎛⎭⎫0,14a ,即y +1=14a , ∴y =ax 2-1的焦点坐标为⎝⎛⎭⎫0,14a -1. 又y =ax 2-1的焦点是原点,∴14a =1,∴a =14.∴y =14x 2-1.令x =0,得y =-1,令y =0,得x =±2.故y =14x 2-1与两坐标轴的三个交点为(0,-1),(2,0),(-2,0),∴围成三角形面积为S =12×4×1=2.答案 23.(全国Ⅱ高考)已知F 是抛物线C :y 2=4x 的焦点,A 、B 是抛物线C 上的两个点,线段AB 的中点为M (2,2),则△ABF 的面积等于________.解析 设A (x 1,y 1),B (x 2,y 2),则y 21=4x 1,y 22=4x 2. ∴(y 1+y 2)(y 1-y 2)=4(x 1-x 2).∵x 1≠x 2,∴y 1-y 2x 1-x 2=4y 1+y 2=1.∴直线AB 的方程为y -2=x -2,即y =x . 将其代入y 2=4x ,得A (0,0)、B (4,4).∴|AB |=4 2.又F (1,0)到y =x 的距离为22,∴S △ABF =12×22×42=2.答案 21.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( ) A.|a |4 B.|a |2C .|a |D .-a2答案 B解析 因为y 2=ax ,所以p =|a |2,即该抛物线的焦点到其准线的距离为|a |2,故选B.2.抛物线y 2=2px (p >0)上一点M 到焦点的距离是a (a >p2),则点M 的横坐标是( )A .a +p 2B .a -p2C .a +pD .a -p 答案 B解析 由抛物线的定义知:点M 到焦点的距离a 等于点M 到抛物线的准线x =-p2的距离,所以点M 的横坐标即点M 到y 轴的距离为a -p2.3.已知抛物线的方程为标准方程,焦点在x 轴上,其上点P (-3,m )到焦点F 的距离为5,则抛物线方程为( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x 答案 B解析 点P (-3,m )在抛物线上,焦点在x 轴上,所以抛物线的标准方程可设为y 2=-2px (p >0).由抛物线定义知|PF |=3+p2=5.所以p =4,所以抛物线的标准方程是y 2=-8x .应选B.4.抛物线y 2=ax 的焦点与双曲线x 23-y 2=1的左焦点重合,则这条抛物线的方程是( )A .y 2=4xB .y 2=-4xC .y 2=-42xD .y 2=-8x 答案 D解析 因为x 23-y 2=1的左焦点为(-2,0),所以抛物线开口向左,所以a <0,且p =|a |2=4,所以a =-8,所以抛物线方程为y 2=-8x ,故选D.5.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交抛物线C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.答案 3+2 2解析 ∵y 2=4x 的焦点坐标为 F (1,0),准线方程为x =-1,∴过F 且斜率为1的直线方程为y = x - 1.将其代入y 2= 4x 得 x 2 - 6x + 1=0.∴x 1, 2 =62± = 3〒22.∵|FA|>|FB|,∴x A =3+22,x B =3-22.又|FA|= x +1,|FB|= x B +1,∴|FA||FB|== 3+22. 答案 -36. 过抛物线y 2 = 4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则· 的值是________.. 解析 当直线过焦点且垂直于x 轴时,直线方程为x =1,代入y 2=4x ,y 1,2=±2.A 、B 点的坐标分别为(1,2),(1,-2).∴·OB →=1-4=-3.当直线过焦点不垂直x 轴时,则直线的方程可设为y =k (x -1),设A ,B 坐标分别为(x 1,y 1)(x 2,y 2).则y 21·y 22=16x 1x 2.由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),得k 2x 2-(2k +4)x +k 2=0, ·OB →=x 1x 2+y 1y 2=1-4=-3. 7.已知圆A :(x +2)2+y 2=1与定直线l :x =1,若动圆C 与圆A 相外切,且与直线l 相切,求动圆圆心C 的轨迹方程.解 设圆心C 到直线l 的距离为d ,则由题意知|CA |=d +1从而可知圆心C 到点(-2,0)的距离和到定直线x =2的距离相等.所以动圆圆心C 的轨迹是抛物线,其焦点为(-2,0),准线为x =2,故设动圆圆心C 的轨迹方程为y 2=-2px (p >0),由p2=2,得p =4.因此动圆圆心C 的轨迹方程为y 2=-8x .8.已知点M (-2,4)及焦点为F 的抛物线y =18x 2,在此抛物线上求一点P 使|PM |+|PF |的值最小.分析 先根据已知条件画出图形,由定义知,抛物线上的点P 到焦点F 的距离等于P 到准线l 的距离d ,所以求|PM |+|PF |的最小值问题可转化为求|PM |+d 的最小值问题,让点P 在抛物线上运动,容易发现当点P 运动到过点M 且与x 轴垂直的直线与抛物线的交点处时,|PM |+d 最小.解 如图,设MN ⊥x 轴,与准线交于N ,与抛物线交于点P ,在抛物线上任取一点P ′,连P ′M ,P ′F ,作P ′N 垂直于准线,垂足为N ′.由抛物线的定义,|PN|=|PF|,|P ′N ′|=|P ′F||P ′M|+|P ′N ′|=|P ′M|+|P ′F| |PN|+|PM|=|PM|+|PF|∵|P ′M|+|P ′N ′|≥|PN|+|PM| ∴|P ′M|+|P ′F|≥|PM|+|PF|这就是说,当P ′与P 重合时,|PM|+|PF|的值最小解方程组22,1,8x y x =-⎧⎪⎨=⎪⎩得P(-2,12). 9.已知抛物线y 2=2x ,过点Q (2,1)作一条直线交抛物线于A 、B 两点,试求弦AB 中点的轨迹方程.解 设弦AB 的中点M (x ,y ),A (x 1,y 1),B (x 2,y 2),则有y 21=2x 1,y 22=2x 2, ∴y 1-y 2x 1-x 2=2y 1+y 2,又y 1+y 2=2y ,∴y 1-y 2x 1-x 2=1y,即k AB =1y .又k MQ =y -1x -2,由题意知k MQ =k AB .∴y -1x -2=1y,整理, 得y 2-x -y +2=0.所以,弦AB 中点的轨迹方程为y 2-x -y +2=0.10.抛物线的顶点在原点,以x 轴为对称轴,经过焦点且倾斜角为135°的直线,被抛物线所截得的弦长为8,试求抛物线方程.解 如右图所示,依题意设抛物线方程为y 2=2px(p>0),则直线方程为y=-x+12p. 设直线交抛物线于A(x 1,y 1), B(x 2,y 2),则由抛物线定义得|AB|=|AF|+|FB|=|AC|+|BD| =x 1+2P + x 2 + 2P , 即x 1+x 2 +p=8.①又A (x 1,y 1)、B (x 2,y 2)是抛物线和直线的交点.由⎩⎪⎨⎪⎧y =-x +12p ,y 2=2px ,消去y 得x 2-3px +p 24=0,∴x 1+x 2=3p ,将其代入①得p =2. ∴所求抛物线方程为y 2=4x .当抛物线方程设为y 2=-2px (p >0)时,同理可求得抛物线方程为y 2=-4x . 故抛物线的方程为y 2=4x 或y 2=-4x .讲练学案部分2.4.1 抛物线及其标准方程.对点讲练知识点一 求抛物线的标准方程分别求出满足下列条件的抛物线的标准方程.(1)过点(3,-4).(2)焦点在直线x +3y +15=0上. 解 (1)∵点(3,-4)在第四象限,∴抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0),把点(3,-4)的坐标分别代入得(-4)2=2p ×3,32=-2p 1×(-4)即2p =163,2p 1=94∴所求抛物线的方程为y 2=163x 或x 2=-94y .(2)令x =0得y =-5;令y =0得x =-15 ∴抛物线的焦点为(0,-5)或(-15,0)∴所求抛物线的标准方程为y 2=-60x 或x 2=-20y .【反思感悟】 求抛物线方程应首先确定焦点的位置,进而确定方程的形式,然后利用已知条件求p 的值.求满足下列条件的抛物线的方程.(1)以坐标轴为对称轴,且过点A (2,3);(2)以坐标轴为对称轴,焦点到准线的距离为52.解 (1)由题意,方程可设为y 2=mx 或x 2=ny , 将点A (2,3)的坐标代入,得32=m ·2或22=n ·3,∴m =92或n =43.∴所求的抛物线方程为y 2=92x 或x 2=43y .(2)由焦点到准线的距离为52,可知p =52.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .知识点二 抛物线定义的应用已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.解 设抛物线的方程为y 2=-2px (p >0),则准线方程为x =p2.∵点M (-3,m )是抛物线上的点,根据抛物线定义,M 点到焦点的距离等于M 点到准线的距离∴|-3|+p2=5 ∴p =4.∴抛物线方程为y 2=-8x .又点M (-3,m )在抛物线上故m 2=-8×(-3) ∴m =±2 6.【反思感悟】 涉及抛物线上一点与焦点的距离问题要注意用定义转化为该点到准线的距离,可简化计算.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是( )A .椭圆B .双曲线C .双曲线的一支D .抛物线答案 D解析 设动圆的圆心为M ,半径为r ,动圆与圆(x -2)2+y 2=1相外切,则M 到定点(2,0)的距离为r +1,动圆与直线x =-1相切,则点M 到定直线x =-1的距离为r ,所以M 到定点(2,0)和到定直线x =-2的距离相等,由抛物线定义知,答案选D.知识点三 抛物线知识在实际中的应用喷灌的喷头装在直立管柱OA 的顶点A 处,喷出水流的最高点B 高5 m ,且与OA 所在的直线相距4 m ,水流落在以O 为圆心,半径为9 m 的圆上,则管柱OA 的长是多少?解 如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x 2= -2py(p>0),点C(5, -5)在抛物线上,所以25= -2p ·(-5),2p=5,所以抛物线的方程为x 2= -5y ,点A(-4,y 0)在抛物线上,所以16= -5y 0,y 0 = -165,所以OA 的长为5 - 165=1.8 (m).∴管柱OA 的长是1.8 m.【反思感悟】 根据题意,建立直角坐标系,用待定系数法求出抛物线方程,再利用抛物线方程解决实际问题.抛物线型拱桥顶距离水面2米,水面宽4米,当水下降1米后,水面宽________米.答案 2 6解析 可设抛物线方程为x 2=-2py ,则点(-2,-2)在抛物线上,则有:4=4p . ∴p =1,抛物线方程为x 2=-2y ,当y =-3时,x =±6. ∴水面宽为2 6. 课堂小结:1.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.2.焦点在y 轴上的抛物线的标准方程x 2=2py 通常又可以写成y=ax 2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y=ax 2来求其焦点和准线时,必须先化成标准形式.3.经过抛物线的焦点的弦称为抛物线的焦点弦,它有以下特性:设焦点弦AB 的端点坐标分别为A (x 1 , y 1),B(x 2,y 2),则y 1y 2= - p 2, x 1x 2 = 24p ,|AB|= x 1 + x 2 + p.课时作业一、选择题1.已知抛物线的顶点在原点,对称轴为x 轴,焦点在曲线x 24-y 22=1上,则抛物线方程为( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=±8x 答案 D解析 由题意知抛物线的焦点为双曲线x 24-y 22=1的顶点,即(-2,0)、(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .2.抛物线y =mx 2(m <0)的焦点坐标是( )A .(0,m 4)B .(0,14m )C .(0,-m 4)D .(0,-14m)答案 B解析 由于抛物线方程可化为x 2=1my (m <0),所以抛物线的焦点在y 轴的负半轴上,且2p =-1m ,所以p 2=-14m ,所以抛物线的焦点坐标是(0,14m),答案选B.3.过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有( ) A .0条 B .1条 C .2条 D .3条 答案 C解析 容易发现点M (2,4)在抛物线y 2=8x 上,这样l 过M 点且与x 轴平行时,l 与抛物线有一个公共点,或者l 在M 点上与抛物线相切,故选C.4.已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y 2=2px (p >0)上不同的两点,则y 1·y 2=-p 2是直线P 1P 2通过抛物线焦点的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件 答案 B解析 设直线P 1P 2的斜率为k ,在x 轴上的截距为x 0,则P 1P 2的方程为y =k (x -x 0), x =1ky +x 0(k =0时只有一个交点不合题意), 所以y 2=2p ⎝⎛⎭⎫1k y +x 0,即y 2-2pky -2px 0=0. 当直线P 1P 2过焦点时,x 0=p2,则y 1y 2=-p 2.当y 1y 2=-p 2时,即-2px 0=-p 2,则x 0=p2,直线过焦点.当斜率不存在时也可验证是充要条件.5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .4 答案 B解析 方法一 由已知得抛物线焦点为(1,0),过焦点的直线设为y =k (x -1)(由x 1+x 2=6知,此直线不平行于y 轴,因而k 存在).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,消去y 得k 2x 2-2(k 2+2)x +k 2=0. 由⎩⎪⎨⎪⎧x 1+x 2=2(k 2+2)k 2=6,x 1·x 2=1得k =±1.所以|AB |2=(1+k 2)(x 1-x 2)2=2(x 1-x 2)2=64,故|AB |=8.方法二 由焦半径公式|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=8.二、填空题6.抛物线2y 2+5x =0的焦点坐标为____________,准线方程为______________.答案 ⎝⎛⎭⎫-58,0 x =58解析 化抛物线2y 2+5x =0为标准方程y 2=-52x,2p =52,p 2=58,所以焦点坐标为(-58,0),准线方程为x =58.7.设点M ⎝⎛⎭⎫3,103与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则当d 1+d 2取最小值时,P 点坐标为____________.答案 (2,2)解析 当P 点是M 与焦点F ⎝⎛⎭⎫12,0连线与抛物线交点时,d 1+d 2最小,MF 的方程为y =43x -23,与抛物线y 2=2x 联立得P (2,2). 三、解答题8.过点Q (4,1)作抛物线y 2=8x 的弦AB ,若弦恰被Q 平分,求AB 所在直线方程. 解 设A (x 1,y 1),B (x 2,y 2),因点Q (4,1)为A ,B 的中点则有⎩⎪⎨⎪⎧x 1+x 2=8y 1+y 2=2将A 、B 两点坐标代入y 2=8x .则有⎩⎪⎨⎪⎧y 21=8x 1 ①y 22=8x 2 ②①-②得:(y 1-y 2)(y 1+y 2)=8(x 1-x 2),由y 1+y 2=2,则有y 1-y 2x 1-x 2=4,∴k AB =4.∴所求直线方程为y -1=4(x -4),即4x -y -15=0.9.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上有一宽4米、高6米的矩形大木箱,问能否安全通过?解建立坐标系如图,设抛物线方程为 x 2= -2py ,则点(26, -6.5)在抛物线上, ∴262= -2p ·(-6.5),∴p=52,抛物线的方程为x 2= -104y ,当y=-0.5时,x=〒213,则有413>4, 所以木箱能安全通过.10.已知过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点. 求证:(1)x 1x 2为定值;(2)1|F A |+1|FB |为定值. 证明 (1)抛物线y 2=2px 的焦点为F ⎝⎛⎭⎫p 2,0,当AB 不垂直于x 轴时,设直线AB 的方程为y =k ⎝⎛⎭⎫x -p2 (k ≠0). 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px消去y , 得k 2x 2-p (k 2+2)x +k 2p 24=0.由根与系数的关系得x 1x 2=p 24(定值).当AB ⊥x 轴时,x 1=x 2=p2,x 1x 2=p24也成立.(2)由抛物线的定义知,|F A |=x 1+p 2,|FB |=x 2+p2.又由(1)得x 1x 2=p24,所以1|F A |+1|FB |=1x 1+p 2+1x 2+p2=x 1+x 2+pp 2(x 1+x 2)+x 1x 2+p 24 =x 1+x 2+p p 2(x 1+x 2)+p 22=x 1+x 2+p p 2(x 1+x 2+p )=2p(定值). 2.4.2 抛物线的简单几何性质.对点讲练知识点一 由性质求方程已知抛物线的顶点为坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交的公共弦长等于23,求这条抛物线的方程.解 设所求抛物线方程为y 2=2px (p >0)或y 2=-2px (p >0),设交点A (x 1,y 1),B (x 2,y 2),(y 1>0,y 2<0),则|y 1|+|y 2|=23,即y 1-y 2=23,由对称性知,y 2=-y 1,代入上式得y 1=3,把y 1=3代入x 2+y 2=4得x =±1.所以点(1,3)在抛物线y 2=2px 上,点(-1,3)在抛物线y 2=-2px 上,所以3=2p 或3=-2p ×(-1).所以p =32,所以所求抛物线方程为y 2=3x 或y 2=-3x .【反思感悟】 (1)由已知的几何条件求抛物线方程,常用待定系数法.(2)由于抛物线是轴对称图形,所以与对称轴垂直的弦一定被对称轴平分.已知抛物线的焦点在x 轴上,直线y =2x +1被抛物线截得的线段长为15,求此抛物线的标准方程.解 ∵抛物线的焦点在x 轴上,∴设它的标准方程为y 2=2px由方程组⎩⎪⎨⎪⎧y 2=2pxy =2x +1得4x 2+(4-2p )x +1=0.∴|x 1-x 2|=(4-2p )2-164=p 2-4p2.∴1+22|x 1-x 2|=52p 2-4p .∴52p 2-4p =15.∴p =6或p =-2. ∴抛物线的方程为y 2=12x 或y 2=-4x .知识点二 与抛物线有关的证明问题过抛物线焦点F 的直线交抛物线于A ,B 两点,通过点A 和抛物线顶点的直线交抛物线的准线于点D ,求证:直线DB 平行于抛物线的对称轴.证明如图所示,以抛物线的对称轴为x 轴,它的顶点为原点,建立直角坐标系. 设抛物线的方程为y 2=2px ,①点A 的坐标为⎝⎛⎭⎫y 202p ,y 0,则直线OA 的方程为 y =2py 0x (y 0≠0),②抛物线的准线方程是x =-p2.③联立②③,可得点D 的纵坐标为y =-p 2y 0④因为点F 的坐标是⎝⎛⎭⎫p 2,0,当AB ⊥x 轴时,|y 0|=p 此时,|OA |=|OD |,∴DB ∥x 轴当AB 与x 轴不垂直时,即y 20≠p 2时,直线AF 的方程为y =2py 0y 20-p 2⎝⎛⎭⎫x -p 2,⑤ 联立①⑤,可得点B 的纵坐标为y =-p 2y 0.⑥由④⑥可知,DB ∥x 轴.【反思感悟】 因抛物线方程的独特形式,较之椭圆与双曲线,它上面的点便于用一个变量表示出来,如y 2=2px 上任一点,可表示为⎝ ⎛⎭⎪⎫y 22p ,y ,注意恰当运用.设抛物线y 2=2px (p >0)的焦点为F ,Q 是抛物线上除顶点外的任意一点,直线QO 交准线于P 点,过Q 且平行于抛物线对称轴的直线交准线于R 点,求证:PF ⊥RF .证明如图所示,设点Q ⎝⎛⎭⎫y 202p ,y 0,则R.(-2p,y 0 ) 直线OQ 的方程为y=02y p x , 当x=-2p 时,解得y=-02y p,∴P =2,20p p y ⎛⎫-- ⎪⎝⎭,又F (2p ,0),∴RF →=⎝⎛⎭⎫p ,p 2y 0,RF →=(p ,-y 0) ∴RF →·RF →=0,∴PF ⊥RF .知识点三 直线与抛物线的交点问题已知抛物线的方程为y 2=4x ,直线l 过定点P (-2,1),斜率为k .k 为何值时,直线l 与抛物线y 2=4x :只有一个公共点;有两个公共点;没有公共点?解 由题意,设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2)y 2=4x ,可得:ky 2-4y +4(2k +1)=0.① (1)当k =0时,由方程①得y =1.把y =1代入y 2=4x ,得x =14.这时,直线l 与抛物线只有一个公共点⎝⎛⎭⎫14,1. (2)当k ≠0时,方程①的判别式为 Δ=-16(2k 2+k -1). 1°由Δ=0,即2k 2+k -1=0,解得k =-1,或k =12.于是,当k =-1,或k =12时,方程①只有一个解,从而方程组(*)只有一个解.这时,直线l 与抛物线只有一个公共点.2°由Δ>0,即2k 2+k -1<0,解得-1<k <12.于是,当-1<k <12,且k ≠0时,方程①有两个解,从而方程组有两个解.这时,直线l与抛物线有两个公共点.3°由Δ<0,即2k 2+k -1>0,解得k <-1,或k >12.于是,当k <-1,或k >12时,方程①没有实数解,从而方程组(*)没有解.这时,直线l与抛物线没有公共点.综上,我们可得当k =-1,或k =12,或k =0时,直线l 与抛物线只有一个公共点;当-1<k <12,且k ≠0时,直线l 与抛物线有两个公共点;当k <-1,或k >12时,直线l 与抛物线没有公共点.【反思感悟】 当直线与抛物线的对称轴平行或重合时,抛物线和直线相交,只有一个交点.解决直线与抛物线位置关系问题时,不要忽视这一点,否则容易漏解.直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C 分别相切、相交、相离?解 将l 和C 的方程联立⎩⎪⎨⎪⎧y =kx +1, ①y 2=4x , ②①式代入②式,并整理,得 k 2x 2+(2k -4)x +1=0.当k ≠0时,是一元二次方程, ∴Δ=(2k -4)2-4k 2=16(1-k ).(1)当Δ=0时,即k =1时,l 与C 相切. (2)当Δ>0时,即k <1时,l 与C 相交. (3)当Δ<0时,即k >1时,l 与C 相离.当k =0时,直线l :y =1与曲线C :y 2=4x 相交.综上所述,当k =0或k <1时,l 与C 相交,当k =1时,l 与C 相切,当k >1时,l 与C 相离.课堂小结:1.在已知抛物线的顶点在坐标原点,对称轴为x 轴,求抛物线的标准方程时,为避免讨论张口的方向可设抛物线的方程为y 2=2ax (a ≠0).此时,不论a>0或a<0,焦点坐标都是(2a,0),准线方程都为x=-2a . 2.抛物线y 2= 2px (p>0)上任一点的坐标可用一个量y 1表示为21(1),2y y p;x 2 = 2py (p>0)上任一点坐标可设为(x 1 , 212x p).3.直线与抛物线的位置关系设直线l :y=kx+m ,抛物线:y 2=2px(p>0),将直线方程与抛物线方程联立整理成关于x 的方程:ax 2+bx+c=0,(1)若a ≠0,当Δ>0时,直线与抛物线相交,有两个交点; 当Δ=0时,直线与抛物线相切,有一个交点; 当Δ<0时,直线与抛物线相离,无公共点.(2)若a=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合,因此直线与抛物线有一个交点是直线与抛物线相切的必要不充分条件.一、选择题1.P (x 0,y 0)是抛物线y 2=2px (p ≠0)上任一点,则P 到焦点的距离是( )A .|x 0-p 2|B .|x 0+p2|C .|x 0-p |D .|x 0+p | 答案 B解析 当p >0时,由抛物线定义得点P (x 0,y 0)到焦点的距离为x 0+p2,当p <0时由抛物线定义知P (x 0,y 0)到焦点的距离为-p 2-x 0,综上得所求距离为|x 0+p2|,故选B.2.过抛物线y 2=4x 的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为4,则|AB |等于( )A .10B .8C .6D .4 答案 A解析 设A 、B 两点的横坐标分别为x A 、x B ,则有x A +x B =8,|AB |=|AF |+|BF |=x A +p 2+x B +p2=8+p =8+2=10.3.抛物线y 2=2px 与直线ax +y -4=0的一个交点是(1,2),则抛物线的焦点到该直线的距离为( )A.32 3B.25 5C.710 5D.172 答案 B解析 由已知得抛物线方程为y 2=4x ,直线方程为2x +y -4=0,抛物线y 2=4x 的焦点坐标是F (1,0),到直线2x +y -4=0的距离d =|2+0-4|22+1=255.4.若抛物线y 2=2px (p >0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点的距离的关系是( )A .成等差数列B .既成等差数列又成等比数列C .成等比数列D .既不成等比数列也不成等差数列 答案 A解析 设三点为P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则y 21=2px 1,y 22=2px 2,y 23=2px 3,因为2y 22=y 21+y 23, 所以x 1+x 3=2x 2,即|P 1F |-p 2+|P 3F |-p2=2⎝⎛⎭⎫|P 2F |-p 2, 所以|P 1F |+|P 3F |=2|P 2F |. 二、填空题5.抛物线的顶点在原点,准线垂直于x 轴,且焦点到顶点的距离为4,则其方程为______________________.答案 y 2=16x 或y 2=-16x解析 焦点到顶点的距离即p2=4,p =8.6.抛物线y =x 2上的点到直线2x -y -4=0的距离最短的点的坐标是____________. 答案 (1,1)解析 设点A (x ,y )是符合题设条件的点,则由点到直线的距离公式,得d =55|2x -y -4|=55|2x -x 2-4| =55|-(x -1)2-3|≥355. 当且仅当x =1时,d 取得最小值,故所求点为(1,1).7.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是____________.答案 [-1,1]解析 Q 点坐标为(-2,0),直线l 的斜率不存在时,不满足题意,所以可设直线l 的斜率为k ,方程为y =k (x +2).当k =0时满足.当k ≠0时,x =1ky -2,代入y 2=8x ,得y 2-8k y +16=0.Δ=64k2-64≥0,k 2≤1,即-1≤k ≤1(k ≠0).综上,-1≤k ≤1.三、解答题8.过点(-3,2)的直线与抛物线y 2=4x 只有一个公共点,求此直线方程. 解 显然,直线存在斜率k , 设其方程为y -2=k (x +3), 由⎩⎪⎨⎪⎧y -2=k (x +3)y 2=4x 消去x ,整理得ky 2-4y +8+12k =0①(1)当k =0时,方程①化为-4y +8=0,即y =2, 此时过(-3,2)的直线方程为y =2,满足条件. (2)当k ≠0时,方程①应有两个相等实根. 由⎩⎪⎨⎪⎧ k ≠0Δ=0即⎩⎪⎨⎪⎧k ≠016-4k (8+12k )=0,得k =13或k =-1.∴直线方程为y -2=13(x +3)或y -2=-(x +3),即x -3y +9=0或x +y +1=0.故所求直线有三条,其方程分别为: y =2,x -3y +9=0或x +y +1=0.9.A ,B 是抛物线y 2=2px (p >0)上两点,满足OA ⊥OB ,其中O 为抛物线顶点.求证: (1)A ,B 两点的纵坐标乘积为定值; (2)直线AB 恒过一定点. 证明(1)设A(x 1,y 1),B(x 2,y 2),x 1≠0,x 2≠0,则y 12=2px 1, y 22=2px 2. ∵OA ⊥OB ,∴x 1x 2 + y 1y 2=0.∴y 12y 22、= 4p 2 x 1x 2 = 24p -y 1y 2.∴y 1y 2 =24p -为定值, x 1x 2=-y 1y 2=4p 2也为定值.∴A 、B 两点的纵坐标乘积为定值.(2)若AB ⊥x 轴,则易知直线AB 方程为x = 2p , 过点(2p,0);若AB 与x 轴不垂直,则x 1≠x 2,y 1+y 2≠0.由y 12-y 22=2p(x 1-x 2),得1212122y y px x y y -++=. ∴直线AB 的方程是y= 122py y + (x -x 1)+y 1,即y = 211121222px px y y y y y ++-+。
高考数学复习考点知识讲解与专题练习61---抛物线

高考数学复习考点知识讲解与专题练习抛物线考试要求 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.知识梳理1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:{M||MF|=d}(d为点M到准线l的距离).2.抛物线的标准方程与几何性质图形标准方程y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0)p的几何意义:焦点F到准线l的距离性质顶点O(0,0)对称轴y=0 x=0焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程 x =-p 2 x =p 2 y =-p 2 y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下[常用结论与微点提醒]1.通径:过焦点且垂直于对称轴的弦长等于2p ,通径是过焦点最短的弦.2.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离|PF |=x 0+p 2,也称为抛物线的焦半径.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( )解析 (1)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线,而非抛物线.(2)方程y =ax 2(a ≠0)可化为x 2=1a y ,是焦点在y 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫0,14a ,准线方程是y =-14a .(3)抛物线是只有一条对称轴的轴对称图形.(4)一条直线平行抛物线的对称轴,此时与抛物线只有一个交点,但不相切. 答案 (1)× (2)× (3)× (4)× (5)√2.(老教材选修2-1P72A1改编)顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________.解析 设抛物线的标准方程是y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y . 答案 y 2=-92x 或x 2=43y3. (老教材选修2-1P67A3改编)抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.解析 设P (x 1,y 1),则|PF |=x 1+2=5,得x 1=3,y 1=±2 6.故满足条件的点的个数为2. 答案 24.(2019·全国Ⅱ卷)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p =( )A.2B.3C.4D.8解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,椭圆的焦点坐标为()±2p ,0, 所以p2=2p ,解得p =0(舍去)或p =8. 答案 D5.(2020·山东名校联考)已知F 是抛物线y 2=x 的焦点,A ,B 是抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ) A.34 B.1 C.54 D.74解析 如图所示,设抛物线的准线为l ,AB 的中点为M ,作AA 1⊥l 于点A 1,BB 1⊥l 于点B 1,MM 1⊥l 于点M 1,由抛物线的方程知p =12,由抛物线定义知|AA 1|+|BB 1|=|AF |+|BF |=3,所以点M 到y 轴的距离为|MM 1|-p 2=12(|AA 1|+|BB 1|)-p 2=12×3-14=54,故选C. 答案 C6.(2019·昆明诊断)已知抛物线方程为y 2=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.解析 由题意知,直线l 的斜率存在,设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,当k =0时,显然满足题意;当k ≠0时,Δ=(4k 2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k<0或0<k≤1,因此k的取值范围是[-1,1]. 答案[-1,1]考点一抛物线的定义、标准方程及其性质【例1】(1)已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是()A.y2=±22xB.y2=±2xC.y2=±4xD.y2=±42x(2)(多选题)过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,且|AF|=3|BF|,则直线AB的斜率为()A.2B.3C.- 2D.- 3(3)动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为__________.解析(1)由已知可知双曲线的焦点为(-2,0),(2,0).=2,设抛物线方程为y2=±2px(p>0),则p2所以p=22,所以抛物线方程为y2=±42x.故选D.(2)如图所示,当点A在第一象限时,过A,B分别向抛物线的准线作垂线,垂足分别为D,E,过A作x轴的垂线,与EB交于点C,则四边形ADEC为矩形.由抛物线定义可知|AD|=|AF|,|BE|=|BF|,设|AF|=3|BF|=3m,所以|AD|=|CE|=3m,|AB|=4m,在Rt△ABC中,|BC|=2m,所以∠ABC=60°,所以直线l的斜率为3;当点B在第一象限时,同理可知直线l 的斜率为- 3.(3)设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x.答案(1)D(2)BD(3)y2=4x规律方法 1.应用抛物线定义的两个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)抛物线焦点到准线的距离为p.2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.3.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【训练1】(1)设抛物线y2=2px的焦点在直线2x+3y-8=0上,则该抛物线的准线方程为()A.x=-4B.x=-3C.x=-2D.x=-1(2)(2020·佛山模拟)已知抛物线x 2=2py (p >0)的焦点为F ,准线为l ,点P (4,y 0)在抛物线上,K 为l 与y 轴的交点,且|PK |=2|PF |,则y 0=________.解析 (1)直线2x +3y -8=0与x 轴的交点为(4,0),∴抛物线y 2=2px 的焦点为(4,0),∴准线方程为x =-4.(2)作PM ⊥l ,垂足为M ,由抛物线定义知|PM |=|PF |,又知|PK |=2|PF |,∴在直角三角形PKM 中,sin ∠PKM =|PM ||PK |=|PF ||PK |=22,∴∠PKM =45°,∴△PMK 为等腰直角三角形,∴|PM |=|MK |=4,又知点P 在抛物线x 2=2py (p >0)上,∴⎩⎨⎧py 0=8,y 0+p2=4,解得⎩⎪⎨⎪⎧p =4,y 0=2. 答案 (1)A (2)2考点二 与抛物线有关的最值问题多维探究角度1 到焦点与定点距离之和(差)最值问题【例2-1】 点P 为抛物线y 2=4x 上的动点,点A (2,1)为平面内定点,F 为抛物线焦点,则:(1)|PA |+|PF |的最小值为________;(2)(多填题)|PA |-|PF |的最小值为________,最大值为________.解析 (1)如图1,由抛物线定义可知,|PF |=|PH |,|PA |+|PF |=|PA |+|PH |,从而最小值为A 到准线的距离为3.(2)如图2,当P,A,F三点共线,且P在FA延长线上时,|PA|-|PF|有最小值为-|AF|=- 2.当P,A,F三点共线,且P在AF延长线上时,|PA|-|PF|有最大值为|AF|= 2.故|PA|-|PF|最小值为-2,最大值为 2.答案(1)3(2)-2 2规律方法 1.解决到焦点与定点距离之和最小问题,先将抛物线上的点到焦点的距离转化为到准线的距离,再结合图形解决问题.2.到两定点距离之差的最值问题,当且仅当三点共线时取最值.角度2到点与准线的距离之和最值问题【例2-2】设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P 到直线x=-1的距离之和的最小值为________.解析如图,易知抛物线的焦点为F(1,0),准线是x=-1,由抛物线的定义知点P到直线x=-1的距离等于点P到F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,此时最小值为[1-(-1)]2+(0-1)2= 5.答案 5规律方法 解决到点与准线的距离之和最值问题,先将抛物线上的点到准线的距离转化为到焦点的距离,再构造出“两点之间线段最短”,使问题得解. 角度3 动弦中点到坐标轴距离最短问题【例2-3】 已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A.34B.32C.1 D.2解析 由题意知,抛物线的准线l :y =-1,过点A 作AA 1⊥l 交l 于点A 1,过点B 作BB 1⊥l 交l 于点B 1,设弦AB 的中点为M ,过点M 作MM 1⊥l 交l 于点M 1,则|MM 1|=|AA 1|+|BB 1|2.因为|AB |≤|AF |+|BF |(F 为抛物线的焦点),即|AF |+|BF |≥6,所以|AA 1|+|BB 1|≥6,2|MM 1|≥6,|MM 1|≥3,故点M 到x 轴的距离d ≥2,故选D. 答案 D规律方法 解决动弦中点到坐标轴距离最短问题将定长线段的中点到准线的距离转化为线段端点到准线距离之和的一半,再根据三角形中两边之和大于第三边得出不等式求解. 角度4 焦点弦中距离之和最小问题【例2-4】 已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 由题意知F (1,0),|AC |+|BD |=|AF |+|FB |-2=|AB |-2,即|AC |+|BD |取得最小值时当且仅当|AB |取得最小值.依抛物线定义知,当|AB |为通径,即|AB |=2p =4时为最小值,所以|AC |+|BD |的最小值为2. 答案 2规律方法 过抛物线的焦点且与抛物线的对称轴垂直的弦称为抛物线的通径,通径是抛物线所有过焦点的弦中最短的,若能将问题转化为与通径有关的问题,则可以用通径最短求最值.角度5 到定直线的距离最小问题【例2-5】(一题多解)抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________.解析 法一如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线为4x +3y +b =0,切线方程与抛物线方程联立得⎩⎪⎨⎪⎧y =-x 2,4x +3y +b =0消去y 整理得3x 2-4x -b =0,则Δ=16+12b =0,解得b =-43,故切线方程为4x +3y -43=0,抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是这两条平行线间的距离d =⎪⎪⎪⎪⎪⎪8-435=43.法二对y =-x 2,有y ′=-2x ,如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线与抛物线的切点是T (m ,-m 2),则切线斜率k =y ′|x =m =-2m =-43,所以m =23,即切点T ⎝ ⎛⎭⎪⎫23,-49,点T 到直线4x +3y -8=0的距离d =⎪⎪⎪⎪⎪⎪83-43-816+9=43,由图知抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是43. 答案 43规律方法 抛物线上的动点到定直线的距离,可以转化为平行线间的距离,也可以利用单变量设点利用函数思想求最值.【训练2】 (1)若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到 A (-2,1)的距离之和最小,则该点的坐标为( ) A.⎝ ⎛⎭⎪⎫-14,1B.⎝ ⎛⎭⎪⎫14,1 C.(-2,-22) D.(-2,22)(2)已知P 为抛物线y 2=4x 上一个动点,Q 为圆C :x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线准线的距离之和的最小值是________. 解析 (1)如图,∵y 2=-4x ,∴p =2,焦点坐标为(-1,0).依题意可知当A ,P 及P 到准线的垂足三点共线时,点P 与点F 、点P 与点A 的距离之和最小,故点P 的纵坐标为1.将y =1代入抛物线方程求得x =-14,则点P 的坐标为⎝ ⎛⎭⎪⎫-14,1.故选A.(2)由题意知,圆C :x 2+(y -4)2=1的圆心为C (0,4),半径为1,抛物线的焦点为F (1,0).根据抛物线的定义,点P 到点Q 的距离与点P 到抛物线准线的距离之和即点P 到点Q 的距离与点P 到抛物线焦点的距离之和,因此|PQ |+|PF |≥|PC |+|PF |-1≥|CF |-1=17-1.答案 (1)A (2)17-1考点三 直线与抛物线的综合问题【例3】(2019·全国Ⅰ卷)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求直线l 的方程; (2)若AP→=3PB →,求|AB |. 解 设直线l 的方程为:y =32x +t ,A (x 1,y 1),B (x 2,y 2). (1)由题设得F ⎝ ⎛⎭⎪⎫34,0,故|AF |+|BF |=x 1+x 2+32.又|AF |+|BF |=4,所以x 1+x 2=52.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x 可得9x 2+12(t -1)x +4t 2=0, 其中Δ=144(1-2t )>0, 则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t =-78(满足Δ>0). 所以l 的方程为y =32x -78.(2)由AP →=3PB →可得y 1=-3y 2.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x 可得y 2-2y +2t =0,其中Δ=4-8t >0, 所以y 1+y 2=2,从而-3y 2+y 2=2,故y 2=-1,y 1=3. 代入C 的方程得x 1=3,x 2=13. 所以A (3,3),B ⎝ ⎛⎭⎪⎫13,-1,故|AB |=4133.规律方法1.直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.3.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒 涉及弦的中点、斜率时一般用“点差法”求解.【训练3】 如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上. (1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解 (1)由已知条件,可设抛物线的方程为y 2=2px (p >0).∵点P (1,2)在抛物线上,∴22=2p ×1,解得p =2. 故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1),∵PA 与PB 的斜率存在且倾斜角互补,∴k PA =-k PB . 由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得y 21=4x 1,①y 22=4x 2,②∴y 1-214y 21-1=-y 2-214y 22-1,∴y 1+2=-(y 2+2).∴y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2),∴k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).数学抽象——活用抛物线焦点弦的四个结论1.数学抽象素养水平表现为能够在得到的数学结论的基础上形成新命题,能够针对具体的问题运用数学方法解决问题.本课时抛物线的焦点弦问题的四个常用结论即为具体表现之一.2.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24. (2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角). (4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点).【例1】 过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A.4 B.92C.5 D.6[一般解法]易知直线l 的斜率存在,设为k ,则其方程为 y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,得x A ·x B =1,①因为|AF |=2|BF |,由抛物线的定义得x A +1=2(x B +1), 即x A =2x B +1,②由①②解得x A =2,x B =12, 所以|AB |=|AF |+|BF |=x A +x B +p =92.[应用结论]法一 由对称性不妨设点A 在x 轴的上方,如图设A ,B 在准线上的射影分别为D ,C ,作BE ⊥AD 于E , 设|BF |=m ,直线l 的倾斜角为θ,则|AB |=3m , 由抛物线的定义知|AD |=|AF |=2m ,|BC |=|BF |=m ,所以cos θ=|AE ||AB |=13,所以tan θ=2 2.则sin 2θ=8cos 2θ,∴sin 2θ=89.又y 2=4x ,知2p =4,故利用弦长公式|AB |=2p sin 2θ=92. 法二 因为|AF |=2|BF |,所以1|AF |+1|BF |=12|BF |+1|BF |=32|BF |=2p =1,解得|BF |=32,|AF |=3,故|AB |=|AF |+|BF |=92. 答案 B【例2】 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94[一般解法]由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0,因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,即4x -43y -3=0.与抛物线方程联立,化简得4y 2-123y -9=0, 故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94. [应用结论]由2p =3,及|AB |=2psin 2α 得|AB |=2p sin 2α=3sin 230°=12.原点到直线AB 的距离d =|OF |·sin 30°=38, 故S △AOB =12|AB |·d =12×12×38=94. 答案 D【例3】 如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( ) A.5 B.6 C.163D.203[一般解法]如图,设l 与x 轴交于点M ,过点A 作AD ⊥l 交l 于点D ,由抛物线的定义知,|AD |=|AF |=4,由F 是AC 的中点,知|AD |=2|MF |=2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,可得y 1=23,所以A (3,23),又F (1,0),所以直线AF 的斜率k =233-1=3,所以直线AF 的方程为y =3(x -1),代入抛物线方程y 2=4x 得3x 2-10x +3=0,所以x 1+x 2=103,|AB |=x 1+x 2+p =163.故选C.[应用结论]法一 设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,又x 1x 2=p 24=1,所以x 2=13,所以|AB |=x 1+x 2+p =3+13+2=163.法二 因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163. 答案 CA 级 基础巩固一、选择题1.抛物线y =4x 2的焦点到准线的距离为( ) A.2 B.1 C.14 D.18解析 由y =4x 2得x 2=14y ,所以2p =14,p =18,则抛物线的焦点到准线的距离为18. 答案 D2.(2019·福州调研)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A.4 B.6 C.8 D.12解析 如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作PA ⊥y 轴,垂足是A ,延长PA 交直线l 于点B ,则|AB |=2.由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6.故选B. 答案 B3.(2020·烟台调研)已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( ) A.y 2=4x B.y 2=-4x C.y 2=8x D.y 2=-8x解析 因为AB ⊥x 轴,且AB 过焦点F ,所以线段AB 是焦点弦,且|AB |=2p ,所以S △CAB =12×2p ×⎝ ⎛⎭⎪⎫p 2+4=24,解得p =4或-12(舍),所以抛物线方程为y 2=8x ,所以直线AB的方程为x =2,所以以直线AB 为准线的抛物线的标准方程为y 2=-8x ,故选D. 答案 D4.设抛物线C :y 2=3x 的焦点为F ,点A 为C 上一点,若|FA |=3,则直线FA 的倾斜角为( ) A.π3B.π4 C.π3或2π3D.π4或3π4解析 如图,作AH ⊥l 于H ,则|AH |=|FA |=3,作FE ⊥AH 于E ,则|AE |=3-32=32,在Rt △AEF 中,cos ∠EAF =|AE ||AF |=12,∴∠EAF =π3,即直线FA 的倾斜角为π3,同理点A 在x 轴下方时,直线FA 的倾斜角为2π3.答案 C5.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A.355 B.2 C.115 D.3解析 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.答案 B二、填空题6.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析 建立如图平面直角坐标系,设抛物线方程为x 2= -2py (p >0).由题意将点A (2,-2)代入x 2=-2py ,得p =1,故x 2=-2y .设B (x ,-3),代入x 2=-2y 中,得x =6,故水面宽为26米. 答案 2 67.(2020·昆明诊断)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|FA→|+|FB →|+|FC →|的值为________. 解析 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝ ⎛⎭⎪⎫12,0,所以x 1+x 2+x 3=3×12=32,则|FA →|+|FB →|+|FC →|=⎝ ⎛⎭⎪⎫x 1+12+⎝ ⎛⎭⎪⎫x 2+12+⎝ ⎛⎭⎪⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3. 答案 38.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为________.解析 因为双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以2=c a =1+b 2a 2,所以b a=3,所以渐近线方程为3x ±y =0,因为抛物线C 2:x 2=2py (p >0)的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,所以F 到双曲线C 1的渐近线的距离为⎪⎪⎪⎪⎪⎪p 23+1=2,由于p >0,所以p =8,所以抛物线C 2的方程为x 2=16y .答案 x 2=16y 三、解答题9.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解 (1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4.于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1. (2)由y =x 24,得y ′=x 2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y =x +m 代入y =x 24得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1.从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m =7.所以直线AB 的方程为x -y +7=0.10.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC→=OA →+λOB →,求λ的值. 解 (1)抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0, 所以直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2, 由⎩⎪⎨⎪⎧y =22⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去y 得4x 2-5px +p 2=0,所以x 1+x 2=5p 4,由抛物线定义得|AB |=x 1+x 2+p =9,即5p 4+p =9,所以p =4.所以抛物线的方程为y 2=8x .(2)由p =4知,方程4x 2-5px +p 2=0,可化为x 2-5x +4=0,解得x 1=1,x 2=4,故y 1=-22,y 2=4 2.所以A (1,-22),B (4,42).则OC→=OA →+λOB →=(1,-22)+λ(4,42)=(1+4λ,-22+42λ). 因为C 为抛物线上一点,所以(-22+42λ)2=8(1+4λ),整理得λ2-2λ=0,所以λ=0或λ=2.B 级 能力提升11.(2020·石家庄模拟)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22)的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于( )A.1∶2B.1∶3C.1∶ 2D.1∶ 3解析 抛物线y 2=4x 的焦点F 的坐标为(1,0),∵直线l 过点F 和点M (2,22),∴直线l 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y 2=4x ,y =22(x -1)得2x 2-5x +2=0,解得x =2或x =12,∴点N 的横坐标为12.∵抛物线y 2=4x 的准线方程为x =-1,∴|NF |=32,|MF |=3,∴|NF |∶|MF |=1∶2,故选A.答案 A12.(2020·长沙调研)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,且l 过点(-2,3),M 在抛物线C 上,若点N (1,2),则|MN |+|MF |的最小值为( )A.2B.3C.4D.5解析 由题意知p 2=2,即p =4.过点N 作准线l 的垂线,垂足为N ′,交抛物线于点M ′,则|M ′N ′|=|M ′F |,则有|MN |+|MF |=|MN |+|MT |≥|M ′N ′|+|M ′N |=|NN ′|=1-(-2)=3.答案 B13.(2020·湖南名校大联考)已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x轴、 y 轴交于M ,N 两点,点A (2,-4)且AP→=λAM →+μAN →,则λ+μ的最小值为________.解析 由题意得M (2,0),N (0,-4),设P (x ,y ),由AP→=λAM →+μAN →得(x -2,y +4)=λ(0,4)+μ(-2,0),∴x -2=-2μ,y +4=4λ.因此λ+μ=y +44-x -22=x 24-x 2+2=⎝ ⎛⎭⎪⎫x 2-122+74≥74,故λ+μ的最小值为74.答案 7414.(2019·全国Ⅲ卷)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎝ ⎛⎭⎪⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.(1)证明 设D ⎝ ⎛⎭⎪⎫t ,-12,A (x 1,y 1),则x 21=2y 1. 因为y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t =x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0.故直线AB 的方程为2tx -2y +1=0.所以直线AB 过定点⎝ ⎛⎭⎪⎫0,12. (2)解 由(1)得直线AB 的方程为y =tx +12.由⎩⎪⎨⎪⎧y =tx +12,y =x 22可得x 2-2tx -1=0. 于是x 1+x 2=2t ,x 1x 2=-1,y 1+y 2=t (x 1+x 2)+1=2t 2+1,|AB |=1+t 2|x 1-x 2|=1+t 2×(x 1+x 2)2-4x 1x 2=2(t 2+1).设d 1,d 2分别为点D ,E 到直线AB 的距离,则d 1=t 2+1,d 2=2t 2+1.因此,四边形ADBE 的面积S =12|AB |(d 1+d 2)=(t 2+3)t 2+1.设M 为线段AB 的中点,则M ⎝ ⎛⎭⎪⎫t ,t 2+12.因为EM →⊥AB →,而EM →=(t ,t 2-2),AB →与向量(1,t )平行,所以t +(t 2-2)t =0,解得t =0或t =±1.当t =0时,S =3;当t =±1时,S =4 2.因此,四边形ADBE 的面积为3或4 2.C 级 创新猜想15.(多选题)如图所示,抛物线y =14x 2,AB 为过焦点F 的弦,过A ,B 分别作抛物线的切线,两切线交于点M ,设A (x A ,y A ),B (x B ,y B ),M (x M ,y M ),则下列结论正确的有( )A.若AB 的斜率为1,则|AB |=8B.|AB |min =4C.若AB 的斜率为1,则x M =2D.x A ·x B =-4解析 由题意得,焦点F (0,1),对于A ,l AB 的方程为y =x +1,与抛物线的方程联立, 得⎩⎨⎧y =x +1,y =14x 2,消去x ,得y 2-6y +1=0, 所以y A +y B =6,则|AB |=y A +y B +p =8,则A 正确;对于B ,|AB |min =2p =4,则B 正确;对于C ,当AB 的斜率为1时,因为y ′=x 2,则x M 2=1,∴x M =2,则C 正确;设l AB 的方程为y =kx +1,与抛物线的方程联立,得⎩⎨⎧y =kx +1,y =14x 2,消去y ,得x 2-4kx -4=0, 所以x A +x B =4k ,x A ·x B =-4,则D 正确;答案 ABCD16.(多填题)已知抛物线C :y 2=2px (p >0)的焦点为F (2,0),则抛物线C 的方程是________;若M 是C 上一点,FM 的延长线交y 轴于点N ,且M 为FN 的中点,则|FN |=________.解析 抛物线C :y 2=2px (p >0)的焦点为F (2,0),可得p =4,则抛物线C 的方程是y 2=8x .由M 为FN 的中点,得M 的横坐标为1,代入抛物线方程得y =±22,则M (1,±22),则|FN |=2(1+2)=6. 答案 y 2=8x 6。
新教材高中数学第2章抛物线的几何性质学案含解析新人教B版选择性必修第一册
新教材高中数学:第2章平面解析几何2.7.2 抛物线的几何性质学习目标核心素养1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.(重点)2.会利用抛物线的性质解决一些简单的抛物线问题.(重点、难点)3.掌握直线与抛物线相交时与弦长相关的知识.通过抛物线的几何性质的学习,培养直观想象、数学运算素养.如果让抛物线绕其对称轴旋转,就得到一个旋转形成的抛物面曲面,旋转抛物面的轴上,有一个焦点,任何一条平行于抛物面轴的光(射)线由抛物面上反射出来之后,其反射光(射)线都通过该点,应用抛物面的这个几何性质,人们设计了很多非常有用的东西,如太阳灶、卫星电视天线、雷达等.当然这条性质本身也是抛物线的一条性质,今天我们就来具体研究一下构成抛物面的线——抛物线的几何性质.1.抛物线的几何性质标准方程y2=2px(p>0)y2=-2px(p>0) x2=2py(p>0)x2=-2py(p>0) 图形性质范围x≥0,y∈R x≤0,y∈R x∈R,y≥0x∈R,y≤0对称轴x轴y轴顶点(0,0)离心率e=1x2py p[提示]有一条对称轴.思考2:抛物线的范围是x∈R,这种说法正确吗?[提示]抛物线的方程不同,其范围就不一样,如y2=2px(p>0)的范围是x≥0,y∈R,故此说法错误.思考3:参数p对抛物线开口大小有何影响?[提示]参数p(p>0)对抛物线开口大小有影响,因为过抛物线的焦点F且垂直于对称轴的弦的长度是2p,所以p越大,开口越大.2.焦点弦设过抛物线焦点的弦的端点为A(x1,y1),B(x2,y2),则y2=2px(p>0)|AB|=x1+x2+py2=-2px(p>0)|AB|=p-(x1+x2)x2=2py(p>0)|AB|=y1+y2+px2=-2py(p>0)|AB|=p-(y1+y2)1.思考辨析(正确的打“√”,错误的打“×”)(1)抛物线是中心对称图形.( )(2)抛物线的范围为x∈R.( )(3)抛物线关于顶点对称.( )(4)抛物线的标准方程虽然各不相同,但离心率都相同.( )[答案](1)×(2)×(3)×(4)√[提示](1)×在抛物线中,以-x代x,-y代y,方程发生了变化.(2)×抛物线的方程不同,其范围不同,y2=2px(p>0)中x≥0,y∈R.(3)×(4)√离心率都为1,正确.2.设抛物线y2=8x上一点P到y轴的距离是6,则点P到该抛物线焦点F的距离是( ) A.8 B.6 C.4 D.2A[∵抛物线的方程为y2=8x,∴其准线l的方程为x=-2,设点P(x0,y0)到其准线的距离为d,则d=|PF|,即|PF|=d=x0-(-2)=x0+2,∵点P 到y 轴的距离是6, ∴x 0=6,∴|PF |=6+2=8.]3.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=6,则|AB |= .8 [∵y 2=4x ,∴2p =4,p =2.∵由抛物线定义知:|AF |=x 1+1,|BF |=x 2+1, ∴|AB |=x 1+x 2+p =6+2=8.]4.顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程是 .y 2=24x 或y 2=-24x [∵顶点与焦点距离为6,即p2=6,∴2p =24,又对称轴为x 轴,∴抛物线方程为y 2=24x 或y 2=-24x .]由抛物线的几何性质求标准方程【例xOy A OA 物线y 2=2px (p >0)的焦点,则该抛物线的标准方程是 .(2)抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程.(1)y 2=5x [线段OA 的垂直平分线为4x +2y -5=0,与x 轴的交点为⎝ ⎛⎭⎪⎫54,0,∴抛物线的焦点为⎝ ⎛⎭⎪⎫54,0,∴其标准方程是y 2=5x .](2)解:椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上,∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px (p >0). ∵抛物线的焦点到顶点的距离为3, 即p2=3,∴p =6, ∴抛物线的标准方程为y 2=12x 或y 2=-12x , 其准线方程分别为x =-3和x =3.用待定系数法求抛物线方程的步骤提醒:求抛物线的方程时要注意抛物线的焦点位置.不同的焦点设出不同的方程.[跟进训练]1.已知抛物线关于x 轴对称,它的顶点在坐标原点,其上一点P 到准线及对称轴距离分别为10和6,求抛物线方程.[解] 设抛物线方程为y 2=2ax (a ≠0),点P (x 0,y 0). 因为点P 到对称轴距离为6,所以y 0=±6, 因为点P 到准线距离为10,所以⎪⎪⎪⎪⎪⎪x 0+a 2=10.①因为点P 在抛物线上,所以36=2ax 0. ②由①②,得⎩⎪⎨⎪⎧a =2,x 0=9或⎩⎪⎨⎪⎧a =18,x 0=1或⎩⎪⎨⎪⎧a =-18,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=-9.所以所求抛物线方程为y 2=±4x 或y 2=±36x .抛物线性质的应用【例2】 AFO =120°(O 为坐标原点),AK ⊥l ,垂足为K ,则△AKF 的面积是 .(2)已知正三角形AOB 的一个顶点O 位于坐标原点,另外两个顶点A ,B 在抛物线y 2=2px (p >0)上,求这个三角形的边长.(1)43 [如图,设A (x 0,y 0),过A 作AH ⊥x 轴于H , 在Rt△AFH 中,|FH |=x 0-1, 由∠AFO =120°,得∠AFH =60°, 故y 0=|AH |=3(x 0-1), 所以A 点的坐标为()x 0,3x 0-1,将点A 坐标代入抛物线方程可得3x 20-10x 0+3=0,解得x 0=3或x 0=13(舍),故S △AKF =12×(3+1)×23=43.](2)解:如图所示,设正三角形OAB 的顶点A ,B 在抛物线上,且坐标分别为A (x 1,y 1),B (x 2,y 2),则y 21=2px 1,y 22=2px 2.又|OA |=|OB |,所以x 21+y 21=x 22+y 22, 即x 21-x 22+2px 1-2px 2=0, 整理得(x 1-x 2)(x 1+x 2+2p )=0. ∵x 1>0,x 2>0,2p >0, ∴x 1=x 2,由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称. 由此得∠AOx =30°, 所以y 1=33x 1,与y 21=2px 1联立, 解得y 1=23p .∴|AB |=2y 1=43p .利用抛物线的性质可以解决的问题(1)对称性:解决抛物线的内接三角形问题.(2)焦点、准线:解决与抛物线的定义有关的问题. (3)范围:解决与抛物线有关的最值问题. (4)焦点:解决焦点弦问题.提醒:解答本题时易忽略A ,B 关于x 轴对称而出错.[跟进训练]2.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A 、B 两点,O 为坐标原点,若双曲线的离心率为2,△AOB 的面积为3,求抛物线的标准方程.[解] 由已知得c a =2,所以a 2+b 2a 2=4,解得ba=3.即渐近线方程为y =±3x ,而抛物线准线方程为x =-p 2,于是A ⎝ ⎛⎭⎪⎫-p2,-32p ,B ⎝ ⎛⎭⎪⎫-p2,32p ,从而△AOB 的面积为12·3p ·p 2=3.可得p =2,因此抛物线开口向右,所以标准方程为y 2=4x .焦点弦问题[探究问题]以抛物线y 2=2px (p >0)为例,回答下列问题: (1)过焦点F 的弦长|AB |如何表示?还能得到哪些结论? [提示] ①|AB |=2⎝ ⎛⎭⎪⎫x 0+p 2(焦点弦长与中点关系).②|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角). ③A ,B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=p 24,y 1·y 2=-p 2.④S △AOB =p 22sin θ.⑤1|AF |+1|BF |=2p (定值). (2)以AB 为直径的圆与直线l 具有怎样的位置关系?[提示] 如图,AB 是过抛物线y 2=2px (p >0)焦点F 的一条弦,设A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),相应的准线为l .所以以AB 为直径的圆必与准线l 相切. (3)解决焦点弦问题需注意什么?[提示] 要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解.【例3】 已知抛物线方程为y 2=2px (p >0),过此抛物线的焦点的直线与抛物线交于A ,B 两点,且|AB |=52p ,求AB 所在直线的方程.[思路探究] 根据弦长求出直线斜率,进而求得直线方程. [解] ∵过焦点的弦长|AB |=52p ,∴弦所在的直线的斜率存在且不为零,设直线AB 的斜率为k ,且A (x 1,y 1),B (x 2,y 2).∵y 2=2px 的焦点为F ⎝ ⎛⎭⎪⎫p2,0.∴直线方程为y =k ⎝ ⎛⎭⎪⎫x -p 2.由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,整理得k 2x 2-(k 2p +2p )x +14k 2p 2=0(k ≠0), ∴x 1+x 2=k 2p +2pk 2,∴|AB |=x 1+x 2+p =k 2p +2pk 2+p ,又|AB |=52p ,∴k 2p +2p k 2+p =52p ,∴k =±2. ∴所求直线方程为y =2⎝ ⎛⎭⎪⎫x -p 2或y =-2⎝ ⎛⎭⎪⎫x -p 2.1.(改变问法)本例条件不变,求弦AB 的中点M 到y 轴的距离.[解] 设AB 中点为M (x 0,y 0), 由例题解答可知2x 0=x 1+x 2=32p ,所以AB 的中点M 到y 轴的距离为34p .2.(变换条件)本例中,若A 、B 在其准线上的射影分别为A 1,B 1,求∠A 1FB 1. [解] 由例题解析可知AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,即x =1k y +p 2,代入y 2=2px 消x 可得y 2=2pk y +p 2,即y 2-2pky -p 2=0,∴y 1y 2=-p 2, 由A 1点的坐标为⎝ ⎛⎭⎪⎫-p 2,y 1,B 1点的坐标为⎝ ⎛⎭⎪⎫-p 2,y 2,得kA 1F =-y 1p ,kB 1F =-y 2p .∴kA 1F ·kB 1F =y 1y 2p 2=-1, ∴∠A 1FB 1=90°.解决过焦点的直线与抛物线相交有关的问题时,一是注意直线方程和抛物线方程联立得方程组,再结合根与系数的关系解题,二是注意焦点弦长、焦半径公式的应用.解题时注意整体代入思想的运用,简化运算.1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.解决抛物线的轨迹问题,可以利用抛物线的标准方程,结合抛物线的定义. 3.抛物线y 2=±2px (p >0)的过焦点的弦长|AB |=x 1+x 2+p ,其中x 1,x 2分别是点A ,B 横坐标的绝对值;抛物线x 2=±2py (p >0)的过焦点的弦长|AB |=y 1+y 2+p ,其中y 1,y 2分别是点A ,B 纵坐标的绝对值.4.求抛物线的方程常用待定系数法和定义法;直线和抛物线的弦长问题、中点弦问题及垂直、对称等可利用判别式、根与系数的关系解决;抛物线的综合问题要深刻分析条件和结论,灵活选择解题策略,对题目进行转化.1.若抛物线y 2=2x 上有两点A 、B 且AB 垂直于x 轴,若|AB |=22,则抛物线的焦点到直线AB 的距离为( )A .12B .14C .16D .18A [线段AB 所在的直线方程为x =1,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫12,0,则焦点到直线AB 的距离为1-12=12.]2.在抛物线y 2=16x 上到顶点与到焦点距离相等的点的坐标为( ) A .(42,±2) B .(±42,2) C .(±2,42)D .(2,±42)D [抛物线y 2=16x 的顶点O (0,0),焦点F (4,0),设P (x ,y )符合题意,则有⎩⎪⎨⎪⎧y 2=16x ,x 2+y 2=x -42+y2⇒⎩⎪⎨⎪⎧y 2=16x ,x =2⇒⎩⎨⎧x =2,y =±4 2.所以符合题意的点为(2,±42).]3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是( )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22) B [由题意知F (1,0),设A ⎝ ⎛⎭⎪⎫y 204,y 0,则OA →=⎝ ⎛⎭⎪⎫y 204,y 0,AF →=⎝ ⎛⎭⎪⎫1-y 204,-y 0,由OA →·AF →=-4得y 0=±2,∴点A 的坐标为(1,±2),故选B .]4.已知AB 是过抛物线2x 2=y 的焦点的弦,若|AB |=4,则AB 的中点的纵坐标是 . 158[设A (x 1,y 1),B (x 2,y 2), 由抛物线2x 2=y ,可得p =14.∵|AB |=y 1+y 2+p =4,∴y 1+y 2=4-14=154,故AB 的中点的纵坐标是y 1+y 22=158.]5.已知点P (1,m )是抛物线C :y 2=2px 上的点,F 为抛物线的焦点,且|PF |=2,直线l :y =k (x -1)与抛物线C 相交于不同的两点A ,B .(1)求抛物线C 的方程; (2)若|AB |=8,求k 的值.[解] (1)抛物线C :y 2=2px 的准线为x =-p2,由|PF |=2得:1+p2=2,得p =2.所以抛物线的方程为y 2=4x . (2)设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,可得k 2x 2-(2k 2+4)x +k 2=0,Δ=16k 2+16>0, ∴x 1+x 2=2k 2+4k2.∵直线l 经过抛物线C 的焦点F , ∴|AB |=x 1+x 2+p =2k 2+4k2+2=8,解得k =±1,所以k 的值为1或-1.。
高中数学 第二章2.4.2 抛物线的简单几何性质讲解与例
2.4.2 抛物线的简单几何性质问题导学一、抛物线几何性质的应用活动与探究1已知抛物线的顶点在原点,焦点F 在x 轴正半轴上.若抛物线上一动点P 到A ⎝ ⎛⎭⎪⎫2,32,F 两点距离之和的最小值为4,且A 为抛物线内一点,求抛物线方程.迁移与应用1.抛物线y 2=2px (p >0)上一点M 的纵坐标为-42,该点到准线的距离为6,则抛物线方程为________________.2.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =__________.注意抛物线各元素间的关系:抛物线的焦点始终在对称轴上,抛物线的顶点就是抛物线与对称轴的交点,抛物线的准线始终与对称轴垂直,抛物线的准线与对称轴的交点和焦点关于抛物线的顶点对称.二、抛物线的焦点弦活动与探究2已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A ,B 两点. (1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.迁移与应用1.过抛物线y 2=2px 的焦点F 的直线与抛物线交于A ,B 两点,若A ,B 在准线上的射影为A 1,B 1,则∠A 1FB 1等于( ).A .45°B .90° C.60° D.120°2.过抛物线y 2=2px (p >0)的焦点F 作一条直线交抛物线于A ,B 两点,求1|AF |+1|BF |的值.已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A ,B 两点,则弦AB 称为焦点弦.设A (x 1,y 1),B (x 2,y 2),则有下列性质:|AB |=x 1+x 2+p 或|AB |=2psin 2α(α为AB 的倾斜角),y 1y 2=-p 2,x 1x 2=p 24等.三、直线与抛物线的位置关系活动与探究3已知抛物线y 2=6x 的弦AB 经过点P (4,2),且OA ⊥OB (O 为坐标原点),求弦AB 的长.迁移与应用1.直线y =kx -2与抛物线y 2=8x 交于A ,B 两点,且AB 中点的横坐标为2,则k 的值为( ).A .-1B .2C .2或-1D .42.过点Q (4,1)作抛物线y 2=8x 的弦AB ,若AB 恰被Q 平分,求AB 所在的直线方程.1.直线与抛物线位置关系的判定:直线方程与抛物线方程联立得方程ax 2+bx +c =0,当a =0时,直线是抛物线的对称轴或是和对称轴平行的直线,此时直线与抛物线相交,且只有一个交点;当a ≠0时,两者位置关系的判定和椭圆、双曲线相同,用判别式法即可,即①相交:两个不同交点⇔a ≠0且Δ>0;②相切⇔a ≠0且Δ=0;③相离⇔a ≠0且Δ<0.2.凡涉及抛物线的弦长、弦的中点问题,要注意“点差法”的运用,体现“设而不求”的优越性.答案:课前·预习导学 【预习导引】1.⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 x =-p 2 y =p2 x ≤0y ≤0 x 轴 y 轴 (0,0)预习交流1 提示:抛物线与双曲线的一支不相同.双曲线的一支有渐近线,离心率e >1;抛物线没有渐近线,它的离心率是唯一的,e =1.2.x 0+p2x 1+x 2+p 2p预习交流2 提示:抛物线方程化为y 2=13x ,2p =13,故其通径长为13.预习交流3 提示:不正确,若直线与抛物线相切,则它们只有一个公共点,但当直线与抛物线只有一个公共点时,直线不一定与抛物线相切,还可能是相交,这时直线与抛物线的对称轴平行或重合.这一点与圆、椭圆是不同的,要注意区别.课堂·合作探究 【问题导学】活动与探究1 思路分析:先根据题目条件设出抛物线方程,再结合图形,探讨抛物线上的动点P 满足到A ,F 两点距离之和取最小值时的条件,进而列出等量关系.解:设所求的抛物线方程为y 2=2px (p >0),其焦点为F ⎝ ⎛⎭⎪⎫p 2,0,准线l :x =-p2.如图所示,若A 点在“抛物线所包含的区域之内”, 过点P 作准线的垂线,垂足为H ,由抛物线定义可知|PF |=|PH |. 当H ,P ,A 在同一条直线上时, |PA |+|PF |取最小值|AH |=2+2p =4,解得p =4,故所求的抛物线方程为y 2=8x . 迁移与应用 1.y 2=16x 或y 2=8x 解析:由于抛物线的准线方程是x =-p2,而点M 到准线的距离为6,所以M 点的横坐标是6-p2,于是M ⎝ ⎛⎭⎪⎫6-p2,-42,代入方程得32=2p ⎝ ⎛⎭⎪⎫6-p2,解得p =8或p =4,故方程为y 2=16x 或y 2=8x .2.2 解析:圆x 2+y 2-6x -7=0的圆心为(3,0),半径为4,抛物线y 2=2px 的准线为x =-p 2.由⎪⎪⎪⎪⎪⎪3+p 2=4,得p =2或-14(舍).活动与探究2 思路分析:(1)由倾斜角可知斜率,从而得到l 的方程,与抛物线方程联立,结合抛物线定义可求得|AB |的值;(2)由|AB |=9求得弦AB 中点的横坐标即可求得M 到准线的距离.解:(1)因为直线l 的倾斜角为60°,所以其斜率k =tan 60°=3.又F ⎝ ⎛⎭⎪⎫32,0,所以直线l 的方程为y =3⎝ ⎛⎭⎪⎫x -32. 联立⎩⎪⎨⎪⎧y 2=6x ,y =3⎝ ⎛⎭⎪⎫x -32,消去y 得x 2-5x +94=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=5,而|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p ,所以|AB |=5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知 |AB |=|AF |+|BF |=x 1+x 2+p =x 1+x 2+3,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3.又准线方程是x =-32,所以M 到准线的距离为3+32=92.迁移与应用 1.B 解析:如图,由抛物线定义知|AA 1|=|AF |,|BB 1|=|BF |,所以∠AA 1F =∠AFA 1.又∠AA 1F =∠A 1FO , 所以∠AFA 1=∠A 1FO . 同理∠BFB 1=∠B 1FO .于是∠AFA 1+∠BFB 1=∠A 1FO +∠B 1FO =∠A 1FB 1. 故∠A 1FB 1=90°.2.解:已知抛物线的焦点,02p F ⎛⎫⎪⎝⎭,设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2). 对于直线AB ,分两种情况考虑: (1)若直线AB 的倾斜角为90°, 则有|AF |=|BF |=p ,所以112||||AF BF p+=; (2)若直线AB 的倾斜角不等于90°, 设直线AB 的方程为2p y k x ⎛⎫=- ⎪⎝⎭, 与抛物线方程联立并消去y ,整理得k 2x 2-(k 2+2)px +224k p =0,由韦达定理得,x 1+x 2=22(2)k p k +,x 1x 2=24p .另一方面,由抛物线定义得|AF |=x 1+2p ,|BF |=x 2+2p. 于是121111||||22p p AF BF x x +=+++ =()122121224x x pp p x x x x +++++=()()22222222=2424k p pk p k p p p pk ++++⋅+. 活动与探究3 思路分析:要求弦AB 的长,只需求出A ,B 两点的坐标.为此,设出A ,B 两点的坐标,利用OA ⊥OB 以及A ,B ,P 三点共线的条件求解.解:∵A ,B 两点在抛物线y 2=6x 上,可设A ⎝ ⎛⎭⎪⎫y 216,y 1,B ⎝ ⎛⎭⎪⎫y 226,y 2. ∵OA ⊥OB ,∴OA u u u r ·OB uuu r=0.由OA u u u r =⎝ ⎛⎭⎪⎫y 216,y 1,OB uuu r =⎝ ⎛⎭⎪⎫y 226,y 2, 得y 21y 2236+y 1y 2=0.∵y 1y 2≠0,∴y 1y 2=-36.①∵点A ,B 与点P (4,2)在一条直线上,∴y 1-2y 216-4=y 1-y 2y 216-y 226,化简得y 1-2y 21-24=1y 1+y 2, 即y 1y 2-2(y 1+y 2)=-24. 将①代入,得y 1+y 2=-6.②由①和②,得y 1=-3-35,y 2=-3+35,从而点A 的坐标为(9+35,-3-35),点B 的坐标为(9-35,-3+35).∴|AB |=(x 1-x 2)2+(y 1-y 2)2=610.迁移与应用 1.B 解析:∵直线y =kx -2与抛物线y 2=8x 交于两点,∴k ≠0.由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,消去y ,得k 2x 2-4kx -8x +4=0,∴x 1+x 2=4k +8k2.而AB 中点的横坐标为2, ∴4k +8k2=4,解得k =-1或k =2.而当k =-1时,方程k 2x 2-4kx -8x +4=0只有一个解,即A ,B 两点重合,∴k ≠-1. 2.解:方法1:显然AB 不垂直于x 轴,故可设弦AB 所在的直线方程为y -1=k (x -4),联立方程组⎩⎪⎨⎪⎧y -1=k (x -4),y 2=8x ,消去x ,整理得ky 2-8y -32k +8=0.此方程的两根是弦AB 的端点A ,B 的纵坐标,由韦达定理得y 1+y 2=8k.又Q 点是弦AB 的中点,∴y 1+y 2=2.∴k =4. 故弦AB 所在的直线方程为y -1=4(x -4), 即4x -y -15=0.方法2:设弦AB 的端点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 则有2118y x =,2228y x =,两式相减得(y 1+y 2)(y 1-y 2)=8(x 1-x 2). 由于Q 点是弦AB 的中点,∴y 1+y 2=2,于是y 1-y 2x 1-x 2=4,即直线AB 的斜率k =4,故弦AB 所在的直线方程为y -1=4(x -4),即4x -y -15=0. 当堂检测1.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足,如果直线AF 的斜率为3-,那么|PF |=( ).A .43B .8C .83D .16答案:B 解析:如图,直线AF 的方程为3(2)y x =--,与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6. ∴|PF |=x 0+2=8.2.直线y =kx +2与抛物线y 2=8x 只有一个公共点,则k 的值为( ). A .1 B .1或3 C .0 D .0或1答案:D 解析:联立22,8y kx y x=+⎧⎨=⎩得(kx +2)2-8x =0.整理得k 2x 2+(4k -8)x +4=0.当k =0时,方程变为-8x +4=0,只有一解,这时直线与抛物线只有一个公共点;当k ≠0时,由Δ=0得(4k -8)2-16k 2=0,解得k =1. 综上,k =0或1.3.过抛物线x 2=2py (p >0)的焦点作斜率为1的直线与该抛物线交于A ,B 两点,A ,B 在x 轴上的正射影分别为D ,C .若梯形ABCD 的面积为122p =__________.答案:2 解析:如图,抛物线焦点为0,2p ⎛⎫ ⎪⎝⎭,设A (x 1,y 1),B (x 2,y 2),直线AB :y -2p =x ,即y =x +2p . 联立x 2=2py ,得2,22,p y x x py ⎧=+⎪⎨⎪=⎩消去y 得x 2-2px -p 2=0,∴x 1=(1+2)p ,x 2=(1-2)p .∴|AD |+|BC |=y 1+y 2=x 1+2p +x 2+2p=2p +p =3p ,|CD |=|x 1-x 2|=22p . 由S 梯形ABCD =12(|AD |+|BC |)·|CD |=13221222p p ⋅⋅=,解得p 2=4,∴p =±2.∵p >0,∴p =2.4.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为__________.答案:-4 解析:由已知可设P (4,y 1),Q (-2,y 2),∵点P ,Q 在抛物线x 2=2y 上,∴212242(2)2y y ⎧=⎨-=⎩,①,② ∴128,2,y y =⎧⎨=⎩∴P (4,8),Q (-2,2). 又∵抛物线可化为212y x =, ∴y ′=x ,∴过点P 的切线斜率为4'4x y ==. ∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为2'2x y =-=-,∴过点Q 的切线为y -2=-2(x +2), 即y =-2x -2.联立48,22,y x y x =-⎧⎨=--⎩得x =1,y =-4,∴点A 的纵坐标为-4.5.已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程;答案:解:将(1,-2)代入y 2=2px ,得(-2)2=2p ·1,∴p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1.(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 5l 的方程;若不存在,说明理由. 答案:假设存在符合题意的直线l ,其方程为y =-2x +t .由22,4y x t y x=-+⎧⎨=⎩得y 2+2y -2t =0.∵直线l与抛物线C有公共点,∴Δ=4+8t≥0,解得12t≥-.另一方面,由直线OA与l的距离55d=,可得55=,解得t=±1.∵11,2⎡⎫-∉-+∞⎪⎢⎣⎭,11,2⎡⎫∈-+∞⎪⎢⎣⎭,∴符合题意的直线l存在,其方程为2x+y-1=0.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.。
抛物线知识点全面总结及经典例题
x(p>0)
2
y p 2
y≤0 x∈R
y轴
例1:已知抛物线关于x轴对称,它的顶点 在坐标原点,并且经过点M2(22, ),求
它的标准方程。
变式:顶点在坐标原点,对称轴为坐标 轴,并且经过点M(2,2 2 ),抛物 线的标准方程。
例2:已知抛物线的方程为y2=4x,直线 l 经过点P(-2,1),斜率为k.当k为何值 时,直线与抛物线:只有一个公共点;有
1 FA
|
|
1 FB
|
是否为定值?
y
A ( x1, y1 )
这一结论非常奇妙, 变中有不变,动中有不动.
F
O
x
B ( x2, y2 )
例9、正三角形的一个顶点位于坐标原点,另外两个
顶点在抛物线 y2 2 px( p 0)上,求这个三角形的边长。
解:如图,设正三角形OAB的顶点A、
y
A (x1,y1)
(2)已知抛物线的方程是 y 6x2,求它的焦点坐标和准
线方程;
(3)已知抛物线的焦点坐标是F(0,-2),求它的标准方程.
解:(1)因为焦点在x轴的正半轴上,p=3,所以焦点坐
标是
(3 2
,
0)
,准线方程是
x
3 2
.
(2)因为抛物线的标准方程 x2 1 y,焦点在y轴的正
半轴上,p 是y 1
X1=X2. 由此可得|y1|=|y2|,,即线段AB关于x轴对称。
(x2,y2)
B
因为x轴垂直于AB,且 AOX 30,所以 y1 tan 30 3
x1
y12 2p
,
x1
2025年高考数学一轮复习讲义含答案解析 第7节 抛物线的定义、标准方程及其简单几何性质
第七节抛物线第1课时抛物线的定义、标准方程及其简单几何性质课标解读考向预测1.掌握抛物线的定义、几何图形、标准方程.2.掌握抛物线的简单几何性质(范围、对称性、顶点、离心率).3.了解抛物线的简单应用.近三年高考考查了抛物线的定义和标准方程以及抛物线的准线,以选择题、填空题为主.预计2025年高考本部分内容仍以基础知识为考点,注意几何性质的应用.必备知识——强基础1.抛物线的概念把平面内与一个定点F 和一条定直线l (l 不经过点F )的距离01相等的点的轨迹叫做抛物线,点F 叫做抛物线的02焦点,直线l 叫做抛物线的03准线.2.抛物线的标准方程和简单几何性质对称轴19x轴20y轴顶点21(0,0)离心率e=2211.抛物线方程一般首先转化为标准形式.2.在抛物线的标准方程中,焦点的位置与一次项系数的正负保持一致.3.焦点到原点的距离的4倍为一次项系数的绝对值.4.抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F|PF|=x0+p2,也称为抛物线的焦半径.1.概念辨析(正确的打“√”,错误的打“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹是抛物线.()(2)在抛物线的方程中,字母p的几何意义是焦点到抛物线顶点的距离.()(3)方程y=4x2表示焦点在x轴上的抛物线,焦点坐标是(1,0).()(4)以(0,1)为焦点的抛物线的标准方程为x2=4y.()答案(1)×(2)×(3)×(4)√2.小题热身(1)(人教A选择性必修第一册习题3.3T1改编)抛物线y=2x2的准线方程为()A.y=-18B.y=-14C.y=-12D.y=-1答案A解析由y=2x2,得x2=12y,故抛物线y=2x2的准线方程为y=-18.故选A.(2)(人教A选择性必修第一册习题3.3T31改编)抛物线y2=2px(p>0)上一点M(3,y)到焦点F 的距离|MF|=4,则抛物线的方程为()A.y2=8x B.y2=4xC .y 2=2xD .y 2=x答案B解析由题意,可得|MF |=x M +p 2,则3+p2=4,即p =2,故抛物线的方程为y 2=4x .(3)(人教A 选择性必修第一册习题3.3T4改编)已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是________.答案y 2=±42x解析由题意可知双曲线的焦点为(-2,0),(2,0).设抛物线方程为y 2=±2px (p >0),则p2=2,所以p =22,所以抛物线C 的方程为y 2=±42x .(4)(人教A 选择性必修第一册习题3.3T8改编)如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.答案26解析建立如图所示的平面直角坐标系,设抛物线方程为x 2=-2py (p >0).由题意将点A (2,-2)代入x 2=-2py ,得p =1,故x 2=-2y .设B (x 0,-3),代入x 2=-2y 中,得x 0=6,故水面宽26米.考点探究——提素养考点一抛物线的定义及其应用例1(1)动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是()A .直线B .椭圆C .双曲线D .抛物线答案D解析设动圆的圆心为点C ,半径为r ,则点C 到定圆A :(x +2)2+y 2=1的圆心的距离等于r +1.又动圆的圆心到直线x =1的距离等于r ,所以动圆的圆心到直线x =2的距离为r +1,根据抛物线的定义知,动圆圆心的轨迹为抛物线.故选D.(2)(2023·北京高考)已知抛物线C :y 2=8x 的焦点为F ,点M 在C 上.若M 到直线x =-3的距离为5,则|MF |=()A .7B .6C .5D .4答案D解析因为抛物线C :y 2=8x 的焦点F (2,0),准线方程为x =-2,点M 在C 上,所以M 到准线x =-2的距离为|MF |,又M 到直线x =-3的距离为5,所以|MF |+1=5,故|MF |=4.故选D.【通性通法】利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定与定点、定直线距离有关的动点轨迹是否为抛物线.(2)距离问题:灵活地进行抛物线上的点到焦点距离与其到准线距离间的等价转化.“看到准线应该想到焦点,看到焦点应该想到准线”,这是解决抛物线中与距离有关的问题的有效途径.注意:“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线.【巩固迁移】1.动点P 到直线x -2=0的距离比它到点M (-4,0)的距离小2,则点P 的轨迹方程是()A .y 2=16xB .y 2=-16xC .x 2=16yD .x 2=-16y答案B解析依题意,动点P 到直线x -2=0的距离比它到点M (-4,0)的距离小2,所以动点P到直线x -4=0的距离与它到点M (-4,0)的距离相等,所以点P 的轨迹是以M 为焦点,直线x =4为准线的抛物线.故点P 的轨迹方程是y 2=-16x .故选B.2.(2023·江西抚州质量监测)已知抛物线x 2=4y 的焦点为F ,点M 在抛物线上,且|MF |=3,则点M 到y 轴的距离为________.答案22解析设点M 的坐标为(x M ,y M ),由x 2=4y ,得p =2,根据抛物线的定义,知|MF |=y M +p2=y M+1=3,解得y M=2,代入x2=4y,得x M=±22,所以点M到y轴的距离为22.考点二抛物线的标准方程与简单几何性质例2(1)(多选)顶点在原点,对称轴为坐标轴且过点P(-2,3)的抛物线的标准方程是()A.y2=92x B.x2=43yC.y2=-92x D.x2=-43y答案BC解析设抛物线的标准方程是y2=kx或x2=my,代入点P(-2,3),解得k=-92,m=43,所以y2=-92x或x2=43y.(2)(2021·新高考Ⅰ卷)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为________.答案x=-3 2解析解法一:不妨设点P在第一象限,如图,由已知可得所以k OP=2,又PQ⊥OP,所以k PQ=-12.所以直线PQ的方程为y-p令y=0,得x=52p.所以|FQ|=5 2p-p2=2p=6,所以p=3,所以C的准线方程为x=-p2=-32.解法二:由题易得|OF|=p2,|PF|=p,|PF|2=|OF|·|FQ|,即p2=p2×6,解得p=3或p=0(舍去),所以C的准线方程为x=-3 2 .【通性通法】1.求抛物线标准方程的方法定义法若题目已给出抛物线的方程(含有未知数p),那么只需求出p即可待定系数法若题目未给出抛物线的方程,对于焦点在x轴上的抛物线的标准方程可设为y2=ax(a≠0),a的正负由题设来定;焦点在y轴上的抛物线的标准方程可设为x2=ay (a ≠0),这样就减少了不必要的讨论2.抛物线性质的应用技巧(1)利用抛物线方程确定其焦点、准线时,关键是将抛物线方程化成标准方程.(2)要结合图形分析,灵活运用平面图形的性质简化运算.【巩固迁移】3.已知抛物线x 2=2py (p >0)的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,若△FPM 为边长是4的等边三角形,则此抛物线的方程为________.答案x 2=4y解析因为△FPM 为等边三角形,则|PM |=|PF |,由抛物线的定义得PM 垂直于抛物线的准线,设则点,因为焦点△FPM 是等边三角形,所以4,2=12,=2,因此抛物线的方程为x 2=4y .4.(2024·吉林长春期末)已知抛物线y =mx 2过点(2,1),则该抛物线的焦点到准线的距离为________.答案2解析因为抛物线y =mx 2过点(2,1),所以4m =1,m =14,所以抛物线的方程为x 2=4y .由于焦点在y 轴上的抛物线的标准方程为x 2=2py ,其焦点到准线的距离为p ,因此2p =4,p =2,即该抛物线的焦点到准线的距离为2.考点三与抛物线有关的最值问题(多考向探究)考向1到焦点与到定点(动点)距离之和最小问题例3(2024·四川南充零模)若点A 在焦点为F 的抛物线y 2=4x 上,且|AF |=2,点P 为直线x=-1上的动点,则|PA |+|PF |的最小值为()A .25B .2+5C .2+22D .4答案A解析设点A的坐标为(x A,y A),抛物线y2=4x的焦点F(1,0),准线x=-1,|AF|=x A+1=2,x A=1,则y2A=4,y A=±2,不妨设A(1,2),F(1,0)关于直线x=-1的对称点为F′(-3,0),由于|PF|=|PF′|,所以当A,P,F′三点共线时|PA|+|PF|最小,所以|PA|+|PF|的最小值为(1+3)2+(2-0)2=2 5.故选A.【通性通法】将抛物线上的点到焦点的距离转化为到准线的距离或利用对称性进行距离之间的转化,再利用“三点共线”解决.【巩固迁移】5.已知点M(20,40),抛物线y2=2px(p>0)的焦点为F.若对于抛物线上的一点P,|PM|+|PF|的最小值为41,则p的值为________.答案42或22解析当点M(20,40)位于抛物线内时,如图①,过点P作抛物线准线的垂线,垂足为D,则|PF|=|PD|,|PM|+|PF|=|PM|+|PD|.当M,P,D三点共线时,|PM|+|PF|的值最小.由最小值为41,得20+p2=41,解得p=42;当点M(20,40)位于抛物线外时,如图②,当F,P,M三点共线时,|PM|+|PF|的值最小.由最小值为41,得41,解得p=22或p=58.当p=58时,y2=116x,点M(20,40)在抛物线内,故舍去.综上,p=42或p=22.考向2到定直线的距离最小问题例4(2024·浙江金丽衢十二校联考)已知直线l1:3x-4y-6=0和直线l2:y=-2,拋物线x2=4y上一动点P到直线l1、直线l2的距离之和的最小值是()A .2B .3C .115D .3716答案B解析拋物线x 2=4y 的焦点F (0,1),准线l :y =-1,设动点P 到直线l ,l 1,l 2的距离分别为d ,d 1,d 2,点F 到直线l 1的距离为d 3,则d 3=|3×0-4×1-6|32+(-4)2=2,则d 2=d +1=|PF |+1,可得d 1+d 2=d 1+|PF |+1≥d 3+1=3,当且仅当点P 在点F 到直线l 1的垂线上且P 在F 与l1之间时,等号成立,即动点P 到直线l 1、直线l 2的距离之和的最小值是3.故选B.【通性通法】将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.【巩固迁移】6.(2023·山西阳泉期末)已知点P 为抛物线y 2=2px (p >0)上一动点,点Q 为圆C :(x +1)2+(y -4)2=1上一动点,点F 为抛物线的焦点,点P 到y 轴的距离为d ,若|PQ |+d 的最小值为2,则p =()A .12B .1C .3D .4答案D解析如图,圆C :(x +1)2+(y -4)2=1的圆心C (-1,4),半径r =1,抛物线的焦点根据抛物线的定义可知d =|PF |-p 2,所以|PQ |+d =|PQ |+|PF |-p2,由图可知,当C ,Q ,P ,F 共线,且P ,Q 在线段CF 之间时,|PQ |+|PF |最小,而|CF |=故有|+|PF |min=|CF |-r -p2=2,即1-p2=2,解得p =4.故选D.课时作业一、单项选择题1.(2024·江苏南通调研)抛物线y =4x 2的焦点坐标是()A .(0,1)B .(1,0)C .0,116D 116,0答案C解析抛物线y =4x 2的标准方程为x 2=14y ,0,116.故选C.2.(2023·山东枣庄模拟)已知点(1,1)在抛物线C :y 2=2px (p >0)上,则C 的焦点到其准线的距离为()A .14B .12C .1D .2答案B解析由点(1,1)在抛物线上,易知1=2p ,p =12,故焦点到其准线的距离为12.故选B.3.(2023·湖南名校模拟)已知抛物线x 2=my (m >0)上的点(x 0,1)到该抛物线的焦点F 的距离为2,则m =()A .1B .2C .4D .6答案C解析由x 2=my (m >0),可得其焦点F0,m4,准线方程为y =-m4,因为点(x 0,1)到该抛物线的焦点F 的距离为2,所以点(x 0,1)到抛物线准线的距离为2,则1+m4=2,解得m =4.故选C.4.已知抛物线x 2=4y 的焦点为F ,准线为l ,过抛物线上一点P 作PQ ⊥l ,垂足为Q ,若|PF |=4,则∠FQP =()A .30°B .45°C .60°D .75°答案C解析设P (x 0,y 0),则|PQ |=y 0+1,由抛物线的定义可得|PQ |=|PF |,即y 0+1=4,则y 0=3,又x 20=4y 0,则x 20=12,不妨令P 位于第一象限,则x 0=23,即P (23,3),因此Q (23,-1),所以|QF |=12+4=4,所以|PQ |=|PF |=|QF |,因此△FQP 为等边三角形,所以∠FQP =60°.故选C.5.已知抛物线C :x 2=2py (p >0)的焦点为F ,M (m ,2)是抛物线C 上一点,且|MF |=3,点P 在抛物线C 上运动,则点P 到直线l :y =x -2的最小距离是()A .12B .22C .1D .2答案B解析因为抛物线C :x 2=2py (p >0)的焦点为F ,M (m ,2)是抛物线C 上一点,且|MF |=3,所以2+p2=3,解得p =2,所以抛物线C :x 2=4y ,设P (2x ,x 2),则点P 到直线l :y =x -2的距离为|2x -x 2-2|2=x 2-2x +22,所以当x =1时距离最小,最小值为12=22.故选B.6.(2024·福建福州质检)已知△ABC 的顶点在抛物线y 2=2x 上,若抛物线的焦点F 恰好是△ABC 的重心,则|FA |+|FB |+|FC |=()A .3B .4C .5D .6答案A解析设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),抛物线y 2=2x ,则焦点F 恰好是△ABC的重心,则x 1+x 2+x 3=3×12=32,故|FA |+|FB |+|FC |123x 1+x 2+x 3+32=3.故选A.7.(2024·广东南粤名校联考)抛物线y 2=2px (p >0)的焦点为F ,点M 在抛物线上,且|MF |=3,FM 的延长线交y 轴于点N ,若M 为线段FN 的中点,则p =()A .2B .22C .4D .6答案C解析过点M 作MA ⊥y 轴于点A ,交抛物线的准线于点B ,由题意得设由抛物线定义可知,|MF |=|MB |=n 22p +p 2=3,因为M 为线段FN 的中点,所以|AM |=12|OF |,所以n 22p =p 4,将其代入n 22p +p2=3,解得p =4.故选C.8.(2023·福建厦门双十中学校考模拟预测)如图,抛物线C :y 2=-8x 的焦点为F ,动点M 在C 上,圆M 的半径为1,过点F 的直线与圆M 相切于点N ,则FM →·FN →的最小值为()A .2B .3C .4D .5答案B解析因为抛物线C :y 2=-8x ,所以焦点F (-2,0),如图所示,连接MN ,过M 作MQ 垂直准线x =2于点Q ,则在Rt △NFM 中,cos ∠NFM =|FN ||FM |,所以FM →·FN →=|FM →||FN →|cos ∠NFM=|FM ||FN |cos ∠NFM =|FM ||FN |·|FN ||FM |=|FN |2=|FM |2-|MN |2=|FM |2-1,由抛物线的定义,得|FM |=|MQ |,则由图可得|MQ |的最小值即抛物线顶点O 到准线x =2的距离,即|MQ |min =2,所以(FM →·FN →)min =(|FM |2-1)min =(|MQ |2-1)min =3.故选B.二、多项选择题9.已知抛物线y 2=2px (p >0)上一点M 到其准线及对称轴的距离分别为3和22,则p 的值可以是()A .2B .6C .4D .8答案AC解析设点M 的横坐标为x ,由题意,得x +p2=3,2px =8,解得p =2或p =4.故选AC.10.已知抛物线的焦点在直线x -2y -4=0上,则此抛物线的标准方程是()A .y 2=16xB .x 2=-8yC .x 2=16yD .x 2=8y答案AB解析对于A ,抛物线y 2=16x ,开口向右,焦点坐标为(4,0),在直线x -2y -4=0上;对于B ,抛物线x 2=-8y ,开口向下,焦点坐标为(0,-2),在直线x -2y -4=0上;对于C ,抛物线x 2=16y ,开口向上,焦点坐标为(0,4),不在直线x -2y -4=0上;对于D ,抛物线x 2=8y ,开口向上,焦点坐标为(0,2),不在直线x -2y -4=0上.故选AB.三、填空题11.(2023·全国乙卷)已知点A (1,5)在抛物线C :y 2=2px 上,则A 到C 的准线的距离为答案94解析由题意可得(5)2=2p ×1,则2p =5,抛物线C 的方程为y 2=5x ,准线方程为x =-54,所以A 到C 的准线的距离为1=94.12.(2024·河南周口模拟)已知抛物线y 2=4x 上有一动点M ,则M 与点N (4,0)之间距离的最小值为________.答案23解析设M (x ,y ),则|MN |2=(x -4)2+y 2=(x -4)2+4x =(x -2)2+12(x ≥0),当x =2时,|MN |2取得最小值12,故|MN |min =23.13.已知点A (2,0),B ,C 在y 轴上,且|BC |=4,则△ABC 的外心的轨迹方程为________.答案y 2=4x解析设△ABC 的外心为G ,且G (x ,y ),B (0,a ),C (0,a +4),由点G 在BC 的垂直平分线上,知y =a +2.由|GA |2=|GB |2,得(x -2)2+y 2=x 2+(y -a )2,故(x -2)2+y 2=x 2+22,即△ABC 的外心的轨迹方程为y 2=4x .14.(2023·福建莆田校考模拟预测)已知抛物线C :x 2=2y 的焦点为F ,准线为l ,A ,B 是C 上异于点O 的两点(O 为坐标原点),若∠AFB =60°,过AB 的中点D 作DE ⊥l 于点E ,则|AB ||DE |的最小值为________.答案1解析过点A 作AA 1⊥l 于点A 1,过点B 作BB 1⊥l 于点B 1,设|AF |=m ,|BF |=n ,所以|DE |=|AA 1|+|BB 1|2=m +n2,因为|AB |2=m 2+n 2-2mn cos ∠AFB =m 2+n 2-mn =(m +n )2-3mn ≥(m +n )2-3(m +n )24==|DE |2,所以|AB |≥|DE |,则|AB ||DE |的最小值为1,当且仅当m =n 时,等号成立.故|AB ||DE |的最小值为1.15.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M (O 为坐标原点).(1)求抛物线的方程;(2)若过M 作MN ⊥FA ,垂足为N ,求点N 的坐标.解(1)抛物线y 2=2px 的准线方程为x =-p2,于是4+p2=5,∴p =2.∴抛物线的方程为y 2=4x .(2)由题意,得A (4,4),B (0,4),M (0,2).又F (1,0),∴k F A =43,∵MN ⊥FA ,∴k MN =-34,∴直线FA 的方程为y =43(x -1),①直线MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,∴点N 16.(2023·河北邯郸模拟)已知动圆过定点(4,0),且在y 轴上截得的弦长为8.(1)求动圆圆心的轨迹C 的方程;(2)已知P 为轨迹C 上的一动点,求点P 到直线y =x +4和y 轴的距离之和的最小值.解(1)设圆心的坐标为(x ,y ),则半径r =(x -4)2+y 2,又动圆在y 轴上截得的弦长为8,所以42+x 2=(x -4)2+y 2,化简,得y 2=8x ,即动圆圆心的轨迹C 的方程为y 2=8x .(2)如图,设轨迹C 的焦点为F ,点P 到直线y =x +4的距离为|PP 1|,到y 轴的距离为|PP 2|,F 到直线y =x +4的距离为|FF 1|,由抛物线的定义,可知|PP 2|=|PF |-2,所以|PP 1|+|PP 2|=|PP 1|+|PF |-2,由图可知|PP 1|+|PF |的最小值为点F 到直线y =x +4的距离,所以(|PP 1|+|PF |)min =|FF 1|=61+1=32,所以|PP 1|+|PP 2|的最小值为32-2.17.(多选)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,点N (0,3),若|MF |=10,且NM ⊥NF ,则抛物线C 的方程可以为()A .y 2=3xB .y 2=4xC .y 2=36xD .y 2=18x答案BC解析设M (x 1,y 1),因为|MF |=10,所以x 1+p 2=10,因为NM ⊥NF ,所以NM →·NF →=0,即(x 1,y 1-3)·p2,-3=0,所以p 2x 1-3(y 1-3)=0,所以y 214-3(y 1-3)=0,解得y 1=6,所以36=2px 1=2p10-p2解得p =2或p =18,所以抛物线C 的方程为y 2=4x 或y 2=36x .故选BC.18.(多选)(2024·江苏盐城学情分析)设抛物线y 2=8x 的顶点为O ,焦点为F .点M 是抛物线上异于O 的一动点,直线OM 交抛物线的准线于点N ,下列结论正确的是()A .若|MF |=4,则|OM |=25B.若|MF|=4,则O为线段MN的中点C.若|MF|=8,则|OM|=45D.若|MF|=8,则|OM|=3|ON|答案ABD解析由抛物线y2=8x,可得焦点为F(2,0),准线为x=-2.对于A,设M(x1,y1),若|MF|=4,根据抛物线的定义,可得|MF|=x1+2=4,解得x1=2,可得y21=16,可得|OM|=22+16=25,所以A正确;对于B,由y21=16,得y1=±4,不妨设M(2,4),则直线OM的方程为y=2x,令x=-2,可得y=-4,即N(-2,-4),所以O为线段MN的中点,所以B正确;对于C,设M(x2,y2),若|MF|=8,根据抛物线的定义,可得|MF|=x2+2=8,解得x2=6,则y22=48,可得|OM|=62+48=221,所以C不正确;对于D,由y22=48,可得y2=±43,不妨设M(6,43),则直线OM的方程为y=233x,令x=-2,可得y=-433,即2,则|ON|==2213,所以|OM|=3|ON|,所以D正确.故选ABD.19.如图所示,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.解(1)由已知条件,可设抛物线的方程为y2=2px(p>0).因为点P(1,2)在抛物线上,所以22=2p×1,解得p=2.故所求抛物线的方程是y2=4x,准线方程是x=-1.(2)设直线PA的斜率为k P A,直线PB的斜率为k PB.则k P A=y1-2x1-1(x1≠1),k PB=y2-2x2-1(x2≠1),因为PA与PB的斜率存在且倾斜角互补,所以k P A=-k PB.由A(x1,y1),B(x2,y2)均在抛物线上,21=4x1,22=4x2,①②所以y1-214y21-1=-y2-214y22-1,所以y1+2=-(y2+2),所以y1+y2=-4.由①-②,得y21-y22=4(x1-x2),所以k AB=y1-y2x1-x2=4y1+y2=-1(x1≠x2).20.(2024·广东信宜摸底)已知抛物线E:x2=2py(p>0)上的一点M M 1.(1)求抛物线E的方程;(2)若正方形ABCD的三个顶点A,B,C在抛物线E上,求此正方形面积的最小值.解(1)抛物线E的准线方程为y=-p2,由抛物线上点MM1,得34+p2=1,∴p=12,∴抛物线E的方程为x2=y.(2)如图,设三个顶点有两个在y轴的右侧(包括y轴),设在抛物线y=x2上的三个点A,B,C的坐标分别为(x1,x21),(x2,x22),(x3,x23),x1<x2<x3,直线BC 的斜率为k (k >0),则有x 23-x 22=k (x 3-x 2),x 21-x 22=-1k (x 1-x 2),即x 3+x 2=k ,x 1+x 2=-1k,∴x 3=k -x 2,x 1=-1k-x 2,①又|CB |=|AB |,∴(x 23-x 22)2+(x 3-x 2)2=(x 21-x 22)2+(x 1-x 2)2,即(x 3-x 2)2[(x 3+x 2)2+1]=(x 1-x 2)2·[(x 1+x 2)2+1],将①式代入,得(2x 2-k )2(k 2+1)x 2即k 2(2x 2-k )2x 2.∵2x 2+1k =2x 2-(x 1+x 2)=x 2-x 1>0,2x 2-k =2x 2-(x 2+x 3)=x 2-x 3<0,k >0,∴k (2x 2-k )x 2化简得x 2=k 3-1k 2k +2=k 3-12k (k +1),∴正方形的面积为S =|AB |2=(2x 2-k )2(k 2+1)(k 2+1)=(k 2+1)2k 2(k +1)2·(k 2+1),∵k 2+1≥2k ,∴(k 2+1)2≥4k 2,当且仅当k =1时,等号成立,∴2(k 2+1)≥k 2+1+2k =(k +1)2,即k 2+1≥12(k +1)2,∴S =(k 2+1)2k 2(k +1)2·(k 2+1)≥4k 2k 2(k +1)2·12(k +1)2=2.∴正方形面积的最小值为2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博远家教练习题
抛物线的简单几何性质练习
一、选择题1.如果抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12 =0 上,则抛物线的方程是( )
A.xy162
B.xy122
C.xy162
D.xy122
2.AB是抛物线xy182的一条过焦点的弦,|AB|=20,AD、BC垂直于y轴,D、C分别为垂足,则梯形ABCD
的中位线长是( )
A.5
B.211
C.29
D.10
3.以1162522yx的中心为顶点,以左准线为准线的抛物线与椭圆的右准线交于A、B两点,则|AB|的值为( )
A.518
B.536
C.380
D.3100
4.设抛物线的顶点在原点,其焦点F在y轴上,又抛物线上的点(k,-2)与F点的距离为4,则k等于( )
A.4
B.4或-4
C.-2
D.-2或2
5.过抛物线xy42的焦点作直线交抛物线于),(11yxA、),(22yxB两点,如果621xx,那么|AB|等于( )
A.10
B.8
C.6
D.4
6.p是抛物线xy22上一点,p到点)310,3(A的距离为1d,p到直线21x的距离为2d,当21dd取最小
值时,点p的坐标为( )
A.(0,0)
B.(2,2)
C.)2,1(
D.)1,21(
二、填空题
7.已知F是抛物线xy42的焦点,M是这抛物线上的一个动点,P(3,1)是一个定点,则|MP|+|MF|的最小
值是_________。
8.有一个正三角形的两个顶点在抛物线xy322上,另一个顶点在原点,则这个三角形的边长是_______。
三、解答题
9.已知点A(5,0)和抛物线xy42上的动点P,点M分线段PA为PM:MA=3:1,求点M的轨迹方程。
10.过抛物线xy42的焦点,引倾斜角为120°的直线,交抛物线于A、B两点,求△OAB的面积。
11.试求点P(0,a)(a>1)到曲线|12|2xy上点的最短距离。
答案与提示
一、1.C 2.B 3.D 4.B 5.B 6.B 二、7.4 8.12
三、9.提示:设M(x,y),),(11yxP
∵PM:MA=3:1
∴415315311xxx,4310311yyy
即1541xx,yy41,又点P在抛物线xy42上
∴1214xy
∴)154(4)4(2xy
即所求点M的轨迹方程为15442xy
10.提示:由xy42得p=2,焦点(-1,0),直线)1(3:xyAB
由)1(342xyxy得013102xx,易求得316||AB
∴△AOB的面积334120sin316121S
11.提示:(1)当0122x,即22x时,212xy,由图像可知P(0,a)在这条抛物线顶
点A(0,1)的正上方,故|PA|=a-1为最短距离
(2)当0122x,即2x或2x时,122xy,设抛物线122xy上任意一点)12,(2xxQ,
则)12()2(41)12(||222222aaxaxxPQ
∵2a>2 22x,则2x可以取到2a,故当ax22时,12||2minaPQ
∴12||minaPQ
(3)比较a-1与12a的大小。由)4()12()1(2aaaa
①若a(a-4)<0即01
∴1∴最短距离为a-1
②若a(a-4)>0,即a >4时,121aa,最短距离为12a
③若a(a-4)=0,即a=4时,最短距离为3
综上所述:a=4时,最短距离为3,14时,最短距离为12a