有关化归与转化思想的例题

有关化归与转化思想的例题
有关化归与转化思想的例题

化归与转化思想

一、选择题

(1)已知f (x )=ax 2+ax+a-1,对任意实数x ,恒有f (x )<0,则a 的取值范围是( ) (A )(-

0,3

4) (B )

(-∞,0) (C )(]0,∞- (D )(])3

4(0,∞+∞-

(2)函数)112lg(

--=x

y 的图象关于( )

(A )原点对称 (B )x 轴对称

(C )y 轴对称 (D )直线y=x 对称

(3)设77778

97

2

98

1

99

C C C m +-+-= ,则m 除以8的余数是( ) (A )1 (B )2 (C )6 (

D )1-29

(4)三个数,a=0.3-0.

4,b=log 0.30.4,c=log 40.3,则有( ) (A )b <c <a (B )a <c <b (C )c <a <b (D )c <b <a (5)不等式0||42

≥+-x

x x 的解集是( )

(A )}22|{≤≤-x x

(B )|03|{ x x ≤-或}30≤≤x

(C )02|{ x x ≤-或20≤x } (D )03|{ x x ≤-或20≤x }

(6)若圆x 2+y 2=1被直线ax+by+c=0所截的弦长为AB ,当a 2+b 2=2c 2时,弦AB 的长是( ) (A )

2

2 (B )2 (C )1 (D )

2

1

(7)(1+x )+(1+x )2+(1+x )3+…+(1+x )10展开式中各项系数和为( ) (A )211-2 (B )211-1 (C )211 (D )211+1

(8)函数y=f (x )是函数y=-)10(222

≤≤-x x 的反函数,则函数y=f (x )的图象是图2-4-1中的( )

(9)已知⊙c :x 2+y 2+2x-24=0,A (1,0).P 为⊙c 上任意一点,AP 的垂直平分线与C 、P 的连线交于M ,则M 点的轨迹方程是( )

(A )

125421422=-

y x (B )

125421422=+

y x

(C )121

425

422=+y x (D )121

425

422=-y x

(10)正方体ABCD-A 1B 1C 1D 1中,M 、N 分别为A 1D 1和DD 1的中点,过平行线MN 和B 1C 作截面MB 1CN ,令二面角M-B 1C-C 1的大小为θ,则cos θ等于( ) (A )0 (B )

2

1 (C )

2

3 (D )

3

1

(11)方程

arctgx x

=1解的个数是( )

(A )0个 (B )1个 (C )2个 (D )3个

(12)从点P (3,-2)发出的光线,被直线x+y-2=0反射,若反射线所在的直线恰好过Q (5,1),则入射线的方程是( ) (A )x-2y-7=0 (B )2x+y-4=0 (C )x+2y+1=0 (D )x-y-5=0 (13)函数y=2sinx-2cos 2x+1 x ∈]3

2

,4[ππ的值域是( ) (A )]3,23

[-

(B )]3,2[ (C )]3

21,23[+- (D )]32

1

,2[+

(14)如图2-4-2,圆锥V-AB ,母线长为6,母线与底面所成角θ的正切值为35,一个质点在侧面上从B 运动到V A 的最短距离是( ) (A )33 (B )3 (C )

3

35 (D )3236-

(15)方程

11

452

22=++

a y a

x 表示焦点在x 轴上的椭圆,

则椭圆离心率的范围是( ) (A )??

???

?1,51 (B )??

? ?

?5

1,0 (C )???

?

???1,51

(D )??? ?

?51,

0 二、填空题

(16)若z ∈C ,且满足|z+3-i|=1,则argz 的最小值是________. (17)P (x ,y )在直线x+2y-3=0上运动,则x 2+y 2的最小值是________. (18)已知4

3)(,5

3sin ),0,4

(),,2

(

=

-=

-

∈∈βααπ

βππ

αtg ,则cos β=________.

(19)设a >0且a ≠1,对任意n ∈N ,{x n }满足log a X n+1=1+log a X n ,又x 1+x 2+…+x 100=100,则x 101+x 102+…+x 200=________.

(20)棱台的上、下底面积分别为16、81,一个平行于底的截面面积是64,则这截面分棱台两部分体积(从上到下)之比是________. (21)双曲线??

?+=+-=θ

θsec 431y tg x (θ为参数)的两条渐近线的夹角是________.

(22)设α、β、γ是三角形的三个内角,则

γ

β

α

1

1

1

+

+

的最小值是________.

(23)在-6,-4,-2,0,1,3,5,7这8个数中,任取两个不同的数分别作为虚数a+bi 的实部和虚部,则所组成的所有不同虚数中,模大于5的虚数的个数是________. 三、解答题

(24)已知正方形ABCD ,A (1,1),B (2,-1),求C 、D 的坐标. (25)解关于x 的不等式:lg (3·2x )-lg (2x+1-1)>lg (2x +2). (26)设P 是直线x-y+9=0上的一点,过P 点的椭圆以双曲线4x 2-5y 2=20的焦点为焦点.试求P 点在什么位置时,所求椭圆的长轴最短,并写出这个具有最短长轴的椭圆方程. (27)设x ∈]4

,8[π

π-

,求函数y=cos4x+4sin 2x 的最大、最小值.

(28)已知集合A={z||z-2|≤2,z ∈C},B={z|z=

2

i

z 1+b ,z 1∈A ,b ∈R},若

A ∩B=φ,求b 的取值范围.

(29)如图2-4-3,三棱锥P-ABC 中,PB ⊥底面△ABC 于B ,∠BCA=90°,PB=BC=CA=4,E 为PC 的中点,点F 在PA 上,且3PF=FA . (Ⅰ)求异面直线PA 与BE 所成角的大小; (Ⅱ)求三棱锥F-ABE 的体积. (30)已知双曲线

)0,0(12

22

2 b a b

y a

x =-

的离心率3

32=

e ,过点A (0,

-b )和B (A ,0)的直线与原点间的距离为2

3.

(Ⅰ)求双曲线方程;

(Ⅱ)直线y=kx+m (k ≠0,m ≠0)与双曲线交于不同的两点C 、D ,且C 、D 两点都在以A 为圆心的同一个圆上,求m 的取值范围. (31)已知椭圆))2,.0((12

22

π

αα

∈=+

tg y x 的焦点在x 轴上,A 为右顶点,椭圆与射线y=x (x ≥0)交于B ,以A 为焦点开口向左的抛物线的顶点是(m ,0),又该抛物线过B 点,

当椭圆的离心率在(

1,3

6)变化时,求m 的取值范围.

(32)已知抛物线y 2=2x . (Ⅰ)设A (

0,3

2)

,求曲线上距A 最近的点P 的坐标及相应的距离|PA|; (Ⅱ)设A (a ,0)(a ∈R ),求曲线上点到点A 距离的最小值d ,并写出d=f (a )的函数

表达式.

(33)已知曲线x 2+y 2=1(y ≥0),A (2,0),P 为圆上一点,△APQ 为正三角形(A 、P 、Q 为顺时针方向).

(Ⅰ)求四边形POAQ 面积的最小值; (Ⅱ)求|OQ|的最大值.

专题练习四 化归与转化思想答案 一、

(1)C (2)A (3)A (4)D (5)D (6)B (7)A (8)B (9)C (10)D (11)C (12)A (13)B (14)B (15)D 提示

(1) 当a=0时,f (x )=-1<0,∴a=0满足题意;当a ≠0时,依题意,二次函数f (x )

的图象都在x 轴下方,∴a <0且△<0,解出a <0,综上,a ∈(]0,∞-,∴选C .

(2)函数定义域满足

+???

??-+=+--∈?--112lg )()(),1,1(0112

x x f x f x x )()(,01lg 1111lg 112lg x f x f x x x x x -=-∴==??

?

?????? ??-

+

???? ??+

-=???

??--,∴f(x)为奇数,∴选A . (3)9

9

9

8

97

2

98

1

99

9)28(161)17(1)17777(-=+=+-=+-+-+-=C C C C m +1=

2

6297

198999889272981990928288(8122822288?+?-=+?-??+-??+?-C C C C C C C -…+∴+-=+-+-?,1812,12)23

9

9

8

8

9 C m 除以8余1,∴选A .

(4)a=0.30.

4>0.30=1,b=log 0.30.4<log 0.30.3=1,∴b ∈(0,1),c <0,∴选D .

(5)当x >0时,(]2,00142

∈?≥+-x x ;当x <0时,22

4014x x -?

≥--

[),0,3,312-∈∴≤?≥x x 综上,[)

(]∴-∈,2,00,3 x 选D .

(6)过圆心O 作OD ⊥AB 于D ,则|OD|=22

2

2

222221|

|1||,|

|c c b

a c AD

b a

c -=???

?

??+-=+ ∴=

?=

?=,2||2

2||2

1AB AD 选B .

(1) 令x=1,2+22+23+…+210

=

∴-=--,221

2)12(21110选A .

(8)),02,10(12

222222

2

22≤≤-≤≤=+

?-=?--=y x y x x y x y 即椭圆

12

22

=+

y x 在第四象限的部分(包括端点)

,根据f (x )与f -1(x )的图象关于直线y=x 对称,∴选B .

(9)⊙C :(x+1)2

+y 2=25,C (-1,0),r=5.依题意,|MP|=|AM|,∴|AM|+|CM|=|MP|+|CM|=|CP|=5>|AC|=2,∴M 点的轨迹是以A 、C 为焦点的椭圆,a=

2

5,c=1,∴b 2=

4

21,又椭圆的中心

是(0,0),∴M 点的轨迹方程为14

214252

2=+y x ,即

121425422=+y x ,∴选C . (10)过M 作ME ⊥B 1C 1于E ,过E 作EF ⊥B 1C 于F ,连MF ,则∠MFE=θ,设ME=1,则EF=

4

2,∴=

?=∴,3

1cos 22θθtg 选D .

(11)如图答2-4-1,画出函数y=

x

1,y=arctgx 的图象,有两个交点,∴方程有两解,∴选

C .

(12)如图答2-4-2,Q 关于直线x+y-2=0的对称点Q /(1,-3),则Q /P 为入射线方程,由两点式得入射线方程为x-2y-7=0,∴选A .

(13)y=2sinx-2(1-sin 2x )+1=2sin 2x+2sinx-1=22

2,3

24

,2

3)2

1(sin 2∴

≤-

+

ππ

x x

∴∈∴≤≤],3,2[,1sin y x 选B .

(14)如图答2-4-3,?==

∠6,35l VBA tg 底面半径r=1?BB /=2π,∴侧面展开图的

圆心角3

6

2/π

π=

=

∠VB B .A /为弧BB /的中点,过B 作BD ⊥VA.于D ,则BD 为所

求.BD=VB ·∴=?=∠,36

sin

6sin /π

VB A 选B .

(15)5

1151

45,145).1,4

1

(14522

2

2

2

-

=--=

∴--=∈?+a

a a e a a c a a a

??? ?

?∈∴=

?-

≤+

51,0,51

45

11)14(e a

a ,当且仅当2114=?=a a a 时等号成立,∴选D . 二、

(16)π3

2 (17)

5

9 (18)

25

7 (19)100a 100 (20)

31

64 (21)60° (22)

π

9

(23)32

提示

(16)如图答2-4-4,1|3|=-+

i z 对应复平面上以)1,3(-C 为圆心,1为半径的圆.作

OD 与⊙C 相切于D .∴=

∠∴=

∠=

∠,3

2,6

,6

5ππ

πDOX COD COX argz 最小值为.3

2

π

(17)x 2+y 2为原点与直线x+2y-3=0上的点距离的平方,其最小值为原点到直线x+2y-3=0距离的平方..595|3|)(2

min 2

2

=???

? ??-=+∴y x (18)

,4

52

πβαπ

-又tg (α-β)>0,,5

3

)sin(),4

5,(-=-∴∈-∴βαππβα

,54)cos(-=-βα又53)54)(54()](cos[cos ,54cos +--=--=∴-=βααβα·

(-5

3

) =.25

7 (19)x n+1=ax n ,∴{x n }为等比数列,q=a ,∵x 101=x 1·q 100,x 102=x 2·q 100,…,x 200=x 100·q 100,∴x 101+x 102+…+x 200=(x 1+x 2+…+x 100)·q 100=100·a 100.

(20)如图答2-4-5,把棱台的问题转化为圆台.则圆台上、下底及截面半径分别为4、9、

8.画出圆台轴截面图.设上底到截面的距离为h /

,圆台高为h ,则

5

41=

h

h ,V 上:V 下=

.31

64217

1124)

728164)((3

)

326416(3

/2=

?=

++-++h h h π

π

(21)双曲线的普通方程为.13

)1()4(2

2

=+-

-x y 将中心移到(-1,4)

,在新坐标系中, ??=∴=

=

=-

30,3

1.13

1212

θθb

a tg x y

两条渐近线的夹角为60°.

(22)≥??≥++≤

?????≥=++33

313111.273γ

βαγβαπγβαγβαπγβα3· .9

27

3

3

π

π

=

(23)当a=0时,b 可取-6,7;当a ≠0时,从-6,-4,-2,1,3,5,7中任取2个作为a 、b ,共27P 个,其中不合格的是从-4,-2,1,3中任取2个共2

4P 个.∴模大于5的不同虚数共2+32)(2

42

7=-P P 个. 三、

(24)如图答2-4-6,向量AB 逆时针转90°得向量.AD 设D (x ,y ),则[(2-i )-(1+i )]·i=(x+yi )-(1+i ),根据复数相等有)2,3(1

12

1D y x ???

?=-=-,BD 的中点M )21

,25(是AC 的中

点,∴C (4,0);又与D /与D 关于A 对称,∴D /(-1,0),C /与C 关于B 对称,∴C /(0,

-2),∴C 、D 坐标为(4,0)、(3,2)或(0,-2)、(-1,0).

(25).112

1

-?+ x x

不等式变形为

,221

2223+-??x x

x 令∈?--?

+=?

=t t t t t t t x

01

2121

23,2

122

).0,1(122

1

)1,21(-∈??x x (26)

14

5

22=-

y x ,两焦点F 1(-3,0)

,F 2(3,0),∵2a=|PF 1|+|PF 2|,即在直线x-y+9=0上求一点P ,使|PF 1|+|PF 2|最小.F 1关于x-y+9=0的对称点A (-9,6),∴2a=|AF 2|=6,5

∴=?.362

b 所求椭圆方程为

.136

45

22=+

y x 直线AF 2的方程是),3(2

1--

=x y 与x-y+9=0

联立,解出x=-5,y=4.∴P (-5,4). (27)

∈∴-∈+-=-?

+-=x x x x

x y 2],4,8[,21)212(cos 222cos 1412cos 222ππ ]2

,4[π

π-,令cos2x=t ∈[0,1],问题转化为求二次函数2

1

)21(22+-=t y 在[0,1]的最大、最小值.

.21

,1m in m ax ==∴y y

(28)设

z=x+yi (x ,y ∈R ),则A={(x ,y )|(x-2)2+y 2≤

4}.)2()(221b y b yi x i b z i +-=++=++∴+=,2ni m i x ????

???

?=+-=22

x

n b y m ??

?=-=n

x m b y 2)

(2 代入(x-2)2+y 2≤4中,得(m-b )2+(n-1)2≤1

∴B={(x ,y )|(x-b )2+(y-1)2≤1}.若A ∩B=φ,问题转化为两圆无公共点,则圆(x-2)

2

+y 2=4与圆(x-b )2+(y-1)2

=1外离,即222121)2(2

+?++- b b 或b <2-2.2

(29)(Ⅰ)如图答2-4-7,∵PB ⊥面ABC ,∴PB ⊥AC ,又∠BCA=90°,∴AC ⊥面PBC ,

∴AC ⊥BE ;又PB=BC ,E 为PC 的中点,∴PC ⊥BE ,∴BE ⊥面PCA ,∴BE ⊥PA ,∴异面直线PA 与BE 所成角为90°.

(Ⅱ)∵BE ⊥面PAC ,∴42

12

1.3

1?=

?=

?=

=??--PC AC S S BE V V ACP AEF AEF B ABE F

,423223

1,234

324,2824=??=

=?=

?=∴=?-???AEF B PEA AEF PEA V S S S ∴

V F-ABE =4.

(30)过A 、B 的直线方程为bx-ay-ab=0.

)(4

32

3||22222

2b a b a b a ab +=

?=

+①;

3

42

2

22

22

=

+=

=

a

b a a

c e ②,解①、②得.1,3==b a

(Ⅰ)所求双曲线方程为

.13

22=-y x

(Ⅱ)直线与曲线相交于不同两点转化为直线与曲线组成的方程组有两组不同实数解.

?????=-+=13

2

2

y x m kx y 消y ,得 (3k 2-1)x 2+6kmx+3(m 2+1)=0 ∵3k 2-1=0不合题意,∴3k 2-1≠0, △ =36k 2m 2=4·3(3k 2-1)(m 2+1)=12(m 2-3k 2+1)>0

依题意,|AC|+|AD|,设C (x 1,y 1),D (x 2,y 2),则?++=++2

22

22

12

1)1()1(y x y x (x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2+2)=0

∵x 1≠x 2,∴x 1+x 2+k (y 1+y 2+z )=0(k 为直线CD 的斜率).∴x 1+x 2+k (kx 1+m+kx 2+m+2)=0?(1+k 2)·(x 1+x 2)+2mk+2k=0?(1+k 2)·

1

362

--k km +2mk+2k=0?3k 2=4m+1,代入△

中,得m 2-4m >0?m >4或m <0,又3k 2=4m+1>0?m >-4

1,∴m ∈(-

0,4

1)∪(4,+

∞).

C 、

D 两点在以A 为圆心的同一个圆上还可以作如下转化: 设CD 的中点为P ,则AP ⊥CD .

2222231313,,313),1

3,

133(

k k km

m k CD AP km

m k k k m

k km

P AP ?-=?---∴

⊥---=

---- =4m+

1,以下与上面解法相同. (31)A (1,0),将y=x 代入椭圆中,得B (sin α,sin α).抛物线方程为y 2=-4(m-1)(x-m )

(m >1),又B 在抛物线上,∴sin 2α=-4(m-1)(sin α-m )?sin 2

α+4(m-1)sin α-4m (m-1)=0,令sin α=t ,∴t 2+4(m-1)t-4m (m-1)=0① ∵e 2=1-tg 2α,∴)2

1

,0(s in )6,0(31

0113

222∈?∈??-απααα

tg tg ?t ∈(0,

2

1).

即方程①在(0,

2

1)至少有一个实数解.

设f (t )=t 2

+4(m-1)t-4m (m-1),

∵-4m (m-1)<0,∴方程①的两根分别在(-∞,0)和(0,-21

)内,∴????

??0)2

1

(0

)0( f f ).4

23,

1(+∈m

(32)(Ⅰ)∴≥++=+-=+-=,0,3

1

)31(2)32()32

(||22222

x x x x y x PA 当x=0时,|PA|2取最小值

9

4,∴|PA|的最小值为

3

2

,此时P (0,0).

(Ⅱ)|PA|2=(x-a )2+y 2=(x-a )2+2x=[x-(a-1)]2+2a-1(x ≥0),求|PA|2的最小值转化为求

二次函数在x ≥0时的最小值.

当a-1<0?a <1时,当x=0时,|PA|2最小值为a 2,∴|PA|的最小值是|a|(此时P (0,0)); 当a-1≥0?a ≥1时,当x=a-1时,|PA|2最小值为2a-1,∴|PA|的最小值是12-a (此时P (a-1,22-±

a )).

???≥-=∴1

121||a a a a d

(33)如图答2-4-8,设∠AOP=α,把问题转化为三角.由余弦定理得 AP 2=1+4-2·1·2·cos α=5-4cos α. (Ⅰ)+-=-+

??=

+=??ααααcos 3sin )cos 45(4

3sin 212

1PAQ POA POAQ S S S

,34

5234

5)3

sin(234

5+

≤+

-

α当παπ

π

α6

52

3

=

?=

-

时,

∴当πα6

5=

时,四边形POAQ 面积的最大值为.34

52+

(Ⅱ)∵△APQ 为正三角形,∴用向量的旋转可表示Q 点坐标.将向量AP 顺时针旋转3

π

,模不变,得向量AQ .设P (cos α,sin α)(sin α≥0),Q (x ,y ).

AP 对应的复数为(cos α-2)+isin α, AQ 对应的复数为(x-2)+yi ,

∴2

3sin 21()sin 231cos 21()33

(cos

]sin )2[(cos -++-?-?+-αααπ

π

ααisn

i ,)2()3cos yi x i +-=+α

???

????+-=++=????????+-=+-=-∴3cos 23sin 211cos 21

sin 233cos 23sin 21sin 231cos 212ααααααααy x y x

① 2+②2,得

41()cos sin 23cos sin 31cos 41sin 43(||22222+?+++++=+=ααααααy x OQ

+

=-+=?-

-+++

5cos 2sin 325)cos sin 2

3cos 3sin 33cos 4

3sin 22αααααααα,9)6sin(4≤-

π

α

当παπ

π

α3

22

6

=

?=-

时,

∴当πα3

2=时,|OQ|的最大值是3.

转化与化归思想方法

转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使 之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将 难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题. 转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归, 如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问 题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中. 1.转化与化归的原则 (1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验来解决. (2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂 问题的目的,或获得某种解题的启示和依据. (3)直观化原则:将比较抽象的问题化为比较直观的问题来解决. (4)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探讨,使问题获解. 2.常见的转化与化归的方法 转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况 转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有 效策略,同时也是成功的思维方式.常见的转化方法有: (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、 不等式问题转化为易于解决的基本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的. (5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题. 随着国家经济的发展,科技的发达,人才的需求,中国教育的改革,数学新课标 的出现,在对学生的知识与技能,数学思想及情感与态度等方面的要求,学生在数 学的学习方法也应该要相应改变了,要满足社会的需要.化归与转化思想的实质是揭示联系,实现转化.除极简单的数学问题外,每个数学问题的解决都是通过转 化为已知的问题实现的.从这个意义上讲,解决数学问题就是从未知向已知转化 的过程,同时在生活中许许多多的事情也需要往已知的方面转化,把事情简单化, 这对以后学生的能力与德育方面有很大的帮助.化归与转化的思想是解决数学问 题的根本思想,解题的过程实际上就是一步步转化的过程.数学中的转化比比皆

化归思想──小学数学思想方法的梳理

化归思想──小学数学思想方法的梳理 二、化归思想 1.化归思想的概念。 人们在面对数学问题,如果直接应用已有知识不能或不易解决该问题时,往往将需要解 决的问题不断转化形式,把它归结为能够解决或比较容易解决的问题,最终使原问题得到解决,把这种思想方法称为化归(转化)思想。 从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。因此,化归既是一般化的数学思想方法,具有普遍的意义;同时,化归思想也是攻克各种复杂问题的法宝之一,具有重要的意义和作用。 2.化归所遵循的原则。 化归思想的实质就是在已有的简单的、具体的、基本的知识的基础上,把未知化为已知、把复杂化为简单、把一般化为特殊、把抽象化为具体、把非常规化为常规,从而解决各种问题。因此,应用化归思想时要遵循以下几个基本原则: (1)数学化原则,即把生活中的问题转化为数学问题,建立数学模型,从而应用数学知识找到解决问题的方法。数学来源于生活,应用于生活。学习数学的目的之一就是要利用数学知识解决生活中的各种问题,课程标准特别强调的目标之一就是培养实践能力。因此,数学化原则是一般化的普遍的原则之一。 (2)熟悉化原则,即把陌生的问题转化为熟悉的问题。人们学习数学的过程,就是一个不断面对新知识的过程;解决疑难问题的过程,也是一个面对陌生问题的过程。从某种程度上说,这种转化过程对学生来说既是一个探索的过程,又是一个创新的过程;与课程标准提倡培养学生的探索能力和创新精神是一致的。因此,学会把陌生的问题转化为熟悉的问题,是一个比较重要的原则。 (3)简单化原则,即把复杂的问题转化为简单的问题。对解决问题者而言,复杂的问题未必都不会解决,但解决的过程可能比较复杂。因此,把复杂的问题转化为简单的问题,寻求一些技巧和捷径,也不失为一种上策。 (4)直观化原则,即把抽象的问题转化为具体的问题。数学的特点之一便是它具有抽象性。有些抽象的问题,直接分析解决难度较大,需要把它转化为具体的问题,或者借助直观手段,比较容易分析解决。因而,直观化是中小学生经常应用的方法,也是重要的原则之一。 3.化归思想的具体应用。

(完整版)数形结合思想例题分析(可编辑修改word版)

(1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 (1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 y r x 数形结合思想例题分析 一、构造几何图形解决代数与三角问题: 1、证明恒等式: 例 1 已知 x 、 y 、 z 、 r 均为正数,且 x 2 + y 2 = z 2 , z ? = x 2 求证: rz = xy . C A B z 分析:由 x 2 + y 2 = z 2 , 自然联想到勾股定理。由 z ? = x 2 . 可以联想到 射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种 算法,结论的正确性一目了然。 证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。 2、证明不等式: 例 2 已知:0< a <1,0< b <1. 求证 + + + ≥ 2 2. 证明:如图,作边长为 1 的正方形 ABCD ,在 AB 上取点 E ,使 AE= a ;在 AD 上取点 G ,使 AG= b , 过 E 、G 分别作 EF//AD 交 CD 于 F ;作 GH//AB 交 BC 于 H 。设 EF 与 GH 交于点 O ,连接 AO 、BO 、CO 、DO 、AC 、BD. 由题设及作图知△ AOG 、△ BOE 、△ COF 、△ DOG 均为直角三角形,因此 OA = OB = OC = OD = 且 AC = BD = 由于 OA + OC ≥ AC , OB + OD ≥ BD . 所以: + + + ≥ 2 2. x 2 - r 2 x 2 - r 2 a 2 + b 2 a 2 + b 2 (1- a )2 + b 2 (1- a )2 + (1- b )2 a 2 + (1- b )2 2 a 2 + b 2

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 向阳乡初级中学 周红林 【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。

一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定

数形结合思想例题选讲

数形结合思想例题选讲 数形结合思想是“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 应用数形结合的思想,应注意以下数与形的转化 (1)集合的运算及韦恩图 (2)函数及其图象 (3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线 以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方 法; 以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。 例题选讲 类型一:集合的运算及韦恩图 利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。当所给问题的数量关系比较复杂,且没有学容斥原理前,不好找线索时,用韦恩图法能达到事半功倍的效果。 例1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( ) ().A M P S B 。()M P S ().I C M P S e ().I D M P S e 解:阴影部分是M 与P 的公共部分(转化为集合语言就是M P ),且在 S 的外部(转化为集合语言就是C I S ),故选C 。通过上述例子,我们知道:当应用题中牵 涉到集合的交集、并集、补集时,用韦恩图比用数轴法简便。 类型二:图表信息题 此类题目都有图形(或图表)作为已知条件,须联系函数的性质分析求解,解 决问题的关键是从已知图形(图表)中挖掘信息. 例2.直角梯形ABCD 如图(1),动点P 从B 点出发,由A D C B →→→沿边运动,设点P 运动的路 程为x ,ABP ?的面积为 )(x f .如果函数)(x f y =的图象如图(2),则ABC ?的面积为( ) A .10 B .16 C . 解:由)(x f y = 图象可知,当04()0x f x →由时由由4=x 及9=x 时)(x f 不变,说明P 点在DC 上,即所以AD=14-9=5,过D 作DG AB ⊥ 则DG=BC=4 3=∴AG ,由此可求出AB=3+5=8. 16482 1 21=??=?=?BC DB S ABC 选B 例3.在某种新型材料的研制中,实验人员获得了下列一组实验数据: 现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 A .y =2x -2 B.y = 21(x 2 -1) C.y =log 2x D.y =log 2 1x A B C D P 图(1)

九、化归与转化思想专题(刘成宏)

九、化归与转化思想专题 上海市向东中学 刘成宏 经典例题 【例1】若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于N M ,两点,求 MN 的最大值. 分析: 动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于N M ,两点, 横坐标相同,那么MN 就转化为N M ,两点纵坐标之差,即x x MN cos sin -=求最值. 解: x x MN cos sin -==)4 sin(2π - x 最大值为2. 【例2】设点)0,(m M 在椭圆 112 162 2=+y x 的长轴上,点P 是椭圆上任意一点. 当MP 的模最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围. 解:设),(y x P 为椭圆上的动点,由于椭圆方程为 112 162 2=+y x ,故44≤≤-x . 因为()y m x MP ,-=,2222312)4(4 1 12241m m x m mx x -+-=++-= . 依题意可知,当4=x 取得最小值.而[]4,4x ∈-, 故有44≥m ,解得1≥m . 又点M 在椭圆的长轴上,即44≤≤-m . 故实数m 的取值范围是]4,1[∈m . 【例3】设R y x ∈,且x y x 6232 2 =+,求2 2 y x +的范围. 分析:设2 2 y x k +=,再代入消去y ,转化为关于x 的方程有实数解时求参数k 范围的问题.其中要注意隐含条件,即x 的范围. 解:方法一、由02362 2 ≥=-y x x 得20≤≤x . 设2 2 y x k +=,则2 2 x k y -=,代入已知等式得:0262 =+-k x x , 即x x k 32 12 +- =,其对称轴为3=x .

最新小学数学六年级下册《数形结合解决问题》

小学数学六年级下册《数形结合解决问 题》

青岛版小学数学六年级下册《数形结合解决问题》精品教案 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。 【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗? 学生思考后举例。 【设计意图】教师给学生一定的思考时间,可以使学生对所学过的用图形来研究问题的有关知识进行初步的梳理,从而为本节课的学习做好铺垫。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现?

学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 【设计意图】将原始数据和统计图同时呈现,可以给学生造成视觉上的冲击。原始数据杂乱无章而统计图简单明了,能够帮助阅读的人有效的提取信息。对于用图形描述数据的优越性,学生一目了然。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 【设计意图】学生个人的想法可能是粗浅的、片面的,而通过小组交流,倾听他人的想法和意见,可以进一步完善自己的想法。教师在学生交流的基础上运用多媒体呈现相关的例子,通过这些数形结合的直观的例子,让学生充分感受数形结合在数学学习中的应用。 三、拓展延伸。

中考数学专题复习_数形结合思想

中考数学专题复习——数形结合思想 一、知识梳理 数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的。 华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休。”这充分说明了数形结合在数学学习中的重要性,是中考数学的一个最重要数学思想。 二、典型例题 (一)在数与式中的应用 例1、实数a 、b 在数轴上的位置如图所示,化简2 ||a a b +-=_________。 (二)在方程、不等式中的应用 例2、已知关于x 的不等式组0 20x a x ->?? ->? 的整数解共有2个,则a 的取值范围是____________。 例3、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( ) A .203210x y x y +-=??--=?, B .2103210x y x y --=??--=? , C .2103250x y x y --=?? +-=? , D .20210x y x y +-=?? --=? , (三)在锐角三角函数中的应用 例4、画△ABC ,使cosA=2 1 ,AB =2cm ,∠A 的对边可以在长为1cm 、2cm 、3cm 中任选,这 样的三角形可以画_______个。 (四)在函数中的应用 例5、如图为二次函数2y ax bx c =++的图象,在下列说法中: ①0ac <;②方程20ax bx c ++=的根为11x =-,23x =; ③0a b c ++>;④当1x >时,y 随着x 的增大而增大. a b 0 · P (1,1) 1 1 2 2 3 3 -1 -1 O x y x y O 3 -1

转化与化归思想的应用

转化与化归思想的应用 题型一 特殊与一般的转化 例1 已知函数f (x )=a x a x +a (a >0且a ≠1),则f ????1100+f ????2100+…+f ????99100的值为________. 答案 99 2 解析 思维升华 一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果. (1)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a 、b 、c 成等差数列, 则cos A +cos C 1+cos A cos C =________. (2)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+ x )f (x ),则f ???? 52=________. 答案 (1)4 5 (2)0 题型二,常量与变量的转化 例2, 对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围为________. 变式练习:设f (x )是定义在R 上的单调增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为___________.(-∞,-1]∪[0,+∞) 探究提高 在处理多变元的数学问题时,我们可以选取其中的常数(或参数),将其看做是“主元”,而把其它变元看做是常量,从而达到减少变元简化运算的目的.

题型三 函数、方程、不等式之间的转化 例3 若f (x )是定义在R 上的函数,对任意实数x 都有f (x +3)≤f (x )+3和f (x +2)≥f (x )+2,且f (1)=1,则f (2 014)=________. 答案 2 014 解析 (2)∵f (x +1)≤f (x +3)-2≤f (x )+3-2=f (x )+1, f (x +1)≥f (x +4)-3≥f (x +2)+2-3≥f (x )+4-3=f (x )+1, ∴f (x )+1≤f (x +1)≤f (x )+1. ∴f (x +1)=f (x )+1. ∴数列{f (n )}为等差数列. ∴f (2 014)=f (1)+2 013×1=2 014. (1)若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范 围是________. 答案 (1)(-∞,-8] 2.关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ( A ) ①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假. 命题的个数是 A .0 B .1 C .2 D .3 题型四 数与形的转化 例4.(2014·天津)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________. 答案 (0,1)∪(9,+∞) 解析 设y 1=f (x )=|x 2+3x |,y 2=a |x -1|, 在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象如图所示.

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 向阳乡初级中学 周红林 【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。

一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定

转化与化归思想方法

转化与化归思想方法,就就是在研究与解决有关数学问题时采用某种手段将问题通过变换使 之转化,进而得到解决得一种方法、一般总就是将复杂得问题通过变换转化为简单得问题, 将难解得问题通过变换转化为容易求解得问题,将未解决得问题通过变换转化为已解决得问题、 转化与化归思想在高考中占有十分重要得地位,数学问题得解决,总离不开转化与化归,如 未知向已知得转化、新知识向旧知识得转化、复杂问题向简单问题得转化、不同数学问题 之间得互相转化、实际问题向数学问题转化等、各种变换、具体解题方法都就是转化得手段,转化得思想方法渗透到所有得数学教学内容与解题过程中、 1、转化与化归得原则 (1)熟悉化原则:将陌生得问题转化为熟悉得问题,以利于我们运用熟知得知识、经验来解决、 (2)简单化原则:将复杂问题化归为简单问题, 通过对简单问题得解决,达到解决复杂问题 得目得,或获得某种解题得启示与依据、 (3)直观化原则:将比较抽象得问题化为比较直观得问题来解决、 (4)正难则反原则:当问题正面讨论遇到困难时,可考虑问题得反面,设法从问题得反面去探讨,使问题获解、 2、常见得转化与化归得方法 转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况 转化到另一种情形,也就就是转化到另一种情境使问题得到解决,这种转化就是解决问题得 有效策略,同时也就是成功得思维方式、常见得转化方法有: (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题、 (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂得函数、方程、不等式问题转化为易于解决得基本问题、 (3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得 转化途径、 (4)等价转化法:把原问题转化为一个易于解决得等价命题,达到化归得目得、 (5)特殊化方法:把原问题得形式向特殊化形式转化,并证明特殊化后得问题、结论适合原问题、 随着国家经济得发展,科技得发达,人才得需求,中国教育得改革,数学新课 标得出现,在对学生得知识与技能,数学思想及情感与态度等方面得要求,学生在数学得学习方法也应该要相应改变了,要满足社会得需要、化归与转化思想得实 质就是揭示联系,实现转化、除极简单得数学问题外,每个数学问题得解决都就是通过转化为已知得问题实现得、从这个意义上讲,解决数学问题就就是从未知向 已知转化得过程,同时在生活中许许多多得事情也需要往已知得方面转化,把事情简单化,这对以后学生得能力与德育方面有很大得帮助、化归与转化得思想就是 解决数学问题得根本思想,解题得过程实际上就就是一步步转化得过程、数学

转化与化归思想

高三数学思想、方法、策略专题 第三讲 转化与化归思想 一.知识探究: 等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。 1.转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能带来思维的闪光点,找到解决问题的突破口。 2.常见的转化方法 (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题; (2)换元法:运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本问题; (3)参数法:引进参数,使原问题的变换具有灵活性,易于转化; (4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题; (5)坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要途径; (6)类比法:运用类比推理,猜测问题的结论,易于确定转化的途径; (7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题; (8)一般化方法:若原问题是某个一般化形式问题的特殊形式且有较难解决,可将问题通过一般化的途径进行转化; (9)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的; (10)补集法:(正难则反)若过正面问题难以解决,可将问题的结果看作集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集A C U 获得原问题的解决。 3.化归与转化应遵循的基本原则: (1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决; (2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据; (3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律; (4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;

人教新版化归与转化的思想方法(教案)

化归与转化的思想方法(教案) 课题:化归与转化的思想方法专题 延寿一中吴东鹏 一、教学目标: 1、知识目标:⑴理解并掌握化归与转化的思想方法; ⑵用哲学观点认识化归与转化的思想方法。 2、能力目标:⑴能运用“化归与转化的思想方法”解决具体条 件下的数学问题; ⑵培养学生观察、分析、处理问题的能力,提高 思维品质; ⑶形成运动变化,对立统一的观点。 3、情感目标:在解题中,让学生体会熟悉化,简单化,和谐化,直 观化,正难则反的数学妙味. 二、教学重点、难点 教学重点:对“化归与转化的思想方法”的理解及运用 教学难点:“化归与转化的思想方法”的运用 三、教法、学法指导 教法:四环递进教学法 学法指导:⑴培养敏锐的洞察能力,类比能力; ⑵找准目标模型,将待解决问题转化为目标模型; ⑶学会用化归与转化的思想方法处理高中数学的 问题;

四、教学过程 1、知识整理 提出问题:结合以前解有关化归与转化题目方面的经验或体会,能否谈谈化归与转化的思想方法: ⑴、在运用已学知识解答一类问题时,不同问题要求运用不同知识,这就要求人们运用类比法,找准某一数学模型为目标模型,通过恰当的手段把问题化归为目标模型,再运用目标模型的内在数学规律,使问题获解,其思维程序是客观问题经抽象数学化→数学问题,经类比化归,找准目标模型把问题转化成模型→数学模型,经求解,运用模型→得解。 ⑵、实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,也可以变换问题的外部形式,从宏观上可以实现学科间的化归,也可以调动各种方法与技术,从微观上解决多种具体问题,在解题中可以多次使用化归,使问题逐次达到规范化、模式化。 ⑶、解题的过程就是化归的过程,不断地改变你的问题,重新叙述它,变换它,直到最后成功地找到某些能用的东西,解决问题为止。 2、范例选讲 例1:设4()42x x f x =+,求122006()()()200720072007 f f f +++L 解:1144()(1)4242 a a a a f a f a --+-=+++Q 4442424 a a a =+++?

2020中考数学 数形结合思想专题练习(含答案)

2020中考数学 数形结合思想专题练习 1.已知直线y 1=2x -1和y 2=-x -1的图象如图X5-1所示,根据图象填空. (1)当x ______时,y 1>y 2;当x ______时,y 1=y 2;当x ______时,y 1<y 2; (2)方程组的解集是____________. 图X5-1 图X5-2 2.已知二次函数y 1=ax 2+bx +c (a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2)(如图X5-2所示),则能使y 1>y 2成立的x 的取值范围是____________. 3.如图X5-3,正三角形ABC 的边长为3 cm ,动点P 从点A 出发,以每秒1 cm 的速度,沿A →B →C 的方向运动,到达点C 时停止.设运动时间为x (单位:秒),y =PC 2,则y 关于x 的函数的图象大致为( ) 图X5-3 A B C D 4.如图X5-4,半径为2的圆内接等腰梯形ABCD ,它的下底AB 是圆的直径,上底CD 的端点在圆周上,则该梯形周长的最大值是______. 图X5-4 21, 1y x y x =-?? =-- ?

5.某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示,从2009年开始,该市荔枝种植面积y(单位:万亩)随着时间x(单位:年)逐年成直线上升,y与x之间的函数关系如图X5-5. (1)求y与x之间的函数关系式(不必注明自变量x的取值范围); (2)该市2012年荔枝种植面积为多少万亩? 图X5-5 6.某公司推销一种产品,设x(单位:件)是推销产品的数量,y(单位:元)是推销费,图X5-6表示该公司每月付给推销员推销费的两种方案,看图解答下列问题: (1)求y1与y2的函数解析式; (2)解释图中表示的两种方案是如何付推销费的? (3)如果你是推销员,应如何选择付费方案? 图X5-6

转换与化归思想

浅谈转换与化归思想 转化思想是数学中的一种基本却很重要的思想。深究起来,转化两字中包含着截然不同的两种思想,即转换和化归。这两者其实表达了不同的思想方法,可以说是思维方式与操作方法的区别。 一、 转换思想 (1)转换思想的内涵 转换思想是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。 (2)转换思想在同一学科中的应用 转换思想可以是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。 比如,函数、方程、不等式是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其他模块的各类问题。不等式恒成立问题可以转换到用函数图象解决,或者是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。再比如,数列问题用函数观点来解释,那更是我们数学课堂中一再强调的问题了。 看这样一个问题: 已知:11122=-+-a b b a ,求证:12 2=+b a 。 [分析] 这是一个纯粹的代数证明问题,条件的变形是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点 令人望而生畏。 再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。 [解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα 化简得1cos cos sin sin =+αααα 所以0sin ≥=αa ,0cos ≥=αb 则 1cos sin 2 222=+=+ααb a [小结] 本题的解决了是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设和结论中都没有出现 三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还是比较棘手的。 转换思想对思维要求确实很高,但这一点还是能够做到的。因为各学科都有对知识模块的介绍,同时也有对各知识模块之间横向纵向的对比联系的研究。典型的例子就是数与形之间的思维转换,因为学生已经在初中老师的指导下

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题 一、选择题 1.已知函数f (x )=???? ?3x ,x≤0,log 2 x ,x>0,下列结论正确的是( ) A .函数f (x )为奇函数 B .f (f (14))=1 9 C .函数f (x )的图象关于直线y =x 对称 D .函数f (x )在R 上是增函数 2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1) 3.函数f (x )=ln|x +cos x |的图象为( )

4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x ) x <0的解集为( ) A .(-2,0)∩(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-2,0)∪(0,2) 5.实数x ,y 满足不等式组???? ?x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( ) A.215 5 B .21 C .20 D .25 6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,1 2) B .(1 2,1) C .(1,2) D .(2,+∞) 7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +y x +y 的最小值为( ) A.53 B .2 C.35 D.12 8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0

化归与转化思想

化归与转化思想 一.利用换元法进行转化 1.若 ,42x ππ<<求函数3tan 2tan y x x =的最大值。 2.在平面直角坐标系xOy 中,点()P x y ,是椭圆2213 x y +=上的一个动点,求S x y =+的最大值. 3.奇函数f(x)的定义域R ,且在[0+∞)上是增函数,当0≤θ≤π/2时,是否存在实数 m, 使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈〔0,π/2〕的均成立?若存在,求出适合条件的所有实数m;若不存在,说明理由. 二.正难则反的转化 4.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目, 则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( ) A .15 B .45 C .60 D .75 5.已知非空集合A={x| 2 x -4mx+2m+6=0,x ∈R},若 A ∩R-≠,求实数m 的取值范围(R- 表示负实数集, R+表示正实数集). 三.利用构造法进行转化 6.已知a b e >>。 证明b a a b < 7.已知函数2 2 ()ln (1).1x f x x x =+-+ (1) 求函数()f x 的单调区间; (2)若不等式1(1) n a e n ++≤对任意的N*n ∈都成立(其中e 是自然对数的底数). 求a 的最大值. ?

四.空间问题平面化的原则 8.如图,设正三棱锥S-ABC 的底面边长为a ,侧面等腰三角形的顶角 为0 30,过A 作与侧棱SB,SC 都相交的截面AEF ,求这个截面周长的 最小值。 五.等与不等的转化 9.若f(x)是定义在R 上的函数,对任意实数x 都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2,且f(1)=1,则 f(2 010)= . 六.常量与变量的转化 10.设f (x )是定义在R 上的单调增函数,若f (21ax x --)≤f (2-a )对任意 a ∈[-1,1]恒成立,求x 的取值范围. 11.已知函数247(),[0,1]2x f x x x -=∈- (1)求()f x 的单调区间和值域; (2)设1a ≥,函数32 ()32,[0,1]g x x a x a x =--∈,若对于任意的1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 取值范围。

“化归”思想在小学数学教学中的运用

“化归”思想在小学数学教学中的运用 一、“化归”思想的内涵 “化归”思想,是世界数学家们都十分重视的一种数学思想方法,从字面意思上讲,“化归”理解为“转化”和“归结”两种含义,即不是直接寻找问题的答案,而是寻找一些熟悉的结果,设法将面临的问题转化为某一规范的问题,以便运用已知的理论、方法和技术使问题得到解决。而渗透化归思想的核心,是以可变的观点对所要解决的问题进行变形,就是在解决数学问题时,不是对问题进行直接进攻,而是采取迂回的战术,通过变形把要解决的问题,化归为某个已经解决的问题。从而求得原问题的解决。化归思想不同于一般所讲的“转化”或“变换”。它的基本形式有:化未知为已知,化难为易,化繁为简,化曲为直。 匈牙利著名数学家罗莎·彼得在他的名著《无穷的玩艺》中,通过一个十分生动而有趣的笑话,来说明数学家是如何用化归的思想方法来解题的。有人提出了这样一个问题:“假设在你面前有煤气灶,水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此,某人回答说:“在壶中灌上水,点燃煤气,再把壶放在煤气灶上。”提问者肯定了这一回答,但是,他又追问道:“如果其他的条件都没有变化,只是水壶中已经有了足够的水,那么你又应该怎样去做?”这时被提问者一定会大声而有把握地回答说:“点燃煤气,再把水壶放上去。”但是更完善的回答应该是这样的:“只有物理学家才会按照刚才所说的办法去做,而数学家却会回答:‘只须把水壶中的水倒掉,问题就化归为前面所说的问题了’”。 “把水倒掉”,这就是化归,这就是数学家常用的方法。翻开数学发展的史册,这样的例子不胜枚举,著名的哥尼斯堡七桥问题便是一个精彩的例证。 二、“化归”思想在小学数学教学中的渗透 1、数与代数----在简单计算中体验“化归” 例1:计算48×53+47×48 机械地应用乘法分配律公式进行计算,学生不容易真正理解。将48这一数化归成物,即看到了相同的数48,想起了红富士苹果,以物红富士苹果代替数48,相同的数48是化归的对象,红富士苹果是实施化归的途径,于是48×53+47×48就转化成求53个苹果与47个苹果之和的问题是化归的目标。 48×53+47×48 =48×(53+47) =48×100 =4800,得到问题的解决。 例2:解方程5x-x=4 x是化归的对象,把未知数x化归成物红富士苹果,红富士苹果是实施化归的途径,于是方程5x-x=4 转化为5个苹果-1个苹果=4的问题是化归的目标。 5x-x=4 得4x=4 x=4÷4 x=1 通过以图片中的红富士苹果代替抽象的字母x,问题得以解决,同时学生对字母表示数从广义上得以理解。 教学正负数加减法运算是教材的重点和难点,学生对:“(1)同号两数相加,取原来的符号,并把绝对值相加,(2)异号两数相加,取绝对值较大的加数的符号,较大的绝对值减去较小的绝对值”。不容易真正理解和掌握,原因是“绝对值”的概念及名词对小学生来说是陌生的。

相关文档
最新文档