沪科版八年级数学下册第18章 勾股定理 单元测试卷
沪科版八年级数学下册第18章勾股定理测试卷.docx

第18章勾股定理测试卷一、选择题:1. 在ABC △中,34AC BC ==,,则AB 的长是( )A .5B .10C .4D .大于1且小于72. 下列三角形中,不是直角三角形的是( )A.三角形三边分别是9,40,41; B.三角形三内角之比为1:2:3; C.三角形三内角中有两个互余; D.三角形三边之比为2225:4:3.3. 满足下列条件的ABC △,不是直角三角形的是( )A.A B C ∠=∠-∠ B.::1:1:2A B C ∠∠∠=C.::1:1:2a b c = D.222b a c =-4. 已知ABC △中,81517AB BC AC ===,,,则下列结论无法判断的是( ) A.ABC △是直角三角形,且AC 为斜边 B.ABC △是直角三角形,且90ABC ∠= C.ABC △的面积为60 D.ABC △是直角三角形,且60A ∠=5. 将直角三角形三条边的长度都扩大同样的倍数后得到的三角形( ) A.仍是直角三角形 B.可能是锐角三角形C.可能是钝角三角形 D.不可能是直角三角形6. D 是ABC △中BC 边上一点,若222AC CD AD -=,那么下列各式中正确的是( ) A.2222AB BD AC CD -=- B.222AB AD BD =-C.222AB BC AC += D.2222AB BC BC AD +=+ 7. 如果ABC △的三边分别为22121(1)m m m m -+>,,,则下列结论正确的是( ) A.ABC △是直角三角形,且斜边的长为21m +B.ABC △是直角三角形,且斜边的长为2mC.ABC △是直角三角形,且斜边的长需由m 的大小确定D.ABC △无法判定是否是直角三角形8. 在ABC △中,::1:1:2A B C ∠∠∠=,则下列说法错误的是( ) A.90C ∠= B.222a b c =- C.222c a = D.a b = 9. 如上图,一块直角三角形的纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cmA.6cm B.8cm C.8013cm D.6013cm 二、填空题:11. ABC △中,1310AB BC ==,,中线12AD =,则AC = . 12. 如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E , AD =8,AB =4,则DE 的长为 .13. 有一个三角形的两边长是3和5,要使这个三角形成为直角三角形,则第三边边长的平方是 .14. 满足222c b a =+的三个正整数,称为 。
2021-2022学年最新沪科版八年级数学下册第18章 勾股定理章节测试试题(含答案及详细解析)

八年级数学下册第18章 勾股定理章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处,若AB =3,AD =5,则EC 的长为( )A .1B .53 C .32 D .432、ABC 中,A ∠,B ,C ∠的对边分别为a ,b ,c ,下列条件能判断ABC 是直角三角形的是( )A .ABC ∠=∠=∠B .6a =,7b =,8c =C .::3:4:5A B C ∠∠∠=D .222+=a b c3、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .1BC .6,7,8D .2,3,44、如图,在ABC 中,5AB AC ==,8BC =,D 是线段BC 上的动点(不含端点B 、C ).若线段AD长为正整数,则点D 的个数共有( )A .4个B .3个C .2个D .1个5、下列条件:(1)∠A =90°﹣∠B ,②∠A :∠B :∠C =3:4:5,③∠A =2∠B =3∠C ,④AB :BC :AC =3:4:5,能确定△ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个6、如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为( )A .64B .16C .8D .47、如图,在△ABC 中,BC =C =45°,若D 是AC 的三等分点(AD >CD ),且AB =BD ,则AB 的长为( )A .2BCD .528、如图1,在ABC 中,2AB BC ==,120B ∠=︒,M 是BC 的中点,设AM a =,则表示实数a 的点落在数轴上(如图2)所标四段中的( )A.①段B.②段C.③段D.④段9、如图,在Rt△ABC中,∠CBA=60°,斜边AB=10,分别以△ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5=()A.50 B.C.100 D.10、如图,一圆柱高12cm,底面半径为3cm,一只蚂蚁从点A沿圆柱表面爬到点B处吃食物,要爬行的最短路程( 取3)是()A.15cm B.21cm C.24cm D第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为_____cm2.2、如图,在长方形ABCD中,AB=3,BC=2,E是BC中点,点F是线段AB上一个动点.(1)连接DF ,则DF +EF 的最小值为 _____;(2)以EF 为斜边向斜上方作等腰Rt△EFG ,点F 从点B 运动到点A 的过程中,AG 的最小值为 _____.3、如果正整数a 、b 、c 满足等式a 2+b 2=c 2,那么正整数a 、b 、c 叫做勾股数,某同学将自探究勾股数的过程列成下表,观察表中每列数的规律,可知x +y 的值为 _____.4、如图,△ABC 中,∠ACB =90°,AC =4,BC =3,射线CD 与边AB 交于点D ,点E 、F 分别为AD 、BD 中点,设点E 、F 到射线CD 的距离分别为m 、n ,则m +n 的最大值为________.5、已知跷跷板长为3.9米,小明和小红坐在两端玩跷跷板,在这个过程中,跷跷板的两端端点在水平方向的距离的最小值为3.6米,此时较高端点距离地面的高度等于 _____米.三、解答题(5小题,每小题10分,共计50分)1、如图①,CDE ∠是四边形ABCD 的一个外角,AD BC ∥,BC BD =,点F 在CD 的延长线上,FAB FBA ∠=∠,FG AE ⊥,垂足为G .(1)求证:①DC 平分BDE ∠;②BC DG AG +=.(2)如图②,若4AB =,3BC =,1DG =.①求AFD ∠的度数;②直接写出四边形ABCF 的面积.2、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.3、如图,已知△ABC是等边三角形,BD是AC上的高线.作AE⊥AB于点A,交BD的延长线于点E.取BE的中点M,连结AM.(1)求证:△AEM是等边三角形;(2)若AE=1,求△ABC的面积.的正方形网格中,每个小正方形的顶点称为格点.点A,点B都在格点上,按下列要4、如图在55求画图.(1)在图①中,AB为一边画ABC,使点C在格点上,且ABC是轴对称图形;(2)在图②中,AB为一腰画等腰三角形,使点C在格点上;(3)在图③中,AB 为底边画等腰三角形,使点C 在格点上.5、如图,点O 是等边三角形ABC 内的一点,BOC α∠=,将△BOC 绕点C 顺时针旋转60°得△ADC ,连接OD .(1)当100α=︒时,ODA ∠= °;(2)当120α=︒时,ODA ∠= °;(3)若150α=︒,8OB =,4OC =,则OA 的长为 .-参考答案-一、单选题1、D【分析】由翻折可知:AD =AF =5.DE =EF ,设EC =x ,则DE =EF =3−x .在Rt △ECF 中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD 是矩形,∴AD =BC =5,AB =CD =3,∴∠B =∠BCD =90°,由翻折可知:AD =AF =5,DE =EF ,设EC =x ,则DE =EF =3−x .在Rt △ABF 中,BF 4,∴CF =BC −BF =5−4=1,在Rt △EFC 中,EF 2=CE 2+CF 2,∴(3−x )2=x 2+12,∴x =43, ∴EC =43.故选:D .【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.2、D【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【详解】解:A 、∵A B C ∠=∠=∠,且∠A +∠B +∠C =180°,∴A B C ∠=∠=∠=60°,故△ABC 不是直角三角形; B 、∵6a =,7b =,8c =,∴a 2+b 2≠c 2,故△ABC 不是直角三角形;C 、∵∠A :∠B :∠C =3:4:5,且∠A +∠B +∠C =180°,∴最大角∠C =75°≠90°,故△ABC 不是直角三角形;D 、∵222+=a b c ,故△ABC 是直角三角形;故选:D .【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.3、A【分析】根据勾股定理的逆定理逐项判断即可得.【详解】解:A、222+==,此项能构成直角三角形;13B、222+=≠,此项不能构成直角三角形;6C、22267858+=≠,此项不能构成直角三角形;D、222+=≠,此项不能构成直角三角形;23134故选:A.【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题关键.4、B【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【详解】解:如图:过A作AE⊥BC于E,∵在△ABC中,AB=AC=5,BC=8,∴当AE⊥BC,EB=EC=4,∴AE3,∵D是线段BC上的动点(不含端点B,C).若线段AD的长为正整数,∴3⩽AD<5,∴AD=3或AD=4,当AD=4时,在靠近点B和点C端各一个,故符合条件的点D有3点.故选B.【点睛】本题主要考察了等腰三角形的性质,勾股定理的应用,解题的关键是熟练掌握等腰三角形的性质,勾股定理的计算.5、B【分析】利用三角形内角和定理和勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【详解】解:①∵∠A=90°﹣∠B,∴∠A+∠B=90°,∴∠C=90°,∴△ABC是直角三角形;②∵∠A:∠B:∠C=3:4:5,设∠A=3x,则∠B=4x,∠C=5x,∴3x+4x+5x=180,解得:x=15°,∴∠C=15°×5=75°,∴△ABC不是直角三角形;③∵∠A=2∠B=3∠C,∴11,23B AC A ∠=∠∠=∠∴1118023A B C A A A︒∠+∠+∠=∠+∠+∠=,∴∠A=(108011)°,∴△ABC为钝角三角形;④∵AB:BC:AC=3:4:5,设AB=3k,则BC=4k,AC=5k,∴AB2+BC2=AC2,∴△ABC是直角三角形;∴能确定△ABC是直角三角形的条件有①④共2个,故选:B.【点睛】此题主要考查了勾股定理逆定理以及三角形内角和定理,关键是掌握勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.6、C【分析】根据勾股定理求出正方形A的面积,根据算术平方根的定义计算即可.【详解】解:由勾股定理得,正方形A 的面积=289-225=64,∴字母A8,故选:C .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.7、B【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理AB == 【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴(22222+2BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点,∴CD =13AC ,AD =AC -CD =1233AC AC AC -=,∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理AB故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键.8、A【分析】过点A 作AH ⊥BC 交CB 延长线于点H ,可求AH HB =1,BM =1,在Rt △AHM 中,求得AM估算出2.6 2.7,即可求解.【详解】解:在ABC 中,2AB BC ==,120B ∠=︒,∵M 是BC 的中点,∴BM =1,过点A 作A 、HA ⊥BC 交CB 延长线于点H ,∴∠ABH=60°,∴AH HB=1,∴HM=2,在Rt△AHM中,AM=2.7.故选:A.【点睛】本题考查实数与数轴,熟练掌握勾股定理,通过构造直角三角形求AM的长度,并作出正确的估算是解题的关键.9、B【分析】根据题意过D作DN⊥BF于N,连接DI,进而结合全等三角形的判定与性质得出S1+S2+S3+S4+S5=Rt△ABC的面积×4进行分析计算即可.【详解】解:在Rt△ABC中,∠CBA=60°,斜边AB=10,AB=5,AC∴BC=12过D作DN⊥BF于N,连接DI,在△ACB和△BND中,90 ACB BNDCAB NBD AD BD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ACB≌△BND(AAS),同理,Rt△MND≌Rt△OCB,∴MD=OB,∠DMN=∠BOC,∴EM=DO,∴DN=BC=CI,∵DN∥CI,∴四边形DNCI是平行四边形,∵∠NCI=90°,∴四边形DNCI是矩形,∴∠DIC=90°,∴D、I、H三点共线,∵∠F=∠DIO=90°,∠EMF=∠DMN=∠BOC=∠DOI,∴△FME ≌△DOI (AAS ),∵图中S 2=S Rt△DOI ,S △BOC =S △MND ,∴S 2+S 4=S Rt△ABC .S 3=S △ABC ,在Rt△AGE 和Rt△ABC 中,AE AB AG AC =⎧⎨=⎩, ∴Rt△AGE ≌Rt△ACB (HL ),同理,Rt△DNB ≌Rt△BHD ,∴S 1+S 2+S 3+S 4+S 5=S 1+S 3+(S 2+S 4)+S 5=Rt△ABC 的面积+Rt△ABC 的面积+Rt△ABC 的面积+Rt△ABC 的面积=Rt△ABC 的面积×4=故选:B .【点睛】本题考查勾股定理的应用和全等三角形的判定,解题的关键是将勾股定理和正方形的面积公式进行灵活的结合和应用.10、A【分析】根据题意可把立体图形转化为平面图形进行求解,如图,然后根据勾股定理可进行求解.【详解】解:如图,∵圆柱高12cm,底面半径为3cm,∴2312cm,392BC ACππ⨯====,∴在Rt△ACB中,由勾股定理得15cmAB=,∴蚂蚁从点A沿圆柱表面爬到点B处吃食物,要爬行的最短路程为15cm;故选A.【点睛】本题主要考查勾股定理,熟练掌握勾股定理求最短路径问题是解题的关键.二、填空题1、120【分析】设三边的长是5x,12x,13x,根据周长列方程求出x的长,则三角形的三边的长即可求得,然后利用勾股定理的逆定理判断三角形是直角三角形,然后利用面积公式求解.【详解】解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x =2,∴三边分别为10cm ,24cm ,26cm ,∵102+242=262,∴三角形为直角三角形,∴S =10×24÷2=120cm 2.故答案为:120.【点睛】本题考查三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积,比较基础,掌握三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积是解题关键.2、【分析】(1)作点E 关于AB 的对称点E ′,连接DE ′于AB 交于F (图中F ′),则DE +DF 最小值是DE ′的长,进而勾股定理求解即可(2)以EF 为斜边向斜上方作等腰Rt△EFG ,过点G 分别作,AB CD 的垂线,垂直分别为,M N ,CD 上取1DP =,连接PB ,则2PC BC ==,证明GFM GEN ≌即可得G 点在线段PB 上当AG PB ⊥时AG 取得最小值,进而勾股定理即可求得AG 的长【详解】解:(1)如图1,作点E 关于AB 的对称点E ′,连接DE ′于AB 交于F (图中F ′),则DE +DF 最小值是DE ′的长,在Rt△CDE ′中,CD =3,CE ′=3,∴DE ,故答案是:(2)如图,以EF 为斜边向斜上方作等腰Rt△EFG ,过点G 分别作,AB CD 的垂线,垂直分别为,M N ,CD 上取1DP =,连接PB ,则2PC BC ==90C ∠=︒PCB ∴△是等腰直角三角形45PBC ∴∠=︒90CBA ∠=︒45PBA ∴∠=︒90,45ABC CBP ABP ∠=︒∠=∠=︒PB ∴是ABC ∠的角平分线 GFE 是等腰直角三角GF GE ∴=,90FGE ∠=︒,,GN NB GM MB NB MB ⊥⊥⊥GM GN ∴⊥90MGN ∴∠=︒FGM MGE MGE EGN ∴∠+∠=∠+∠FGM EGN ∴∠=∠又90GMF GNE ∠=∠=︒GFM GEN ∴≌GM GN ∴=∴G 点在线段PB 上∴当AG PB ⊥时AG 取得最小值45PBA ∠=︒ABG ∴是等腰直角三角形AG GB ∴=222AG GB AB +=∴AG AB =【点睛】 本题考查了勾股定理,等腰直角三角形的性质,角平分线的性质,正确的添加辅助线是解题的关键. 3、79【分析】根据给出的数据找出规律:21a n =-,2b n =,21c n =+,由此求出n 的值,即可求出答案.【详解】由题可得:2321=-,422=⨯,2521=+,2831=-,623=⨯,21031=+,21541=-,824=⨯,21741=+,……,∴21a n =-,2b n =,21c n =+,∴当2165c n =+=时,8n =,∴28163x =-=,2816y =⨯=,∴631679x y +=+=,故答案为:79.【点睛】本题考查勾股定理,根据题目给出的数据找出规律是解题的关键.4、2.5【分析】连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,首先根据中线的性质和三角形面积公式得出132FCE ABC S S ∆∆==,然后证明出当CD 的长度最小时,m +n 的值最大,然后根据垂线段最短和等面积法求出CD 的最小值,即可求出m +n 的最大值.【详解】解:连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,∵点E 是AD 的中点,点F 是BD 的中点,∴CE 是ACD ∆中AD 边上的中线,CF 是BCD ∆中BD 边上的中线,∴12ACE DCE ACD S S S ∆∆∆==,12BCF DCF BCD S S S ∆∆∆==, ∴11111322222FCE DCE DCF ACD BCD ABC S S S S S S AC BC ∆∆∆∆∆∆=+=+==⨯⨯⨯=, ∴11322CD EM CD FN ++=, ∴()132CD EM FN +=,即()132CD m n +=, ∴()6CD m n +=,∴当CD 的长度最小时,m +n 的值最大,∴当CD AB ⊥时,CD 的长度最小,此时m +n 的值最大,∵△ABC 中,∠ACB =90°,AC =4,BC =3,∴AB 5, ∴162CD AB ⨯⨯=,解得:125CD =, ∴将125CD =代入()6CD m n +=得: 2.5m n +=. 故答案为:2.5.【点睛】此题考查了勾股定理,中线的性质,三角形面积的应用,垂线段最短等知识,解题的关键是根据题意作出辅助线,正确分析出当CD AB ⊥时m +n 的值最大.5、1.5##【分析】设较高端点距离地面的高度为h 米,此时,跷跷板长即为直角三角形的斜边长,两端端点在水平方向的距离的最小值即为一条直角边长,利用勾股定理即可求出结果.【详解】解:设较高端点距离地面的高度为h 米,根据勾股定理得:h 2=3.92﹣3.62=2.25,∴h =1.5(米),故答案为:1.5.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解决问题的关键.三、解答题1、(1)①见解析;②见解析;(2)①90°;②735【分析】(1)①根据等边对等角性质和平行线的性质证得BDC CDE ∠=∠即可;②过点F 作FH BD ⊥,垂足为H ,根据全等三角形的判定证明FDG FDH ≌△△(AAS )和Rt Rt AFG BFH ≌△△,再根据全等三角形的性质即可证得结论; (2)①AD ,BF 的交点记为O .由(1)结论可求得AD ,利用勾股定理在逆定理证得∠ABD =90°,根据三角形的内角和定了可推导出BDC FAB ∠=∠,再根据平角定义和四边形的内角和为360°求得∠AFD =90°;②过B 作BM ⊥AD 于M ,根据三角形等面积法可求得BM ,然后根据勾股定理求得FG ,进而由AFD ABD BCD S S S ++求解即可.【详解】(1)①证明:∵BC BD =,∴BCD BDC ∠=∠,∵AD BC ∥,∴BCD CDE ∠=∠,∴BDC CDE∠=∠,∴DC平分BDE∠;②证明:如图①,过点F作FH BD⊥,垂足为H,∵BDC CDE ∠=∠,又BDC FDH ∠=∠,CDE FDG ∠=∠,∴FDG FDH ∠=∠,∵FG AE ⊥,FH BD ⊥,∴90FGD FHD ∠=∠=︒,∵FD FD =,∴FDG FDH ≌△△(AAS ),∴FG FH =,DG DH =.∵FAB FBA ∠=∠,∴AF BF =.∴Rt Rt AFG BFH ≌△△(LH ),∴AG BH ==BD DH +.∴BC DG AG +=;(2)①如图②,AD ,BF 的交点记为O .由(1)知,AG BC DG =+,FOA DBO ∠=∠,BDC FDO ∠=∠,∵3BC BD ==,1DG =,∴3115AD AG DG BC DG DG =+=++=++=,在ABD △中,22234325AB BD +=+=,225AD =,∴222AB BD AD +=.∴90ABD ∠=︒.∵180FAO AFO AOF DBO BDO BOD ∠+∠+∠=∠+∠+∠=︒,又AOF BOD ∠=∠,AFO DBO ∠=∠.∴AFO BDO ∠=∠.∵180FAB FBA AFB ∠+∠+∠=︒,又FAB FBA ∠=∠, ∴1902FAB AFB ∠=︒-∠. ∵180BDC FDO ADB ∠+∠+∠=︒,又BDC FDO ∠=∠, ∴1902BDC BDO ∠=︒-∠. ∴BDC FAB ∠=∠.∵180BDC BDF ∠+∠=︒,∴180FAB BDF ∠+∠=︒∴360180AFD ABD FAB BDF ∠+∠=︒-∠-∠=︒.∴18090AFD ABD ∠=︒-∠=︒;②过B 作BM ⊥AD 于M ,∵∠ABD =90°,AB =4,BD =BC =3,AD =5, ∴ 125AB BD BM AD ⋅==, ∵AD ∥BC ,∴△BCD 边BC 上的高为125, ∴1112483432255ABD BCD S S +=⨯⨯+⨯⨯=, ∵∠AFD =90°,FG ⊥AE ,∴222AF FD AD +=,22222AF AG FD DG FG -=-=,∵DG =1,4AG BC DG =+=,AD =4+1=5,∴2225AF FD +=,2215AF FD -=,解得:25FD =,220AF =, ∴22220164FG AF AG =-=-=,∴FG =2, ∴1152522AFDS AD FG =⋅=⨯⨯=,∴四边形ABCF 的面积为AFD ABD BCD SS S ++=4873555+=. 【点睛】 本题考查等腰三角形的性质、平行线的性质、角平分线的定义、全等三角形的判定与性质、勾股定理及其逆定理、三角形的内角和定理、四边形的内角和、三角形的面积公式、等角的余角相等、解方程等知识,涉及知识点较多,综合性强,难度较难,解答的关键是熟练掌握相关知识的联系和运用.2、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ; 定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.3、(1)见解析;(2 【分析】(1)利用条件可求得∠E =60°且利用直角三角形的性质可得出ME =AM ,可判定△AEM 的形状;(2)由条件利用勾股定理可求得AB 和BD 的长,可求出△ABC 的面积.【详解】解:(1)∵△ABC 是等边三角形,BD 是AC 边上的高线,AE ⊥AB ,∴∠ABD =30°,∴∠E =60°,∵点M 是BE 的中点,∵在Rt△ABE 中,AM =12BE =EM ,∴△AEM 是等边三角形;(2)∵AE =1,∠EAB =90°,∠ABD =30°∴BE =2AE =2,由勾股定理得:AB∴AB =AC =BC∴AD =12AB∴BD 32=,∴S△ABC =1232 【点睛】本题主要考查等边三角形的判定和性质、勾股定理以及直角三角形中,30°所对的边是斜边的一半,掌握等边三角形的性质和判定是解题的关键.4、(1)见详解;(2)见详解;(3)见详解.【分析】(1)先根据以AB 为边△ABC 是轴对称图形,得出△ABC 为等腰三角形,AB 长为3,画以AB 为腰的等腰直角三角形即可;(2)先根据勾股定理求出AB 的长,利用平移画出点C 即可;(3)先求出以AB 为底等腰直角三角形腰长AC C 即可.【详解】解:(1)∵以AB 为边△ABC 是轴对称图形,∴△ABC 为等腰三角形,AB 长为3,画以AB 为直角边,点B 为直角顶点△ABC 如图也可画以AB 为直角边,点A 为直角顶点△ABC 如图;(2)根据勾股定理ABAB,以点A为顶角顶点根据勾股定理构建横1竖3,或横3竖1;点A向左1格再向下平移3格得C1,连结AC1,C1B,得等腰△ABC1,点A向右3格再向上平移1格得C2,连结AC2,BC2,得等腰△ABC2,点A向右3格再向下平移1格得C3,连结AC3,BC3,得等腰△ABC3,点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰△ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰△ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰△ABC6;(3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理222=+,AB AC BC22=,解得m=1竖2,或横2竖1得图形,+m m点A向右平移2格,再向下平移1格得点C1,连结AC1,BC1,得等腰三角形ABC1,点A向左平移1格,再向下平移2格得点C2,连结AC2,BC2,得等腰三角形ABC2.【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键.5、(1)40;(2)60;(3)【分析】(1)证明△COD是等边三角形,得到∠ODC=60°,即可得到答案;(2)利用ODA∠=∠ADC-∠ODC求出答案;(3)由△BOC≌△ADC,推出∠ADC=∠BOC=150°,AD=OB=8,根据△COD是等边三角形,得到OC=,证得△AOD是直角三角形,利用勾股定理求出.∠ODC=60°,OD=4(1)解:∵CO=CD,∠OCD=60°,∴△COD是等边三角形;∴∠ODC=60°,α=︒,∵∠ADC=∠BOC=100∴ODA∠=∠ADC-∠ODC=40°,故答案为:40;(2)∵∠ADC=∠BOC=120α=︒,∴ODA∠=∠ADC-∠ODC=60°,故答案为:60;(3)α=︒,即∠BOC=150°,解:当150∴△AOD是直角三角形.∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,AD=OB=8,又∵△COD是等边三角形,OC=,∴∠ODC=60°,OD=4∴∠ADO=90°,即△AOD是直角三角形,∴OA故答案为:【点睛】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.。
2022年必考点解析沪科版八年级数学下册第18章 勾股定理综合测评试卷(含答案详解)

八年级数学下册第18章勾股定理综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若等腰三角形两边长分别为6和8,则底边上的高等于()A.B C.D.102、如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要()A.8 cm B.10 cm C.12 cm D.15 cm3、以下列长度的三条线段为边,能组成直角三角形的是()A.4,5,6 B.8,15,17 C.2,3,4 D.1,34、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B.那么它爬行的最短路程为()A.10米B.12米C.15米D.20米5、下列长度的三条线段能组成直角三角形的是()A.5,11,12 B.4,5,6 C.4,6,8 D.5,12,136、如图,在Rt△ABC中,∠CBA=60°,斜边AB=10,分别以△ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5=()A.50 B.C.100 D.7、下列条件中,能判断△ABC是直角三角形的是()A.a:b:c=3:4:4 B.a=1,b,cC.∠A:∠B:∠C=3:4:5 D.a2:b2:c2=3:4:58、以下列各组线段为边作三角形,不能..作出直角三角形的是()A .1,2B .6,8,10C .3,7,8D .0.3,0.4,0.59、如图,在等腰1Rt OAA 中,190OAA ∠=︒,1OA =,以OA 1为直角边作等腰12Rt OA A ,以OA 2为直角边作等腰23Rt OA A ,则2n OA 的长度为( )A .2nB .C .2nD .210、如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的点B '处,点A 的对应点为点A ',3B C '=,则AM 的长为( )A .1.8B .2C .2.3D 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知:点A 的坐标为()3,4,点B 坐标为()1,1-,那么点A 和点B 两点间的距离是______.2、如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C ,过点P 作PD ⊥OA 于点D ,若∠AOB =60°,OC =2,则PD =_____________.3、如图,在平面直角坐标系中,5AB AC ==,点B ,C 的坐标分别是()5,2,()5,8,则点A 的坐标是______.4、直角三角形中,根据勾股定理,已知两边可求第三边: Rt △ABC 中,∠C =90°,a ,b ,c 分别为内角A ,B ,C 的对边,(1)若已知边a ,b ,则c =_____(2)若已知边a ,c ,则b = _____(3)若已知边b ,c ,则a =_____.5、如图,已知Rt ABC 中,90ACB ∠=︒,4AC BC ==,动点M 满足1AM =,将线段CM 绕点C 顺时针旋转90︒得到线段CN ,连接AN ,则AN 的最小值为_________.三、解答题(5小题,每小题10分,共计50分)1、滑撑杆在悬窗中应用广泛.如图,某款滑撑杆由滑道OC ,撑杆AB 、BC 组成,滑道OC 固定在窗台上.悬窗关闭或打开过程中,撑杆AB 、BC 的长度始终保持不变.当悬窗关闭时,如图①,此时点A 与点O 重合,撑杆AB 、BC 恰与滑道OC 完全重合;当悬窗完全打开时,如图②,此时撑杆AB 与撑杆BC 恰成直角,即90B ∠=︒,测量得12cm OA =,撑杆15cm AB =,求滑道OC 的长度.2、如图,在△ABC 和△DEB 中,AC ∥BE ,∠C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC ≌△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.3、如图在55⨯的正方形网格中,每个小正方形的顶点称为格点.点A ,点B 都在格点上,按下列要求画图.(1)在图①中,AB 为一边画ABC ,使点C 在格点上,且ABC 是轴对称图形;(2)在图②中,AB 为一腰画等腰三角形,使点C 在格点上;(3)在图③中,AB 为底边画等腰三角形,使点C 在格点上.4、一个三角形三边长分别为a ,b ,c .(1)当a =3,b =4时,① c 的取值范围是________;② 若这个三角形是直角三角形,则c 的值是________;(2)当三边长满足3a b c b ++=时, ① 若两边长为3和4,则第三边的值是________;② 在作图区内,尺规作图,保留作图痕迹,不写作法:已知两边长为a ,c (a <c ),求作长度为b 的线段(标注出相关线段的长度).5、在平面直角坐标系xOy 中,对于点P 给出如下定义:点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.已知点()6,0A ,()0,6B .(1)在点()6,0D -,()3,0E ,()0,3F 中,______是点A 和点O 的“等距点”;(2)在点()2,1G --,()2,2H ,()3,6I 中,______是线段OA 和OB 的“等距点”;(3)点(),0C m 为x 轴上一点,点P 既是点A 和点C 的“等距点”,又是线段OA 和OB 的“等距点”.①当8m =时,是否存在满足条件的点P ,如果存在请求出满足条件的点P 的坐标,如果不存在请说明理由;②若点P 在OAB 内,请直接写出满足条件的m 的取值范围.-参考答案-一、单选题1、C【分析】因为题目没有说明哪个边为腰哪个边为底,所以需要讨论,①当6为腰时,此时等腰三角形的边长为6、6、8;②当8为腰时,此时等腰三角形的边长为6、8、8;然后根据等腰三角形的高垂直平分底边可运用勾股定理的知识求出高.【详解】解:∵△ABC 是等腰三角形,AB =AC ,AD ⊥BC ,∴BD =CD ,边长为6和8的等腰三角形有6、6、8与6、8、8两种情况,①当三边是6、6、8时,底边上的高AD②当三边是6、8、8时,同理求出底边上的高AD故选C.【点睛】本题主要考查了勾股定理和等腰三角形的性质,解题的关键在于能够利用分类讨论的思想求解.2、B【分析】立体图形展开后,利用勾股定理求解.【详解】解:将长方体沿着AB边侧面展开,并连接'AB,如下图所示:由题意及图可知:'13138AB cm=,=+++=,''6AA cm两点之间,线段最短,故'AB的长即是细线最短的长度,''∆中,由勾股定理可知:'10Rt AABAB cm===,故所用细线最短需要10cm.故选:B .【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此类问题的关键.3、B【分析】根据勾股定理的逆定理:若三角形三边分别为a ,b ,c ,满足222+=a b c ,则该三角形是以c 为斜边的直角三角形,由此依次计算验证即可.【详解】解:A 、22245416+=≠,则长为4,5,6的线段不能组成直角三角形,不合题意;B 、22281528917+==,则长为8,15,17的线段能组成直角三角形,符合题意;C 、22223134+=≠,则长为2,3,4的线段不能组成直角三角形,不合题意;D 、222133+=≠,则长为13的线段不能组成直角三角形,不合题意;故选:B .【点睛】本题考查勾股定理的逆定理,掌握并熟练运用勾股定理的逆定理是解题关键.4、C【分析】将立体图形展开,有两种不同的展法,连接AB ,利用勾股定理求出AB 的长,找出最短的即可.【详解】解:如图,(1)AB(2)AB15,由于15则蚂蚁爬行的最短路程为15米.故选:C.【点睛】本题考查了平面展开--最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算.5、D【分析】先分别求出两小边的平方和和最长边的平方,再看看是否相等即可.【详解】解:A.∵52+112=25+121=146,122=144,∴52+112≠122,即三角形不是直角三角形,故本选项不符合题意;B.∵42+52=16+25=41,62=36,∴42+52≠62,即三角形不是直角三角形,故本选项不符合题意;C.∵42+62=16+36=52,82=64,∴42+62≠82,即三角形不是直角三角形,故本选项不符合题意;D.∵52+122=25+144=169,132=169,∴52+122=132,即三角形是直角三角形,故本选项符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于最长边c的平方,那么这个三角形是直角三角形.6、B【分析】根据题意过D作DN⊥BF于N,连接DI,进而结合全等三角形的判定与性质得出S1+S2+S3+S4+S5=Rt△ABC的面积×4进行分析计算即可.【详解】解:在Rt△ABC中,∠CBA=60°,斜边AB=10,∴BC=12AB=5,AC过D作DN⊥BF于N,连接DI,在△ACB和△BND中,90 ACB BNDCAB NBD AD BD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ACB≌△BND(AAS),同理,Rt△MND≌Rt△OCB,∴MD=OB,∠DMN=∠BOC,∴EM=DO,∴DN=BC=CI,∵DN ∥CI ,∴四边形DNCI 是平行四边形,∵∠NCI =90°,∴四边形DNCI 是矩形,∴∠DIC =90°,∴D 、I 、H 三点共线,∵∠F =∠DIO =90°,∠EMF =∠DMN =∠BOC =∠DOI ,∴△FME ≌△DOI (AAS ),∵图中S 2=S Rt△DOI ,S △BOC =S △MND ,∴S 2+S 4=S Rt△ABC .S 3=S △ABC ,在Rt△AGE 和Rt△ABC 中,AE AB AG AC =⎧⎨=⎩, ∴Rt△AGE ≌Rt△ACB (HL ),同理,Rt△DNB ≌Rt△BHD ,∴S 1+S 2+S 3+S 4+S 5=S 1+S 3+(S 2+S 4)+S 5=Rt△ABC 的面积+Rt△ABC 的面积+Rt△ABC 的面积+Rt△ABC 的面积=Rt△ABC 的面积×4=故选:B .【点睛】本题考查勾股定理的应用和全等三角形的判定,解题的关键是将勾股定理和正方形的面积公式进行灵活的结合和应用.7、B【分析】根据勾股定理的逆定理,以及三角形的内角等于180︒逐项判断即可.【详解】A ,设3a x =,4b x ,4=c x ,此时()()()222344x x x +≠,故ABC 不能构成直角三角形,故不符合题意;B ,2221+=,故ABC 能构成直角三角形,故符合题意C ,::3:4:5A B C ∠∠∠=且180A B C ∠+∠+∠=︒,设3A x ∠=,4B x ∠=,5C x ∠=,则有12180x =︒,所以15x =︒,则75C ∠=︒,故ABC 不能构成直角三角形,故不符合题意;D ,设23a x =,24b x =,25c x =,则345x x x +≠,即222a b c +≠,故ABC 不能构成直角三角形,故不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,和三角形的内角和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于180︒是解题关键.8、C【分析】先求出两小边的平方和,再求出最大边的平方,看看是否相等即可.【详解】解:A 、∵2221+2=5=,∴以1,2B 、∵62+82=36+64=100=102,∴以6,8,10为边的三角形是直角三角形,故本选项不符合题意;C 、∵32+72=9+49=58≠82,∴以3,7,8为边的三角形不是直角三角形,故本选项符合题意;D 、∵0.32+0.42=0.09+0,16=0.25=0.52,∴以0.3,0.4,0.5为边的三角形是直角三角形,故本选项不符合题意;故选:C .【点评】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:勾股定理的逆定理是:如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形.9、C【分析】利用等腰直角三角形的性质以及勾股定理分别求出各边长,进而得出答案.【详解】解:∵△OAA 1为等腰直角三角形,OA =1,∴AA 1=OA=1,OA 11;∵△OA 1A 2为等腰直角三角形,∴A1A2=OA1OA2OA1=2=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA323;∵△OA3A4为等腰直角三角形,∴A3A4=OA3,OA4OA3=4=4,∵△OA4A5为等腰直角三角形,∴A4A5=OA4=4,OA545.OA的长度为2n=2n,∴2n故选C.【点睛】本题考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.10、B【分析】连接BM,MB′,由于CB′=3,则DB′=6,在Rt△ABM和Rt△MDB′中由勾股定理求得AM的值.【详解】解:连接BM,MB′,设AM=x,在Rt △ABM 中,AB 2+AM 2=BM 2,在Rt △MDB ′中,B ′M 2=MD 2+DB ′2,∵折叠,∴MB =MB ′,∴AB 2+AM 2= MD 2+DB ′2,即92+x 2=(9-x )2+(9-3)2,解得x =2,即AM =2,故选:B .【点睛】本题考查了翻折的性质,对应边相等,利用了勾股定理建立方程求解.二、填空题1、5【分析】根据两点间距离公式求解即可.【详解】∵点A 的坐标为()3,4,点B 坐标为(1,1)-,∴点A 和点B 5=.故答案为:5.【点睛】本题考查两点间距离,若11(,)A x y ,22(,)B x y ,则两点间的距离是AB =点间距离公式是解题的关键.2【分析】作PE OB ⊥,则PD PE =,由等腰三角形的性质可得,2OC PC ==,在Rt PCE △中,利用勾股定理即可求解.【详解】解:作PE OB ⊥,如下图:∵OP 平分AOB ∠,PE OB ⊥,PD OA ⊥,∴PD PE =,1302AOP BOP AOB ∠=∠=∠=︒,∵PC OA ∥,∴30DOP OPC POC ∠=∠=︒=∠,∴2OC PC ==,60PCE POC OPC ∠=∠+∠=︒,在Rt PCE △中,2PC =,60PCE ∠=︒,∴30CPE ∠=︒ ∴112CE CP ==,由勾股定理得,PE【点睛】此题考查了角平分线的性质,勾股定理,三角形外角的性质,等腰三角形的判定与性质以及含30直角三角形的性质等,解题的关键是灵活运用相关性质进行求解.3、()1,5A【分析】如图,过A 作AD BC ⊥于,D 证明BC x ⊥轴,则AD x ∥轴,826,BC 再利用等腰三角形的性质求解3,BD = 利用勾股定理求解4,AD = 从而可得答案.【详解】解:如图,过A 作AD BC ⊥于,D5,2,5,8,B CBC x ∴⊥轴,则AD x ∥轴,826,BC5,AB AC3,BD CD 224,ADAB BD541,325,A A D x y y1,5.A故答案为:()1,5A【点睛】本题考查的是等腰三角形的性质,坐标与图形,勾股定理的应用,掌握“坐标与线段长度的关系”是解本题的关键.4【分析】(1)(2)(3)根据勾股定理及题意可直接进行求解.【详解】解:(1)若已知边a ,b ,则根据勾股定理得c(2)若已知边a ,c ,则根据勾股定理得b =(3)若已知边b ,c ,则根据勾股定理得a【点睛】 本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.5、1##【分析】证明△AMC ≌△BNC ,可得1BN AM ==,再根据三角形三边关系得出当点N 落在线段AB 上时,AN 最小,求出最小值即可.【详解】解:∵线段CM 绕点C 顺时针旋转90︒得到线段CN ,∴MC NC =,90MCN ∠=︒,∵90ACB ∠=︒,4AC BC ==,∴ACM BCN ∠=∠,AB =∴△AMC ≌△BNC ,∴1BN AM ==,∵1AN AB BN ≥-=∴AN 的最小值为1;故答案为:1.【点睛】本题考查了全等三角形的判定与性质,勾股定理,解题关键是证明三角形全等,得出1BN AM ==,根据三角形三边关系取得最小值.三、解答题1、滑道OC 的长度为51cm .【分析】设OC m =cm ,可得出(15)BC m =-cm ,(12)AC m =-cm ,在在Rt △ABC 中,根据勾股定理可得m 的值,由此可得结论.【详解】解:设OC m =cm ,则由图①可知(15)BC OC AB m =-=- cm ,由图②可知(12)AC OC OA m =-=-cm ,∵90B ∠=︒,∴在Rt△ABC 中,根据勾股定理可得,222AB BC AC +=,∴22215(15)(12)m m +-=-,解得51m =,∴滑道OC 的长度为51cm .【点睛】本题考查勾股定理的应用,能结合撑杆AB 、BC 的长度始终保持不变正确表示出BC 和AC 是解题关键.2、(1)见解析;(2)【分析】(1)根据平行可得∠DBE =90°,再由HL 定理证明直角三角形全等即可;(2)构造Rt AHE ,利用矩形性质和勾股定理即可求出AE 长.【详解】(1)∵AC ∥BE ,∴∠C +∠DBE =180°.∴∠DBE =180°-∠C =180°-90°=90°.∴△ABC 和△DEB 都是直角三角形.∵点D 为BC 的中点,12AC BC =,∴AC =DB . ∵AB =DE ,∴Rt △ABC ≌Rt △DEB (HL ).(2)AE =过程如下:连接AE 、过A 点作AH ⊥BE ,∵∠C =90°,∠DBE =90°.∴AC BH ∥,AH BC ∥,∴AH =BC =4, 122BH AC BC ===,∴2EH EB EH =-=,在Rt AHE 中,AE =【点睛】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH =BC ,从而利用勾股定理求AE .3、(1)见详解;(2)见详解;(3)见详解.【分析】(1)先根据以AB 为边△ABC 是轴对称图形,得出△ABC 为等腰三角形,AB 长为3,画以AB 为腰的等腰直角三角形即可;(2)先根据勾股定理求出AB 的长,利用平移画出点C 即可;(3)先求出以AB 为底等腰直角三角形腰长AC C 即可.【详解】解:(1)∵以AB 为边△ABC 是轴对称图形,∴△ABC 为等腰三角形,AB 长为3,画以AB为直角边,点B为直角顶点△ABC如图也可画以AB为直角边,点A为直角顶点△ABC如图;(2)根据勾股定理ABAB,以点A为顶角顶点根据勾股定理构建横1竖3,或横3竖1;点A向左1格再向下平移3格得C1,连结AC1,C1B,得等腰△ABC1,点A向右3格再向上平移1格得C2,连结AC2,BC2,得等腰△ABC2,点A向右3格再向下平移1格得C3,连结AC3,BC3,得等腰△ABC3,点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰△ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰△ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰△ABC6;(3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理222AB AC BC=+,22+m m =,解得m =1竖2,或横2竖1得图形,点A 向右平移2格,再向下平移1格得点C 1,连结AC 1,BC 1,得等腰三角形ABC 1,点A 向左平移1格,再向下平移2格得点C 2,连结AC 2,BC 2,得等腰三角形ABC 2.【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键.4、(1)①17c <<或5;(2)①2或72或5;②图见解析.【分析】(1)①根据三角形的三边关系定理即可得;②分斜边长为b 和斜边长为c 两种情况,分别利用勾股定理即可得;(2)①先根据已知等式得出2a c b +=,再分,a c 中有一个为3,4b =;,a c 中有一个为4,3b =;,a c 中有一个为3,另一个为4三种情况,分别代入2a c b +=求解即可得; ②先画出射线AM ,再在射线AM 上作线段AB a ,然后在射线BM 上作线段BC c =,最后作线段AC 的垂直平分线,交AC 于点D 即可得.【详解】解:(1)①由三角形的三边关系定理得:4334c -<<+,即17c <<,故答案为:17c <<;②当斜边长为b 时,c ===当斜边长为c 时,2222345c a b ,综上,c 5,或5;(2)①由3a b c b ++=得:2a c b +=, 因此,分以下三种情况:当,a c 中有一个为3,4b =时,不妨设3a =,则17c <<,将3,4a b ==代入2a c b +=得:324c +=⨯,解得5c =,符合题设,当,a c 中有一个为4,3b =时,不妨设4a =,则17c <<,将4,3a b ==代入2a c b +=得:423c +=⨯,解得2c =,符合题设,当,a c 中有一个为3,另一个为4时,不妨设3,4a c ==,则17b <<,将3,4a c ==代入2a c b +=得:342b +=,解得72b =,符合题设, 综上,第三边的值是2或72或5,故答案为:2或72或5; ②由3a b c b ++=得:2a c b +=, 如图,线段AD 即为所求.【点睛】本题考查了勾股定理、三角形的三边关系定理、作线段和线段垂直平分线(尺规作图)等知识点,较难的是题(2)①,正确分三种情况讨论是解题关键.5、(1)点E ;(2)点H ;(3)①存在,点P 的坐标为(7,7);②60m -<<【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P 是线段OA 和OB 的“等距点”,可设点P (x ,x )且x >0,再由点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()222286x x x x -+=-+ ,即可求解;②根据点P 是线段OA 和OB 的“等距点”, 点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,根据OA =OB ,可得OP 平分线段AB ,再由点P 在OAB 内,可得0<<3a ,根据点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()22226a m a a a -+=-+,整理得到()()()2666m a m m -=+-,即可求解. 【详解】解:(1)根据题意得:()6612AD =--= ,633AE =-= ,AF = , 6OD = ,3OE = ,3OF = , ∴AE OE = ,∴点()3,0E 是点A 和点O 的“等距点”;(2)根据题意得:线段OA 在x 轴上,线段OB 在y 轴上,∴点()2,1G --到线段OA 的距离为1,到线段OB 的距离为2,点()2,2H 到线段OA 的距离为2,到线段OB 的距离为2,点()3,6I 到线段OA 的距离为6,到线段OB 的距离为3,∴点()2,2H 到线段OA 的距离和到线段OB 的距离相等,∴点()2,2H 是线段OA 和OB 的“等距点”;(3)①存在,点P 的坐标为(7,7),理由如下:∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上,∴可设点P (x ,x )且x >0,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点C (8,0),()6,0A ,∴()()222286x x x x -+=-+ ,解得:7x = ,∴点P 的坐标为(7,7);②如图,∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上,∴点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,∵()6,0A ,()0,6B .∴OA =OB =6,∴OP 平分线段AB ,∵点P 在OAB 内,∴当点P 位于AB 上时, 此时点P 为AB 的中点,∴此时点P 的坐标为6060,22++⎛⎫ ⎪⎝⎭,即()3,3 , ∴0<<3a ,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点(),0C m ,()6,0A ,∴()()22226a m a a a -+=-+, 整理得:()()()2666m a m m -=+- ,当6m = 时,点C (6,0),此时点C 、A 重合,则a =6(不合题意,舍去),当6m ≠时,62m a += , ∴6032m +<<,解得:60m -<< , 即若点P 在OAB 内,满足条件的m 的取值范围为60m -<<.【点睛】本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.。
2022—2023年学年度(沪科版)八年级数学下册章节练习18章勾股定理单元检测一(基础卷)

2022—2023年学年度(沪科版)八年级数学下册章节练习18章勾股定理单元检测一(基础卷)一、选择题(本大题共10小题,每小题4分,总计40分)1.如图,AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥于点D ,PE OB ⊥于点E ,若8OD =,10OP =,则PE 的长为( )A .5B .6C .7D .82.下列各组数据中的三个数作为三角形的边长.其中能构成直角三角形的是( )AB .2,3,4C .6,7,8D .13.将一根24cm 的筷子置于底面直径为15cm ,高为8cm 的圆柱形水杯中,如图,设筷子露在杯子外面的长度为cm h ,则h 的取值范围是( )A .17hB .716hC .1516hD .8h4.若直角三角形的两直角边长分别为a ,b ,且满足()2340a b -+-=,则该直角三角形的第三边长的平方为( ) A .25B .7C .25或7D .25或165.如图,在直线m 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是3,6,9,正放置的四个正方形的面积依次是1S ,2S ,3S ,4S ,则14S S +=( )A .6B .6.5C .7D .86.如图,两个较大正方形的面积分别为 576、625,则字母 A 所代表的正方形的边长为( )A .1B .49C .16D .77.如图,ABC ∆中,=6AC ,=8BC ,10AB =.AD 为ABC ∆的角平分线,CD 的长度为( )A .2B .52C .3D .1038.在Rt ABC △中,90ABC ∠=︒,13AC =,12AB =,则图中五个小直角三角形的周长之和为( )A .25B .18C .17D .309.如图,在长方形ABCD 中,10cm AD =,6cm AB =.将C ∠沿BE 折叠,使点C 的对应点C '落在AD 上,则DE 的长度为( )A .2cmB .2.5cmC .4cm 3D .8cm 310.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=︒,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长二、填空题(本大题共4小题,每小题5分,总计20分)11.在直角三角形中,两直角边长分别为2___________. 12.如图,△ABC 中,AC =BC ,∠C =90°,AD 平分∠CAB 交BC 于D ,DE ∠AB 于点E ,且AC =6cm ,则DE +BD 等于 ___.13.如图,菱形ABCD 的边长为4,60BAD ∠=︒,点E 是AD 边上一动点(不与A ,D 重合),点F 是CD 边上一动点,4DE DF +=,BEF △面积的最小值为______14.如图,等腰ABC 的底边BC 的长为6cm ,面积是224cm ,腰AB 的垂直平分线EF 分别交AB ,AC 于点E ,F ,若D 为边BC 的中点,M 为线段EF 上一动点,则BDM 周长的最小值为______cm .三、(本大题共2小题,每小题8分,总计16分)15.如图,AD BC ∥,90D ,点P 为CD 中点,BP 平分ABC ∠.(1)求证:AP 平分DAB ∠;(2)若30BPC ∠=︒,2BC =,则AD =______.16.已知一个三角形的两边长分别是3和4,第三边是方程2650x x -+=的根. (1)求这个三角形的周长. (2)求这个三角形的面积.四、(本大题共2小题,每小题8分,总计16分)17.为响应政府的“公园城市建设”号召,某小区进行小范围绿化,要在一块如图四边形空地上种植草皮,测得90B ,4m AB =,7m BC =,15m CD =,20m AD =,如果种植草皮费用是200元/2m ,那么共需投入多少钱?18.如图,正方形网络中的每个小正方形的边长都是1,任意连接这些小正方形的顶点,可得一些线段.请在所给网格中按下列要求画出图形.(1)如图,格点上有一点A ,画一条线段10AB,并说明理由.(2)以(1)中AB 为一边,画一个边长均为无理数的直角三角形,并说明理由. 五、(本大题共2小题,每小题10分,总计20分)19.如图,沿AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD =120°,BD =400米,∠D =30°.那么另一边开挖点E 离D 多远正好使A 、C 、E.732,结果精确到1米)?20.已知将边长分别为a和2b(a>b)的长方形分割成四个全等的直角三角形,如图1,再用这四个三角形拼成如图2所示的正方形,中间形成一个正方形的空洞.经测量得长方形的面积为24,正方形的边长为5.试通过你获取的信息,求a2+b2和a2﹣b2的值.六、(本大题共1小题,每小题12分,总计12分)21.请阅读《三角板中的学问》,并完成以下问题:三角板中的学问直角三角板是我们学习中常用的作图工具,我们知道一副直角三角板中,一个三角板是等腰直角三角形,另一个直角三角板有一个锐角为30︒,且30︒角所对的直角边是斜边的一半.数学小组的同学们在活动中进行了量一量、拼一拼的活动.(1)填空:如图∠,希望小组的同学们量出30︒的直角三角板最短直角边为6cm,则较长直角边约为.(2)探究一:智慧小组把一副直角三角形按如图∠所示方式叠放在一起,DE BC ∥,CE 与AB 交于点F ,求AFC ∠的度数并说明理由.(3)探究二:创新小组把一副直角三角形按如图∠所示方式叠放在一起,20CDE ∠=︒,求EFC ∠的度数并说明理由.七、(本大题共1小题,每小题12分,总计12分)22.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米/秒的速度收绳,10秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)八、(本大题共1小题,每小题14分,总计14分)23.如图,ABC 中,90ABC ∠=,6AB =,8BC =,10AC =,AD 平分BAC ∠,交BC 于点D .动点Q 从点B 发,按BC CA -的折线路径,以每秒1个单位长度的速度运动,设运动时间为t 秒.(1)当点Q 在AC 边上运动时,线段AQ ()0AQ >的长为______(用含t 的代数式表示): (2)当点Q 在AC 边上运动时,线段BQ 长度不可能是______(其序号即可). ∠7.2; ∠5.3; ∠4.8; ∠4.5.(3)设ADQ △的面积为S ,请用含t 的代数式表示S . (4)当ABQ 为轴对称图形时,请写出满足条件的t 的值.参考答案:1112.6cm13.14.1115.(1)证明:过点P 作PE AB ⊥于E ,AD BC ∥,90D ,18090C D ∴∠=︒-∠=︒,即PC BC ⊥,BP 平分ABC ∠,PE AB ⊥,PC BC ⊥,PC PE ∴=, ∠点P 是CD 的中点,PD PC ∴=,PE PD ∴=,又PE AB ⊥,PD AD ⊥,AP ∴平分DAB ∠;(2)解:90D ∠=︒,30BPC ∠=︒, 24PB BC ∴==,903060PBC ∠=︒-︒=︒PC ∴,∠点P 是CD 的中点,PD PC ∴== BP 平分ABC ∠,2120ABC PBC ∠∠∴==︒AD BC ∥,180********DAB ABC ∴∠=︒-∠=︒-︒=︒,由(1)知AP 平分DAB ∠, 1302DAP DAB ∴∠=∠=︒,∴在Rt ADP △中,2AP PD ==6AD ∴=故答案为:6.16.(1)解:()()510x x --=,50x -=或10x -=,15x ∴=,21x =,而134+=,∴三角形的第三边为5, ∴三角形的周长为34512++=;(2)222345+=, ∴这个三角形为直角三角形,∴ 三角形的面积为13462⨯⨯=.17.解:如图所示,连接AC .90B ∠=︒,24m AB =,7m BC =,22222247625AC AB BC ∴=+=+=,25m AC ∴=又15m CD =,20m AD =,222152025+=,即222AD DC AC +=,ACD ∴是直角三角形,1122ABCADCABCD S SSAB BC AD DC ∴=+=⋅⋅+⋅⋅四边形 2112472015234m 22=⨯⨯+⨯⨯= 所需费用为23420046800⨯=元. 答:共需投入46800元.18.(1)解:如图,则线段AB 即为所求作.根据勾股定理得:AB(2)解:如图,ABC 即为所求作(答案不唯一).AC BC =AB∠222+=,∠222AC BC AB +=,∠ABC 是直角三角形,且90BCA ∠=︒. 19.解:∠∠ABD =120°,∠D =30°,60EBD ∴∠=︒∠∠AED =120°﹣30°=90°,在Rt △BDE 中,BD =400m ,∠D =30°, ∠BE =12BD =200m ,∠DE(m ),答:另一边开挖点E 离D 346m ,正好使A ,C ,E 三点在一直线上. 20.解:根据题意得 a 2+b 2=52=25, a •2b =24,∠a 2+b 2+2ab=49, ∠a +b =7,由图2得(a -b )2=52-24=1, ∠a >b , ∠a -b=1,∠a 2﹣b 2=(a+b )(a -b )=7×1=7, ∠a 2+b 2=25,a 2﹣b 2=7.21.(1)解:经过测量知较长直角边约为10.4cm , 故答案为:10.4; (2)解:∠DE BC ∥, ∠30BCF E ∠=∠=︒,∠304575AFC BCF B ∠=∠+∠=︒+︒=︒; (3)解:∠20CDE ∠=︒,60FDE ∠=︒, ∠40FDC ∠=︒, ∠90C EFD ∠=∠=︒,∠90EFC DFC FDC DFC ∠+∠=∠+∠=︒, ∠40EFC FDC ∠=∠=︒.22.解:∠在Rt∠ABC 中,∠CAB =90°,BC =13米,AC =5米,∠AB 12(米),由题意,得CD =13-0.5×10=8(米),∠AD (米),∠BD =AB -AD =(12米,答:船向岸边移动了(12米.23.(1)解:∠90ABC ∠=,6AB =,8BC =,10AC = ∠18BC AC +=, ∠18AQ t =-, 故答案为:18t -;(2)解:过B 作BH AC ⊥于H ,如图1,∠1122ABC S AB BC BH AC ∆=⋅=⋅, ∠68 4.810AB BC BH AC ⋅⨯===, ∠ 4.8BQ BH ≥=∠当点Q 在BC 边上运动时,线段BQ 长度不可能是∠,故答案为:∠;(3)解:过D 作DE AC ⊥于E ,如图1,∠90ABC ∠=︒,AD 平分BAC ∠,∠BD DE =,∠8CD BD =-, ∠1122ADC S CD AB AC DE ∆=⋅=⋅, ∠()6810BD BD -=,∠3BD =,当03t ≤<时,1(3)6392S t t =⨯-⨯=-+. 当38t <≤时,1(3)6392S t t =⨯-⨯=-. 当818t <<时,13(18)32722S t t =⨯-⨯=-+. 综上所述()()()390339383278182t t S t t t t ⎧⎪-+≤<⎪=-<≤⎨⎪⎪+<<⎩;(4)解:当ABQ 为轴对称图形时,ABQ 是等腰三角形, ∠当点Q 在BC 边上运动时,∠90ABC ∠=︒,∠ABQ 是等腰直角三角形,∠6AB BQ ==,∠6t =;∠当点Q 在AC 边上运动时,ABQ 为轴对称图形,∠、如图2,当18AQ BQ t ==-时,ABQ 为轴对称图形,过Q 作QM AB ⊥于M ,∠AM BM =,∠90AMQ ABC ∠=∠=︒,∠QM BC ∥, ∠11852AQ CQ t AC ==-==, ∠13t =;∠、当186AQ AB t ==-=时,ABQ 为轴对称图形,∠12t =;∠、当6BQ AB ==时,ABQ 为轴对称图形,过B 作BN AC ⊥于N , ∠11922AN QN AQ t ===-, 由(2)知 4.8BN =,∠222AB BN AN -=, 即22216 4.892t ⎛⎫-=- ⎪⎝⎭,解得545t ,综上所述,当ABQ为轴对称图形时,t的值为6或13或12或545.。
达标测试沪科版八年级数学下册第18章 勾股定理综合测评试题(含详细解析)

八年级数学下册第18章勾股定理综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要()A.8 cm B.10 cm C.12 cm D.15 cm2、下列各组数据中,能构成直角三角形的三边的长的一组是()A.1,2,3 B.4,5,6 C.5,12,13 D.13,14,153、点P(-3,4)到坐标原点的距离是()A.3 B.4 C.-4 D.54、如图,点A在点O的北偏西30的方向5km处,AB OA.根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点B在点A的北偏东30方向5km处B.点B在点A的北偏东60︒方向5km处C.点B在点A的北偏东30方向处D.点B在点A的北偏东60︒方向km处5、如图,在△ABC中,BC=C=45°,若D是AC的三等分点(AD>CD),且AB=BD,则AB 的长为()A.2B C D.5 26、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则线段DE的长为()A.32B.3 C.910D.17、下列四组数据中,不能..作为直角三角形的三边长的是()A.5,13,12 B.6,8,10 C.9,12,15 D.3,4,68、如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则BE等于()A.2 B.103C.258D.1529、如图,A,B两地距公路l的距离分别为AC、BD,BD=4km,小华从A处出发到公路l上的点P处取一物品后去到B处,全程共18km,已知PC=5km,PD=3km,则A处距离公路l(AC)()A.13km B.12km C.km D.8km10、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为()A .10B .C .15D .10或第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如今人们锻炼身体的意识日渐增强,但是发现少数人保护环境的意识仍显淡薄,应提醒注意.下图是房山某公园的一角,有人为了抄近道而避开路的拐角ABC ∠(90ABC ∠=︒),于是在草坪内走出了一条不该有的“捷径路AC ” .已知30AB =米,40BC =米,他们踩坏了______米的草坪,只为少走______米的路.2、如图,在平面直角在坐标系中,四边形OACB 的两边OA ,OB 分别在x 轴、y 轴的正半轴上,其中90AOB ACB ∠=∠=︒,且CO 平分ACB ∠,若BC =AC =C 的坐标为______.3、如图,等腰△ABC 中,AB =AC =5,BC =6,BD ⊥AC ,则BD =__________________.4、如图,△ABC中,∠ACB=90°,AC=4,BC=3,射线CD与边AB交于点D,点E、F分别为AD、BD中点,设点E、F到射线CD的距离分别为m、n,则m+n的最大值为________.5、如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为 _____.三、解答题(5小题,每小题10分,共计50分)的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均1、图1、图2、图3均是55为1,点A、B均在格点上,在图1、图2、图3中,只用无刻度的直尺,在给定的网格内按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图1中,画一个ABP △,使得其中一个内角为45°.(2)在图2中,画一个等腰ABQ △,使得ABQ △面积等于52.(3)在图3中,画一个四边形ABMN ,使得180A M ∠+∠=︒.2、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.3、如图在55⨯的正方形网格中,每个小正方形的顶点称为格点.点A ,点B 都在格点上,按下列要求画图.(1)在图①中,AB为一边画ABC,使点C在格点上,且ABC是轴对称图形;(2)在图②中,AB为一腰画等腰三角形,使点C在格点上;(3)在图③中,AB为底边画等腰三角形,使点C在格点上.4、如图,把长方形纸片OABC放入直角坐标系中,使OA,OC分别落在x轴、y轴的正半轴上,连接AC,将△ABC沿AC翻折,点B落在点D,CD交x轴于点E,已知CB=8,AB=4(1)求AC所在直线的函数关系式;(2)求点E的坐标和△ACE的面积;(3)坐标轴上是否存在点P(不与A、C、E重合),使得△CEP的面积与△ACE的面积相等,若存在请直接写出点P的坐标.5、在△ABC中,AB=AC,点D在BA的延长线上,DE∥AC交BC的延长线于点E.(1)如图1,求证:DB=DE;(2)如图2,作△DBE的高EF,连结AE.若∠DEA=∠FEA,求证:∠AEB=45°;(3)如图3,在(2)的条件下,过点B作BG⊥AE于点G,BG交AC于点H,若CE=2,求AG的长.-参考答案-一、单选题1、B【分析】立体图形展开后,利用勾股定理求解.【详解】解:将长方体沿着AB边侧面展开,并连接'AB,如下图所示:由题意及图可知:'13138AB cm=,=+++=,''6AA cm两点之间,线段最短,故'AB的长即是细线最短的长度,''Rt AAB∆中,由勾股定理可知:'10===,AB cm故所用细线最短需要10cm.故选:B.【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此类问题的关键.2、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题.【详解】解:A.2221+23≠,不是直角三角形,故A不符合题意;B. 222≠,不是直角三角形,故B不符合题意;4+56C. 2225+12=13,是直角三角形,故C不符合题意;D. 22213+1415≠,不是直角三角形,故D不符合题意,故选:C.【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.3、D【分析】利用两点之间的距离公式即可得.【详解】P-到坐标原点(0,0)5,解:点(3,4)故选:D.【点睛】本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.4、D【分析】过A作AC∥OM交ON于C,作AD∥ON,求出AB及∠DAB即可得到答案.【详解】过A作AC∥OM交ON于C,作AD∥ON,如图:∵∠MON=90°,∠AOC=30°,∴∠AOM=120°,由作图可知,OB平分∠AOM,∠AOM=60°,∴∠AOB=12∴∠B=30°,在Rt△AOB中,OB=2OA=10,∴AB=∵∠AOC=30°,∠ACO=90°,∴∠CAO=60°,∴∠DAB=90°-∠BAC=∠CAO=60°,∴B在A北偏东60°方向处,故选:D.本题考查作图-基本作图、方向角、角平分线的作法等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.5、B【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理AB == 【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴(22222+2BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点,∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴AE =1,在Rt △ABE 中,根据勾股定理AB故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键.6、C【分析】过点F 作FG ⊥AB 于点G ,由∠ACB =90°,CD ⊥AB ,AF 平分∠CAB ,可得∠CAF =∠FAD ,从而得到CE =CF ,再由角平分线的性质定理,可得FC =FG ,再证得Rt ACF Rt AGF ≅,可得3AG AC == ,然后设FG CF x == ,则4BF x =- ,再由勾股定理可得32CE FC == ,然后利用三角形的面积求出125CD = ,即可求解. 【详解】解:如图,过点F 作FG ⊥AB 于点G ,∵∠ACB =90°,CD ⊥AB ,∴∠CDA =90°,∴∠CAF +∠CFA =90°,∠FAD +∠AED =90°,∵AF 平分∠CAB ,∴∠CAF =∠FAD ,∴∠CFA =∠AED =∠CEF ,∴CE =CF ,∵AF 平分∠CAB ,∠ACF =∠AGF =90°,∴FC =FG ,∵AF AF =,∴Rt ACF Rt AGF ≅,∴3AG AC == ,∵AC =3,AB =5,∠ACB =90°,∴BC =4,2BG AB AG =-= ,设FG CF x == ,则4BF x =- ,∵222FG BG BF += ,∴()222x 24x +=- , 解得:32x =, ∴32CE FC == , ∵1122AB CD AC BC ⨯=⨯ , ∴125CD = ,∴910 DE CD CE=-=.故选:C【点睛】本题主要考查了勾股定理,角平分线的性质定理,等腰三角形的判定和性质,熟练掌握勾股定理,角平分线的性质定理,等腰三角形的判定和性质是解题的关键.7、D【分析】根据勾股定理的逆定理进行判断即可.【详解】解:A、22251213+=,故A不符合题意.B、2226810+=,故B不符合题意.C、22291215+=,故C不符合题意.D、222346+≠,故D符合题意.故选:D.【点睛】本题主要是考查了勾股定理的逆定理,熟练利用勾股定理来判定三角形是否为直角三角形,是解决本题的关键.8、C【分析】连接EA,根据勾股定理求出BC,根据线段垂直平分线的性质得到EA=EB,根据勾股定理列出方程,解方程即可.【详解】解:连接EA,∵∠ACB =90°,AC =3,AB =5,∴BC 4,由作图可知,MN 是线段AB 的垂直平分线,∴EA =EB ,则AC 2+CE 2=AE 2,即32+(4﹣BE )2=BE 2,解得,BE =258, 故选:C .【点睛】本题考查了线段垂直平分线的作法和性质、勾股定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9、B【分析】由题意根据勾股定理先求出BP ,进而得出AP 并根据勾股定理即可得出AC 的长.【详解】解:∵43BD km PD km ==,,BD PD ⊥,∴5BP km =,∵18AP BP km +=,∴18513AP km =-=,∵5,PC km AC CP =⊥,∴12AC km =.故选:B.【点睛】本题考查勾股定理的实际应用,熟练掌握勾股定理即222+=a b c 进行分析是解题的关键.10、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解: ∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A .【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.二、填空题1、50 20【分析】根据勾股定理计算AC ,计算AB +BC -AC 的值即可.【详解】∵90ABC ∠=︒,30AB =,40BC =,∴AC (米),∴AB +BC -AC =30+40-50=20(米),故答案为:50,20.【点睛】本题考查了勾股定理,准确用定理计算是解题的关键.2、2128,55⎛⎫ ⎪⎝⎭【分析】取AB 的中点E ,连接OE ,CE 并延长交x 轴于点F ,根据直角三角形斜边 上的中线等于斜边的一半证明CE =OE =AE ,再进一步证明=90OEA ∠︒;由勾股定理求出AB =AO =BO =5;过点O 作OG ⊥OC 交CA 的延长线于点G ,证明△COG 访问团等腰直角三角形,可可求出OC =7;过点C 作CH ⊥x 轴,垂足为H ,设C (m ,n ),则OH =m ,CH =n ,AH =5-m ,根据勾股定理可得方程组2222227(5)m n m n ⎧+=⎪⎨-+=⎪⎩,求出方程组的解,取正值即可.【详解】解:取AB 的中点E ,连接OE ,CE 并延长交x 轴于点F ,如图,∵90ACB ∠=︒,OC 平分∠ACB , ∴11904522ACO ACB ∠=∠=⨯︒=︒∵,ACB AOB ∆∆均为直角三角形, ∴11,22CE AE AB OE AE AB ==== ∴OE CE AE ==∴,,ECO EOC EAC ECA EOA EAO ∠=∠∠=∠∠=∠∴2,2OEF EOC ECO ECO AEF ECA EAC ECA ∠=∠+∠=∠∠=∠+∠=∠∵OEA OEF AEF ∠=∠+∠∴22290OEA ECO ECA OCA ∠=∠+∠=∠=︒∴45EOA EAO ∠=∠=︒∴45ABO BOE ∠=∠=︒∴AOB ∆是等腰直角三角形,∴,AO BO OE AB =⊥∵BC AC ==由勾股定理得,AB =∴OE BE ==∴5AO BO ==过点O 作OE ⊥OC 交CA 的延长线于点G ,∵∠OCA =45°,∴∠G =45°,∴△COG 为等腰直角三角形,∴OC =OG ,∵∠BOC +∠COA =∠COA +∠AOG =90°,∴∠BOC =∠AOG ,∵∠OCB =∠OEA =45°,∴△COB ≌△GOA (ASA ),∴BC =AG =∵CG =AC +AG ==∵△OCE 为等腰直角三角形,∴OC =7过点C 作CH ⊥x 轴于点H ,设C (m ,n ),∴OH =m ,CH =n ,AH =5-m在Rt △CHO 和Rt △CHA 中,由勾股定理得,2222227(5)m n m n ⎧+=⎪⎨-+=⎪⎩解得,215m,285n =(负值舍去) ∴C (212855,) 故答案为:(212855,) 【点睛】本题主要考查了坐标玮图形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.3、245【分析】过点A 作AE BC ⊥交于点E ,由等腰三角形三线合一得132BE CE BC ===,由勾股定理求出AE ,由等面积法即可求出BD .【详解】如图,过点A 作AE BC ⊥交于点E ,∵ABC 是等腰三角形, ∴132BE CE BC ===,∴4AE =,∵BD AC ⊥,∴BC AE AC BD ⋅=⋅,即645BD ⨯=, 解得:245BD =, 故答案为:245. 【点睛】 本题考查等腰三角形的性质以及勾股定理,掌握等腰三角形三线合一是解题的关键. 4、2.5【分析】连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,首先根据中线的性质和三角形面积公式得出132FCE ABC S S ∆∆==,然后证明出当CD 的长度最小时,m +n 的值最大,然后根据垂线段最短和等面积法求出CD 的最小值,即可求出m +n 的最大值.【详解】解:连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,∵点E 是AD 的中点,点F 是BD 的中点,∴CE 是ACD ∆中AD 边上的中线,CF 是BCD ∆中BD 边上的中线, ∴12ACE DCE ACD S S S ∆∆∆==,12BCF DCF BCD S S S ∆∆∆==, ∴11111322222FCE DCE DCF ACD BCD ABC S S S S S S AC BC ∆∆∆∆∆∆=+=+==⨯⨯⨯=, ∴11322CD EM CD FN ++=, ∴()132CD EM FN +=,即()132CD m n +=, ∴()6CD m n +=,∴当CD 的长度最小时,m +n 的值最大,∴当CD AB ⊥时,CD 的长度最小,此时m +n 的值最大,∵△ABC 中,∠ACB =90°,AC =4,BC =3,∴AB 5, ∴162CD AB ⨯⨯=,解得:125CD =,∴将125CD =代入()6CD m n +=得: 2.5m n +=. 故答案为:2.5.【点睛】此题考查了勾股定理,中线的性质,三角形面积的应用,垂线段最短等知识,解题的关键是根据题意作出辅助线,正确分析出当CD AB ⊥时m +n 的值最大.5、79【分析】根据给出的数据找出规律:21a n =-,2b n =,21c n =+,由此求出n 的值,即可求出答案.【详解】由题可得:2321=-,422=⨯,2521=+,2831=-,623=⨯,21031=+,21541=-,824=⨯,21741=+,……,∴21a n =-,2b n =,21c n =+,∴当2165c n =+=时,8n =,∴28163x =-=,2816y =⨯=,∴631679x y +=+=,故答案为:79.【点睛】本题考查勾股定理,根据题目给出的数据找出规律是解题的关键.三、解答题1、(1)见解析(2)见解析(3)见解析【分析】(1)以AB为直角边画等腰直角三角形即可;(2)在点B右上一个格点处画点Q即可;(3)画出以AB为腰的等腰梯形ABMN即可.(1)解:如图所示,AB BP==ABP△是等腰直角三角形,其中∠APB=45°;(2)解:如图所示,AB AQ=1115332323112222 ABQS=⨯-⨯⨯-⨯⨯-⨯⨯=(3)解:如图所示,易证∠BAN =∠NMC ,故180BAN BMN ∠+∠=︒;【点睛】本题考查了网格作图,解题关键是熟悉网格特征,利用勾股定理等知识画图即可.2、(1)见解析;(2)x <-3;x >-3;(3)BC =【分析】(1)分别将x =0、y =0代入一次函数y =-2x -6,求出与之相对应的y 、x 值,由此即可得出点A 、B 的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x 轴的上下位置关系,即可得出不等式的解集;(3)由点A 、B 的坐标即可得出OA 、OB 的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x =0时,y =-2x -6=-6,∴一次函数y =-2x -6与y 轴交点C 的坐标为(0,-6);当y =-2x -6=0时,解得:x =-3,∴一次函数y =-2x -6与x 轴交点B 的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方.∴不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3.故答案是:x<-3,x>-3;(3)∵B(-3,0),C(0,-6),∴OB=3,OC=6,∴BC=【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.3、(1)见详解;(2)见详解;(3)见详解.【分析】(1)先根据以AB为边△ABC是轴对称图形,得出△ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股定理求出AB的长,利用平移画出点C即可;(3)先求出以AB为底等腰直角三角形腰长AC C即可.【详解】解:(1)∵以AB为边△ABC是轴对称图形,∴△ABC为等腰三角形,AB长为3,画以AB为直角边,点B为直角顶点△ABC如图也可画以AB为直角边,点A为直角顶点△ABC如图;(2)根据勾股定理ABAB,以点A为顶角顶点根据勾股定理构建横1竖3,或横3竖1;点A向左1格再向下平移3格得C1,连结AC1,C1B,得等腰△ABC1,点A向右3格再向上平移1格得C2,连结AC2,BC2,得等腰△ABC2,点A向右3格再向下平移1格得C3,连结AC3,BC3,得等腰△ABC3,点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰△ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰△ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰△ABC6;(3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理222AB AC BC=+,22+m m=,解得m=1竖2,或横2竖1得图形,点A向右平移2格,再向下平移1格得点C1,连结AC1,BC1,得等腰三角形ABC1,点A向左平移1格,再向下平移2格得点C2,连结AC2,BC2,得等腰三角形ABC2.【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键.4、(1)y=142x-+;(2)E(3,0),10;(3)P1(-2,0),P2(0,323),P3(0,-83).【分析】(1)先求出A、C的坐标,然后用待定系数法求解即可;(2)先证明CE=AE;设CE=AE=x,则OE=8-x,在直角△OCE中,OC2+OE2=CE2,则()22248-x x+=,求出x得到OE的长即可求解;(3)分P在x轴上和y轴上两种情况讨论求解即可.【详解】解:(1)∵OA ,OC 分别落在x 轴、y 轴的正半轴上,CB =8,AB =4.∴A (8,0)、C (0,4),设直线AC 解析式为y =kx +b ,∴804k b b +=⎧⎨=⎩, 解得:124k b ⎧=-⎪⎨⎪=⎩, ∴AC 所在直线的函数关系式为y =142x -+;(2)∵长方形OABC 中,BC ∥OA ,∴∠BCA =∠CAO ,又∵∠BCA =∠ACD ,∴∠ACD =∠CAO ,∴CE =AE ;设CE =AE =x ,则OE =8-x ,在直角△OCE 中,OC 2+OE 2=CE 2,则()2224+8-x =x ,解得:x =5;则OE =8-5=3,则E (3,0),∴S △ACE =12×5×4=10;(3)如图3-1所示,当P 在x 轴上时,∵S SSSS =S SSSS ,∴1102PE OC⋅=,∴5PE=,∵E点坐标为(3,0),∴P点坐标为(-2,0)或(8,0)(舍去,与A点重合)如图3-2所示,当P在y轴上时,同理可得1102PC OE⋅=,∴203 PC=,∵C点坐标为(0,4),∴P点坐标为(0,83-)或(0,323);综上所述,坐标轴上是在点P(-2,0)或(0,323)或(0,83-)使得△CEP的面积与△ACE的面积相等.【点睛】本题主要考查了求一次函数解析式,三角形面积,坐标与图形,勾股定理与折叠,等腰三角形的性质与判定,平行线的性质等等,解题的关键在于鞥个熟练掌握相关知识进行求解.5、(1)见详解;(2)见详解;(3【分析】(1)根据平行线的性质和等腰三角形的判定定理解答即可;(2)根据三角形的内角和解答即可;(3)过点C作CR⊥AE于R,过点R作RT⊥CE于T,先证明△ABG≌△CAR,再根据全等三角形的性质解答即可.【详解】证明:(1)∵AB=AC,∴∠B=∠ACB,∵DE∥AC,∴∠ACB=∠E,∴∠B=∠E,∴DB=DE;(2)令∠DEA=α,则∠FEA=α,∠FED=2α,∵EF是△DBE的高,∴EF⊥DB,∴∠DFE=90°,∴∠D=90°-∠DEF=90°-2α,∵∠B+∠DEB+∠D=180°,∴2∠DEB+90°-2α=180°,∴∠DEB=45°+α,∴∠AEB=∠DEB-∠DEA=45°+α-α=45°,(3)如图3,过点C作CR⊥AE于R,过点R作RT⊥CE于T,则∠CRE=∠CTR=∠ETR=90°,∵∠AEB=45°,∴∠RCE=∠ERT=45°=∠CRT,CE∴RC=2∵DE∥AC,∴∠CAR=∠DEA,∵BG⊥AE,∴∠BGE=90°,∴∠GBE=90°-∠AEB=45°,即∠GBE=∠AEB,∴∠ABG=∠ABC-∠GBE=∠DEB-∠AEB=∠DEA=∠CAR,又∵AB=AC,∠AGB=∠CRA=90°,∴△ABG≌△CAR(AAS),∴AG= RC【点睛】本题考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中等题型.。
完整版沪科版八年级下册数学第18章 勾股定理含答案

沪科版八年级下册数学第18章勾股定理含答案一、单选题(共15题,共计45分)1、如图:某港口P位于东西方向的海中线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“选航”寻每小时航行15海里,“海天”号每小时流行12海里。
它们离开港口一个半小时后分别位于A,B处,至程距30海里。
如来知道“远航”号沿东北方向航行,那么∠BPN=()度。
A.60B.45C.30D.无法确定2、已知一个直角三角形的两直角边长分别为3和4,则斜边长是()A.5B.6C.7D.3、如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AG,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则DE的长度为()A. B. C.3 D.4、如图,在正方OABC中,点B的坐标是(4,4),点E、F分别在边BC,BA 上,.若,则点F的纵坐标是()A.1B.C.2D.5、如图,矩形中,,,在数轴上,若以点A为圆心,对角线的长为半径作弧交数轴于点M,则点M表示的数为()A. B. C. D.6、已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.4C.D.5或7、如图,在正方形中,,点在边上,且,将沿折叠得到,延长交边于点,则的长为()A.2B.C.3D.8、下列四组线段中,可以构成直角三角形的是A.2,3,4B.3,4,5C.4,5,6D.7,8,99、下列各组数,可以作为直角三角形的三边长的是()A.2,3,4B.7,24,25C.8,12,20D.5,13,1510、三个正方形按图示位置摆放,S表示面积,则S的大小为 ( )A.10B.500C.300D.3011、如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正弦值为()A.1B.C.D.12、三角形的三边分别为a、b、c,由下列条件不能判断它是直角三角形的是()A. ,,B.C.D.13、在直角三角形中,两边长分别为3和4,则最长边的长度为()A.5B.4C.5或D.5或414、以下列各组数据为三角形的三边,能构成直角三角形的是()A.1cm,2cm,3cmB.2cm,2cm,2cmC.4cm,2cm,2cmD.cm,cm,1cm15、如图,PO是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24 cm,则⊙O的周长为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,C是以AB为直径的⊙O上一点,已知AB=10,BC=6,则圆心O到弦BC的距离是________.17、若抛物线y=x2﹣6x+c的顶点与原点的距离为5,则c的值为________.18、如图,x=________.19、一架长的梯子斜靠在一竖直的墙上,这时梯足距离墙底,如果梯子的顶端沿墙下滑,那么梯足将滑________ :20、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,点B、C的对应点分别为点B'、C′,AB′与BC相交于点D,当B′C′∥AB时,则CD=________.21、如图,长方体中, , , ,一只蚂蚁从点A出发,以4m/秒的速度沿长方体表面爬行到点C',至少需要________ 分钟.22、如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD =2,BD=3,则AC的长为________.23、四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为2的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM =4 EF,则正方形ABCD的面积为________24、在Rt△ABC中,AC=9,BC=12,则AB=________.25、如图,先有一张矩形纸片,,,点,分别在矩形的边,上,将矩形纸片沿直线折叠,使点落在矩形的边上,记为点,点落在处,连接,交于点,连接.下列结论:① ;②四边形是菱形;③ ,重合时,;④ 的面积的取值范围是.其中正确的________;(把正确结论的序号都填上).三、解答题(共5题,共计25分)26、在Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路:作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,列出方程求出x→再求出AD的长,从而计算三角形的面积.请你按照他们的解题思路完成解答过程.28、如图,在△ABC中,∠B 90°,AB 4,BC 2,以AC为边作△ACE,∠ACE 90°,AC=CE,延长BC至点D,使CD 5,连接DE.求证:△ABC∽△CED.29、在平面直角坐标系中,若△ABC的三个顶点的坐标分别为A(﹣4,1),B (﹣1,3),C(﹣4,3),求sinB的值.30、如图,将长AB=5cm,宽AD=3cm的长方形纸片ABCD折叠,使点A与C重合,折痕为EF,则AE长是多少?参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、B5、C6、D7、C8、B9、B10、D11、D13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
2022春八年级数学下册第18章勾股定理达标检测卷新版沪科版(含答案)
八年级数学下册新版沪科版:第十八章达标检测卷一、选择题(每题3分,共30分)1.下列各组线段中,能够组成直角三角形的一组是( )A.1,2,3 B.2,3,4C.4,5,6 D.1,2, 32.在平面直角坐标系中,点P(3,4)到原点的距离是( )A.3 B.4 C.5 D.±53.如图,在△ABC中,∠B=90°,AB=3,BC=1,AB在数轴上,以点A为圆心,AC长为半径作弧,交数轴的正半轴于点M,则M表示的数为( )A.2.1 B.10-1C.10D.10+14.以直角三角形的三边为直径向外作三个半圆,若有两个半圆形的面积分别为10π和18π,则第三个半圆形的面积为( )A.8π B.28π C.8π或28π D.无法确定5.已知直角三角形两边的长分别为3和4,则此三角形的周长为( ) A.12 B.7+7 C.12或7+7 D.以上都不对6.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC交AB于点D,E是垂足,连接CD,若BD=1,则AC的长是( )A.2 3 B.2 C.4 3 D.47.如图,a,b,c是3×3正方形网格中的3条线段,它们的端点都在格点上,则关于a ,b ,c 大小关系的正确判断是( )A .b <a <cB .a <b <cC .a <c <bD .b <c <a8.如图为某楼梯,测得楼梯的长为5米,高为3米,计划在楼梯表面铺地毯,则地毯的长度至少应为( )A .5米B .7米C .8米D .12米9.如图,圆柱体的底面圆周长为8 cm ,高AB 为3 cm ,BC 是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,则爬行的最短路程为( )A .4 cmB .5 cm C.73 cm D.7 cm 10.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为⎝ ⎛⎭⎪⎫12,0,点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( )A .132B .312C .3+192D .27二、填空题(每题3分,共18分)11.木工师傅要做扇长方形纱窗,做好后量得长为6分米,宽为4分米,对角线为7分米,则这扇纱窗________(填“合格”或“不合格”).12.如图,一棵树在离地面9米处断裂,树的顶部落在离底部12米处,则树断裂前高________米.13.如图,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P为对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值是________.14.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于________cm.15.如图,阴影部分是一个等腰直角三角形,则此等腰直角三角形的面积为________cm2.16.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为________.三、解答题(17,18题每题8分,19题7分,20题9分,其余每题10分,共52分) 17.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,则△ABC的形状是什么?18.如图,在△ABC中,CD⊥AB,AB=AC=13,BD=1.(1)求CD的长;(2)求BC的长.19.如图,某港口A有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个方向以每小时15海里的速度前进,2小时后,甲船到达M岛,乙船到达P岛,两岛相距34海里.你知道乙船是沿哪个方向航行的吗?20.如图,小文和她的同学在荡秋千,秋千AB在静止位置时,下端B距地面0.6 m,当秋千荡到AB1的位置时,下端B1距静止位置的水平距离EB1=2.4 m,距地面1.4 m,求秋千AB的长.21.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为:『P』,即『P』=|x|+|y|(其中“+”是四则运算中的加法).(1)求点A(-1,3),B(3+2,3-2)的勾股值『A』,『B』;(2)求满足条件『N』=3的所有点N围成的图形的面积.22.勾股定理神奇而美妙,它的证法多种多样,在学习了教材中介绍的证法以后,小华突发灵感,给出了如图所示拼图.两个全等的直角三角板ABC和直角三角板DEF,顶点F在BC边上,顶点C、D重合,连接AE、EB.设AB、DE交于点G.∠ACB=∠DFE =90°,BC=EF=a,AC=DF=b(a>b),AB=DE=c.请你回答以下问题:(1)填空:∠AGE=________°.(2)请用两种方法计算四边形ACBE的面积,并以此为基础证明勾股定理.答案一、1.D 2.C 3.B 4.C 5.C 6.A 7.B 8.B 9.B 10.B二、11.不合格12.24 13.6 14.7 15.12.5 16.(2)n-1三、17.解:∵a2+b2+c2+50=6a+8b+10c,∴a2+b2+c2-6a-8b-10c+50=0,即(a-3)2+(b-4)2+(c-5)2=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴根据勾股定理的逆定理可判定△ABC是直角三角形.点拨:本题利用配方法,先求出a,b,c的值,再利用勾股定理的逆定理可判定△ABC是直角三角形.18.解:(1)∵AB=13,BD=1,∴AD=13-1=12.在Rt△ACD中,CD=AC2-AD2=132-122=5.(2)在Rt△BCD中,BC=BD2+CD2=12+52=26.19.解:由题意知,AM=8×2=16(海里),AP=15×2=30(海里).因为两岛相距34海里,所以MP=34海里.因为162+302=342,所以AM2+AP2=MP2,所以∠MAP=90°.180°-90°-60°=30°,所以乙船是沿南偏东30°方向航行的.20.解:设AB=AB1=x m,∵BE=1.4-0.6=0.8(m),∴AE=AB-BE=(x-0.8)m.在△AEB1中,∠AEB1=90°,∴AB12=AE2+EB12,∴x2=(x-0.8)2+2.42,∴x=4,即秋千AB的长为4 m.21.解:(1) 『A』=|-1|+|3|=4.『B』=|3+2|+|3-2|=3+2+2-3=4.(2)设N(x,y),∵『N』=3,∴|x|+|y|=3.①当x≥0,y≥0时,x+y=3,即y=-x+3;②当x>0,y<0时,x-y=3,即y=x-3;③当x<0,y>0时,-x+y=3,即y=x+3;④当x≤0,y≤0时,-x-y=3,即y=-x-3.如图,满足条件『N』=3的所有点N围成的图形是正方形,面积是18.22.解:(1)90点拨:∵△ABC≌△DEF,∴∠EDF =∠CAB . ∵∠EDF +∠ACE =90°, ∴∠ACE +∠CAB =90°. ∴∠AGC =90°.∴∠AGE =180°-∠AGC =90°.(2)∵四边形ACBE 的面积=S △ACB +S △ABE =12AB ·DG +12AB ·EG =12AB ·(DG +EG )=12AB ·DE =12c 2, 四边形ACBE 的面积=S四边形ACFE+S △EFB =12(AC +EF )·CF +12BF ·EF =12(b +a )·b +12(a -b )·a =12b 2+12ab +12a 2-12ab =12a 2+12b 2,∴12c 2=12a 2+12b 2,即a 2+b 2=c 2.。
难点解析沪科版八年级数学下册第18章 勾股定理综合训练试卷(精选含答案)
八年级数学下册第18章 勾股定理综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC 中,90ABC ∠=︒,BD AC ⊥,垂足为D .如果6AC =,3BC =,则BD 的长为( )A .2B .32C .D 2、已知直角三角形的斜边长为5cm ,周长为12cm ,则这个三角形的面积( )A .24cmB .25cmC .26cmD .212cm3、如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为( )cm .A .15B .20C .18D .304、下列四组数中,不能构成直角三角形边长的一组数是( )A .0.3,0.4,0.5B .1C .14,16,20D .6,8,105、如图,在Rt △ABC 中,AB =6,BC =8,AD 为∠BAC 的平分线,将△ADC 沿直线AD 翻折得△ADE ,则DE 的长为( )A .4B .5C .6D .76、ABC 中,6045A ACB BD AC CE AB D E ∠∠==⊥⊥,,,,、 是垂足,CE 与BD 交于1F EF =,,则() DF =.A 1B 1C D7、如图所示,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,AD ,则BC 的长为( )A B C.D.8、如图,在△ABC中,已知AB=AC=3,BC=4,若D,E是边BC的两个“黄金分割”点,则△ADE 的面积为()A.10﹣B. 5 C D.20﹣9、有下列四个命题是真命题的个数有()个.①垂直于同一条直线的两条直线互相垂直;②有一个角为60︒的等腰三角形是等边三角形;③三边长3的三角形为直角三角形;④顶角和底边对应相等的两个等腰三角形全等.A.1 B.2 C.3 D.410、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B.那么它爬行的最短路程为()A.10米B.12米C.15米D.20米第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等腰Rt△ABC中,∠ABC=90°,点D为AC上的一点,AD=3CD=BD,作等腰Rt△BDE,且∠EBD=90°,则线段DE的长为_______.2、在一个长11cm,宽5cm的长方形纸片上,如图放置一根正三棱柱的木块,它的侧棱平行且大于纸片的宽AD,它的底面边长为1cm的等边三角形,一只蚂蚁从点A处到点C处的最短路程是________cm.3、同学们,我们在今后的学习中会学到这个定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图,在Rt△ABC 中,∠ACB =90°,若∠ABC =30°,则12AC AB =.问题:在Rt △ABC ,∠ACB =90°,∠ABC =30°,AC D 是边BC 的中点,点E 是斜边AB 上的动点,连接DE ,把△BDE 沿直线DE 折叠,点B 的对应点为点F .当直线DF ⊥AB 时,AE 的长为 _____.4、如图,线段10AB =,45A B ∠=∠=︒,AC BD ==E 、F 为线段AB 上两点从下面4个条件中:①5CE DF ==;②AF BE =;③7CE DF ==;④CEB DEA ∠=∠,选择一个条件,使得ACE 和BDF 全等.则所有满足的条件是______(填序号)5、如图,点P 是等边△ABC 内的一点,PA =6,PB =8,PC =10,若点P ′是△ABC 外的一点,且△P ′AB ≌△PAC ,则∠APB 的度数为___.三、解答题(5小题,每小题10分,共计50分)1、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A 坐标为(1,3),点B 坐标为(2,1);(2)请作出△ABC 关于y 轴对称的△A 'B 'C ',并写出点C '的坐标;(3)△ABC 是 三角形,理论依据 .2、如图,在△ABC 中,AB =7cm ,AC =25cm ,BC =24cm ,动点P 从点A 出发沿AB 方向以1cm/s 的速度运动至点B ,动点Q 从点B 出发沿BC 方向以6cm/s 的速度运动至点C ,P 、Q 两点同时出发.(1)求∠B 的度数;(2)连接PQ ,若运动2s 时,求P 、Q 两点之间的距离.3、如图,在Rt △ABC 中,∠C =90°,∠BAC =60°,AM 平分∠BAC ,AM 的长为15cm ,求BC 的长.4、如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =;(1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒).①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.5、如图,△ABC 中,∠ABC =45°,F 是高AD 和高BE 的交点,AC BD =2.求线段DF 的长度.-参考答案-一、单选题1、D【分析】先根据勾股定理求出AB ,再利用三角形面积求出BD 即可.【详解】解:∵90ABC ∠=︒,6AC =,3BC =,∴根据勾股定理AB ==,∵BD AC ⊥,∴S △ABC =1122AB BC AC BD ⋅=⋅,即113622BD ⨯=⨯⋅,解得:BD =故选择D .【点睛】 本题考查直角三角形的性质,勾股定理,三角形面积等积式,掌握直角三角形的性质,勾股定理,三角形面积等积式是解题关键.2、C【分析】设该直角三角形的两条直角边分别为a 、b ,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出2ab 的值,根据直角三角形的面积公式计算即可.【详解】解:设该直角三角形的两条直角边分别为a 、b ,根据题意可得:22251257a b a b ⎧+=⎨+=-=⎩①② 将②两边平方-①,得224ab =∴12ab = ∴该直角三角形的面积为2126ab cm = 故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键.3、A【分析】把圆柱沿蚂蚁所在的高剪开并展开在一个平面内,得到一个矩形,作A点关于DF的对称点B,分别连接BD、BC,过点C作CE⊥DH于点E,则BC就是蚂蚁到达蜂蜜的最短距离,根据勾股定理即可求得BC的长.【详解】把圆柱沿蚂蚁所在的高剪开并展开在一个平面内,得到一个矩形,作A点关于DF的对称点B,分别连接BD、BC,过点C作CE⊥DH于点E,如图所示:则DB=AD=4cm,由题意及辅助线作法知,M与N分别为GH与DF的中点,且四边形CMHE为长方形,∴CE=MH=9cm,EH=CM=4cm,∴DE=DH-EH=12-4=8cm,∴BE=DE+DB=8+4=12cm,在Rt△BEC中,由勾股定理得:15===,BC cm即蚂蚁到达蜂蜜的最短距离为 15cm,故选;:A.【点睛】本题考查了勾股定理,两点间线段最短,关键是把空间问题转化为平面问题解决,这是数学上一种重要的转化思想.4、C【分析】先分别求出两小边的平方和和最长边的平方,再看看是否相等即可.【详解】解:A .∵0.32+0.42=0.52,∴以0.3,0.4,0.5为边能组成直角三角形,故本选项不符合题意;B .∵12+2=2,∴以1C .∵142+162≠202,∴以14,16,20为边不能组成直角三角形,故本选项符合题意;D .∵62+82=102,∴以6,8,10为边能组成直角三角形,故本选项不符合题意;故选:C .【点睛】本题考查了勾股定理的逆定理,注意:如果一个三角形的两条边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形.5、B【分析】在Rt ABC ∆中利用勾股定理求出AC 长,利用折叠性质:得到ADE ADC ∆∆≌,求出对应相等的边,设DE =x ,在Rt BDE ∆中利用勾股定理,列出关于x 的方程,求解方程即可得到答案.【详解】解:∵AB=6,BC=8,∠ABC=90°,∴AC2222BC,6810∵AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,ADE ADC≌,∴∆∆∴A、B、E共线,AC=AE=10,DC=DE,∴BE=AE﹣AB=10﹣6=4,在Rt△BDE中,设DE=x,则BD=8﹣x,∵BD2+BE2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴DE=5,故选:B.【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键.6、A【分析】根据题意利用含60°的直角三角形性质结合勾股定理进行分析计算即可得出答案.【详解】解:如图,∵60,A CE AB ︒∠=⊥,∴906030ECA ︒︒︒∠=-=,∵BD AC ⊥,∴903060CFD BFE ︒︒︒∠=∠=-=,∵1EF =,∴22BF EF ==,∵45ACB ︒∠=,BD AC ⊥,∴BD CD =,设,2,22DF m BD CD m CF DF m ===+==,所以勾股定理可得:222(2)4m m m ++=,则2(1)3m -=解得:1m =或1m =(舍去),∴1DF =.故选:A.【点睛】本题考查含60°的直角三角形性质和勾股定理以及等腰直角三角形,熟练掌握相关的性质是解题的关键.7、B【分析】根据∠ADC =2∠B ,∠ADC =∠B +∠BAD 判断出DB =DA ,根据勾股定理求出DC 的长,从而求出BC 的长.【详解】解:∵∠ADC =2∠B ,∠ADC =∠B +∠BAD ,∴∠B =∠DAB ,∴BD =AD ,在Rt△ADC 中,∠C =90°,∴DC ,∴BC =BD +DC 故选:B .【点睛】本题考查了等角对等边,勾股定理,求得BD AD =是解题的关键.8、A【分析】过点A 作AF ⊥BC 于点F ,由题意易得2BF CF ==,再根据点D ,E 是边BC 的两个黄金分割点,可得2BE CD ===,根据勾股定理可得AF =28DE DF ==,然后根据三角形的面积计算公式进行求解.【详解】解:过点A 作AF ⊥BC 于点F ,如图所示:∵3AB AC ==,4BC =,∴2BF CF ==,∴在Rt △AFB 中,AF∵点D ,E 是边BC 的两个黄金分割点,∴2BE CD BC ===,∵4EF BE BF =-=,4DF CD CF =-=,∴DF =EF ,∴28DE DF ==,∴()1181022ADE S DE AF ===-△ 故选:A【点睛】 本题主要考查二次根式的运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键.9、C【分析】根据等边三角形的判定定理、勾股定理逆定理、全等三角形的判定判断即可.【详解】①:在同一平面内,垂直于同一条直线的两条直线互相垂直,故①错误;②:有一个角为60︒的等腰三角形是等边三角形,故②正确;③:222==3的三角形为直角三角形,故③正确;314④:顶角相等则等腰三角形三个角都对应相等,再加上底边对应相等,这两个等腰三角形全等,故④正确;综上是真命题的有3个;故选:C.【点睛】本题考查命题的真假,结合等边三角形的判定、勾股定理逆定理、全等三角形的判定等知识综合判断是解题的关键.10、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可.【详解】解:如图,(1)AB(2)AB15,由于15则蚂蚁爬行的最短路程为15米.故选:C .【点睛】本题考查了平面展开--最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算.二、填空题1、【分析】先根据三角形全等的判定定理证出EAB DCB ≅,再根据全等三角形的性质可得45AE CD BAE C ==∠=∠=︒,从而可得90DAE ∠=︒,然后在Rt ADE △中,利用勾股定理即可得.【详解】解:Rt ABC 是等腰三角形,且90ABC ∠=︒,,45AB CB BAC C ∴=∠=∠=︒,90CBD ABD ∠+∠=︒,3CD =CD ∴Rt BDE 是等腰三角形,且90EBD ∠=︒,BE BD ∴=,90ABE ABD ∠+∠=︒,ABE CBD ∴∠=∠,在EAB 和DCB 中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩, ()EAB DCB SAS ∴≅,45AE CD BAE C ∴==∠=∠=︒,90DAE BAC BAE ∠∴∠=∠+=︒,则在Rt ADE △中,DE =故答案为:【点睛】本题考查了等腰三角形的性质、全等三角形的判定与性质、勾股定理,正确找出两个全等三角形是解题关键.2、13【分析】将木块展开看作平面后,由两点之间线段最短知蚂蚁的最短距离为线段AC ,由勾股定理计算即可.【详解】将长方形纸片与木块展开后如图所示由两点之间线段最短可知蚂蚁的最短距离为线段AC此时AB 长度为11-1+2=12由勾股定理有AC即13AC =故答案为:13.【点睛】本题考查了图形的展开以及勾股定理,将正三棱柱的木块展开看作平面是解题的关键.3 【分析】如图1所示,设DF 与AB 交点为G ,先求出AB ==3BC ,由D 是BC 的中点,可以得到1322BD BC ==,由折叠的性质可知∠F =∠B =30°,BE =EF ,即可得到1324DG BD ==,1122EG EF BE ==,BG ==,由此即可求出AE 的长;如图2所示,同理可得1324DG BD ==,BG ==1122EG EF BE ==,则32BE BG GE BG =+==,AE AB BE =-=。
2022年沪科版八年级数学下册第18章 勾股定理综合练习试卷(精选含答案)
八年级数学下册第18章勾股定理综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,五根小木棒,其长度分别为5,9,12,13,15,现将它们摆成两个直角三角形,其中正确的是()A.B.C.D.2、若直角三角形的三边长为6,8,m,则2m的值为()A.10 B.100 C.28 D.100或283、如图,在Rt △ABC 中,AB =6,BC =8,AD 为∠BAC 的平分线,将△ADC 沿直线AD 翻折得△ADE ,则DE 的长为( )A .4B .5C .6D .74、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为( )A .10B .C .15D .10或5、为了测量学校的景观池的长AB ,在BA 的延长线上取一点C ,使得5AC =米,在点C 正上方找一点D (即DC BC ⊥),测得60CDB ∠=︒,30ADC ∠=︒,则景观池的长AB 为( )A .5米B .6米C .8米D .10米6、下列三个数为边长的三角形不是直角三角形的是( )A .3,3,B .4,8,C .6,8,10D .5,5,7、满足下列条件的△ABC ,不是直角三角形的是( )A .∠A :∠B :∠C =5:12:13B .a :b :c =3:4:5C .∠C =∠A ﹣∠BD .b 2=a 2﹣c 28、如图,在等腰1Rt OAA 中,190OAA ∠=︒,1OA =,以OA 1为直角边作等腰12Rt OA A ,以OA 2为直角边作等腰23Rt OA A ,则2n OA 的长度为( )A .2nB .C .2nD .29、在下列四组数中,不是..勾股数的一组是( ) A .15,8,7 B .4,5,6 C .24,25,7 D .5,12,1310、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .1BC .6,7,8D .2,3,4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD 是等腰三角形ABC 的顶角平分线,且AD =3,BC =8,则AB 的长为_____.2、如图,在平面直角坐标系中,点(0,3)A ,(2,5)B ,(3,2)M .在第一象限内找一点横坐标、纵坐标均为整数的点C ,使得点M 是ABC 的三边垂直平分线的交点,则点C 的坐标为___________.3、如图,湖面上有一朵盛开的红莲,它高出水面30cm .大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,已知红莲移动的水平距离为60cm ,则水深是______cm .4、如图,BD 是ABC 的角平分线,15AB =,9BC =,12AC =,则BD 的长为______.5、如果正整数a 、b 、c 满足等式a 2+b 2=c 2,那么正整数a 、b 、c 叫做勾股数,某同学将自探究勾股数的过程列成下表,观察表中每列数的规律,可知x +y 的值为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,已知△ABC 是等边三角形,BD 是AC 上的高线.作AE ⊥AB 于点A ,交BD 的延长线于点E .取BE 的中点M ,连结AM .(1)求证:△AEM 是等边三角形;(2)若AE =1,求△ABC 的面积.2、如图,点A 为x 轴负半轴上一点,点B 为y 轴正半轴上一点,AO a =,BO b =,且a 、b 满足a c =有意义.(1)若3c =,求AB 的长;(2)如图1,点C 与点A 关于y 轴对称,点P 在x 轴上(点P 在点A 左边),以PB 为直角边在PB 的上方作等腰直角△PDB ,试猜想AD 与PC 的关系并证明;(3)如图2,点M 为AB 中点,点E 为射线OA 上一点,点F 为射线BO 上一点,且90EMF ∠=︒,设AE m =,BF n =,请求出EF 的长度(用含m 、n 的代数式表示).3、如图①,CDE ∠是四边形ABCD 的一个外角,AD BC ∥,BC BD =,点F 在CD 的延长线上,FAB FBA ∠=∠,FG AE ⊥,垂足为G .(1)求证:①DC 平分BDE ∠;②BC DG AG +=.(2)如图②,若4AB =,3BC =,1DG =.①求AFD ∠的度数;②直接写出四边形ABCF 的面积.4、如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,点A ,B ,C 均落在格点上.(1)计算线段AB 的长度 ;(2)判断△ABC 的形状 ;(3)写出△ABC 的面积 ;(4)画出△ABC 关于直线l 的轴对称图形△A 1B 1C 1.5、在△ABC中,AB=AC,点D在BA的延长线上,DE∥AC交BC的延长线于点E.(1)如图1,求证:DB=DE;(2)如图2,作△DBE的高EF,连结AE.若∠DEA=∠FEA,求证:∠AEB=45°;(3)如图3,在(2)的条件下,过点B作BG⊥AE于点G,BG交AC于点H,若CE=2,求AG的长.-参考答案-一、单选题1、C【分析】根据勾股定理的逆定理逐一判断即可.【详解】A、对于△ABD,由于222+=≠,则此三角形不是直角三角形,同理△ADC也不是直角三角形,5910612故不合题意;B、对于△ABC,由于222+=≠,则此三角形不是直角三角形,同理△ADC也不是直角三角51319412形,故不合题意;C、对于△ABC,由于222+==,则此三角形是直角三角形,同理△BDC也是直角三角形,故51216913符合题意;D、对于△ABC,由于222+=≠,则此三角形不是直角三角形,同理△BDC也不是直角三角51216915形,故不合题意.故选:C【点睛】本题考查了勾股定理的逆定理,其内容是:两条短边的平方和等于长边的平方,则此三角形是直角三角形,为便于利用平方差公式计算,常常计算两条长边的平方差即两条长边的和与这两条长边的差的积,若等于最短边的平方,则此三角形是直角三角形.2、D【分析】根据勾股定理,分m 为斜边或m 为直角边计算即可.【详解】解:当m 为斜边时,m 2=62+82,∴m 2=100;当m 为直角边时,m 2=82-62=64-36=28,∴m 2的值为100或28.故选D .【点睛】本题主要考查勾股定理的知识,解答本题的关键是知道勾股定理的特点.3、B【分析】在Rt ABC ∆中利用勾股定理求出AC 长,利用折叠性质:得到ADE ADC ∆∆≌,求出对应相等的边,设DE =x ,在Rt BDE ∆中利用勾股定理,列出关于x 的方程,求解方程即可得到答案.【详解】解:∵AB =6,BC =8,∠ABC =90°,∴AC2222BC,6810∵AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,∴∆∆≌,ADE ADC∴A、B、E共线,AC=AE=10,DC=DE,∴BE=AE﹣AB=10﹣6=4,在Rt△BDE中,设DE=x,则BD=8﹣x,∵BD2+BE2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴DE=5,故选:B.【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键.4、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解:∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.5、D【分析】利用勾股定理求出CD 的长,进而求出BC 的长,AB BC AC =- 即可求解.【详解】解:∵DC BC ⊥,∴90DCB ∠=︒ ,∵30ADC ∠=︒,5AC =,∴210AD AC == ,∴CD =,∵60CDB ∠=︒,∴30B ∠=︒ ,∴2BD CD ==,∴15BC = ,∴15510m AB BC AC =-=-= ,故选:D .【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理.6、D【分析】根据勾股定理的逆定理,若两条短边的平方和等于最长边的平方,那么就能够成直角三角形来判断.【详解】解:A、32+32=(2,能构成直角三角形,故此选项不合题意;B、42+(2=82,能构成直角三角形,故此选项不符合题意;C、62+82=102,能构成直角三角形,故此选项不合题意;D、52+52≠(2,不能构成直角三角形,故此选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、∵∠A:∠B:∠C=5:12:13,∴∠C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∵b2=a2﹣c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.8、C【分析】利用等腰直角三角形的性质以及勾股定理分别求出各边长,进而得出答案.【详解】解:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA11;∵△OA1A2为等腰直角三角形,∴A1A2=OA1OA2OA1=2=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA323;∵△OA3A4为等腰直角三角形,∴A3A4=OA3,OA4OA3=4=4,∵△OA4A5为等腰直角三角形,∴A4A5=OA4=4,OA545.OA的长度为2n=2n,∴2n故选C.【点睛】本题考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.9、B【分析】利用勾股数的定义(勾股数就是可以构成一个直角三角形三边的一组正整数),最大数的平方=最小数的平方和,直接判断即可.【详解】解:A、222+=,故A不符合题意.8715B、222+≠,故B符合题意.456C、22272425+=,故C不符合题意.D、222+=,故D不符合题意.51213故选:B.【点睛】本题主要是考查了勾股数的判别,熟练掌握勾股数的定义,是求解该题的关键.10、A【分析】根据勾股定理的逆定理逐项判断即可得.【详解】解:A、222+==,此项能构成直角三角形;13B、2226+=≠,此项不能构成直角三角形;C、222+=≠,此项不能构成直角三角形;67858D、222+=≠,此项不能构成直角三角形;23134故选:A.【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题关键.二、填空题1、5【分析】由三线合一定理可得BD=CD=4,AD⊥BC,由此利用勾股定理求解即可.【详解】解:∵AD是等腰三角形ABC的顶角平分线,BC=8,∴BD=CD=4,AD⊥BC,∴∠ADB=90°,由勾股定理得:5AB=,故答案为:5.【点睛】本题主要考查了三线合一定理和勾股定理,熟知三线合一定理是解题的关键.2、(4,5)或(6,1)或(6,3)【分析】连接MA ,MB ,根据线段垂直平分线的性质结合勾股定理可求出MA MB MC ===C 点坐标为()a b ,,则MC =C 点在第一象限内,且横、纵坐标都为整数,即可确定a ,b 的值,即得出答案.【详解】如图,连接MA ,MB ,根据图可知MA MB ==∵点M 是△ABC 的三边垂直平分线的交点,∴MA MB MC ===设C 点坐标为()a b ,.根据题意可知00a b >>,,且a b ,都为整数.∴MC ==33a ->-,22b ->-.∴3123a b -=⎧⎨-=⎩或3123a b -=-⎧⎨-=⎩或3321a b -=⎧⎨-=⎩或3321a b -=⎧⎨-=-⎩, 解得:45a b =⎧⎨=⎩或25a b =⎧⎨=⎩(舍)或63a b =⎧⎨=⎩或61a b =⎧⎨=⎩. ∴C 点坐标为(4,5)或(6,1)或(6,3).故答案为:(4,5)或(6,1)或(6,3).【点睛】本题考查线段垂直平分线的性质,勾股定理,两点的距离公式.理解题意,结合线段垂直平分线的性质,分析出MA MB MC ==是解答本题的关键.3、45【分析】设水深h 厘米,则AB h =,30AC h =+,60BC =,利用勾股定理计算即可.【详解】红莲被吹至一边,花朵刚好齐及水面即AC 为红莲的长.设水深h 厘米,由题意得:Rt ABC 中,AB h =,30AC h =+,60BC =,由勾股定理得:222AC AB BC =+,即()2223060h h +=+,解得45h =.故答案为:45.【点睛】本题考查了勾股定理的应用,正确审题,明确直角三角形各边的长是解题的关键.4## 【分析】过点D 作DE AB ⊥于点E ,先用勾股定理的逆定理证明ABC 是直角三角形,进而根据角平分线的性质可得DE DC =,证明Rt DEB ≌Rt DCB △,设DC DE =x =,在Rt ADE 中,利用勾股定理求得x 的值,进而在Rt DCB △中,勾股定理即可求得BD 的值.【详解】解:如图,过点D 作DE AB ⊥于点E ,∵15AB =,9BC =,12AC =,∴22222225,912225AB BC AC =+=+=222AB BC AC ∴=+ABC ∴是直角三角形90C ∴∠=︒DC BC ∴⊥BD 是ABC 的角平分线,DE DC ∴=在Rt DEB 与Rt DCB △中DB DB DC DE =⎧⎨=⎩∴Rt DEB ≌Rt DCB △9BE BC ∴==1596AE AB BE ∴=-=-=设DC DE =x =,则12AD AC DC x =-=-在Rt ADE △中,222AD AE DE =+即()222126x x -=+ 解得92x =在Rt BDC 中BD ==【点睛】 本题考查了角平分线的性质与判定,勾股定理与勾股定理的逆定理,HL 证明三角形全等,掌握以上知识是解题的关键.5、79【分析】根据给出的数据找出规律:21a n =-,2b n =,21c n =+,由此求出n 的值,即可求出答案.【详解】由题可得:2321=-,422=⨯,2521=+,2831=-,623=⨯,21031=+,21541=-,824=⨯,21741=+,……,∴21a n =-,2b n =,21c n =+,∴当2165c n =+=时,8n =,∴28163x =-=,2816y =⨯=,∴631679x y +=+=,故答案为:79.【点睛】本题考查勾股定理,根据题目给出的数据找出规律是解题的关键.三、解答题1、(1)见解析;(2 【分析】(1)利用条件可求得∠E =60°且利用直角三角形的性质可得出ME =AM ,可判定△AEM 的形状;(2)由条件利用勾股定理可求得AB 和BD 的长,可求出△ABC 的面积.【详解】解:(1)∵△ABC 是等边三角形,BD 是AC 边上的高线,AE ⊥AB ,∴∠ABD =30°,∴∠E =60°,∵点M 是BE 的中点,∵在Rt△ABE 中,AM =12BE =EM ,∴△AEM 是等边三角形;(2)∵AE =1,∠EAB =90°,∠ABD =30°∴BE =2AE =2,由勾股定理得:AB∴AB =AC =BC∴AD =12AB∴BD 32=,∴S△ABC =1232 【点睛】本题主要考查等边三角形的判定和性质、勾股定理以及直角三角形中,30°所对的边是斜边的一半,掌握等边三角形的性质和判定是解题的关键.2、(1)AB =(2)AD =PC ,证明见解析;(3)EF 【分析】(1) 根据二次根式的非负性可求得3a b c ===,再结合勾股定理可求得AB 的值;(2)连接BC ,只需要证明△PBC ≌△DBA ,即可证明AD =PC ;(3)分情况讨论,当12AO OE AO 时,过点M 作MN ⊥x 轴,作MG ⊥y 轴,可证明△MEN ≌△MFG ,从而可得ME =MF ,EN =GF ,可借助m 、n 的代数式EN 和MN ,从而表示ME ,继而可得EF ,画图可知,其它两种情况同理可得.(1)解:∵a 、b满足a c 有意义,∴0a b -≥且0b a -≥,∴3a b c ===,即3AO =,3BO =,AB =(2)解:AD =PC ,证明如下:连接BC ,由(1)可得OA =OB =OC ,∵两个坐标轴垂直,∴∠OAB =∠ABO =∠OBC =∠OCB =45°,∴AB =BC ,∠ABC =90°,又∵△PDB 为等腰直角三角形,∴BP =BD ,∠DBP =90°,∴∠ABD =∠DBP +∠ABP =∠ABC +∠ABP =∠BPC ,在△PBC 和△DBA 中BD BP ABD BPC AB BC =⎧⎪∠=∠⎨⎪=⎩∴△PBC ≌△DBA (SAS )∴AD =PC .(3)当12AO OE AO时,过点M作MN⊥x轴,作MG⊥y轴,∴∠ANM=∠MGB=90°,由(2)可知∠OAB=∠ABO=45°,∴∠AMN=∠BMG=90°,∴AN=MN,MG=BG,∠NMG=90°,∵M为AB的中点∴AM=BM,∴△ANM≌△MGB(SSS),∴AN=MN=MG=BG,∵∠EMF=90°,∴∠EMN =90°-∠NMF =∠GMF ,在△MEN 和△MFG 中∵EMN GMF MN MG ANM MGB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MEN ≌△MFG (SAS ),∴EM =MF ,EN =GF ,∵AE m =,BF n =,∴=ENAN m GF n BG n AN , ∴2n m MN AN ,=2n m EN AN m , 在Rt △EMN 中,根据勾股定理2222222()()222n m n m m n ME EN MN , 在Rt △EMF 中,根据勾股定理2222222222m n m n EF ME MF mn ,当12OE AO或OE AO 时同理可证EF =故EF【点睛】本题考查勾股定理,全等三角形的性质和判定,坐标与图形,二次根式的非负性等.(1)中能根据二次根式的非负性得出a =b =c 是解题关键;(2)中正确构造辅助线,作出全等三角形是解题关键;(3)能借助全等三角形和线段的和差正确表示线段的长度是解题关键.3、(1)①见解析;②见解析;(2)①90°;②735【分析】(1)①根据等边对等角性质和平行线的性质证得BDC CDE ∠=∠即可;②过点F 作FH BD ⊥,垂足为H ,根据全等三角形的判定证明FDG FDH ≌△△(AAS )和Rt Rt AFG BFH ≌△△,再根据全等三角形的性质即可证得结论;(2)①AD ,BF 的交点记为O .由(1)结论可求得AD ,利用勾股定理在逆定理证得∠ABD =90°,根据三角形的内角和定了可推导出BDC FAB ∠=∠,再根据平角定义和四边形的内角和为360°求得∠AFD =90°;②过B 作BM ⊥AD 于M ,根据三角形等面积法可求得BM ,然后根据勾股定理求得FG ,进而由AFD ABD BCD S S S ++求解即可.【详解】(1)①证明:∵BC BD =,∴BCD BDC ∠=∠,∵AD BC ∥,∴BCD CDE ∠=∠,∴BDC CDE ∠=∠,∴DC 平分BDE ∠;②证明:如图①,过点F 作FH BD ⊥,垂足为H ,∵BDC CDE ∠=∠,又BDC FDH ∠=∠,CDE FDG ∠=∠,∴FDG FDH ∠=∠,∵FG AE ⊥,FH BD ⊥,∴90FGD FHD ∠=∠=︒,∵FD FD =,∴FDG FDH ≌△△(AAS ),∴FG FH =,DG DH =.∵FAB FBA ∠=∠,∴AF BF =.∴Rt Rt AFG BFH ≌△△(LH ),∴AG BH ==BD DH +.∴BC DG AG +=;(2)①如图②,AD ,BF 的交点记为O .由(1)知,AG BC DG =+,FOA DBO ∠=∠,BDC FDO ∠=∠,∵3BC BD ==,1DG =,∴3115AD AG DG BC DG DG =+=++=++=,在ABD △中,22234325AB BD +=+=,225AD =,∴222AB BD AD +=.∴90ABD ∠=︒.∵180FAO AFO AOF DBO BDO BOD ∠+∠+∠=∠+∠+∠=︒,又AOF BOD ∠=∠,AFO DBO ∠=∠.∴AFO BDO ∠=∠.∵180FAB FBA AFB ∠+∠+∠=︒,又FAB FBA ∠=∠, ∴1902FAB AFB ∠=︒-∠. ∵180BDC FDO ADB ∠+∠+∠=︒,又BDC FDO ∠=∠, ∴1902BDC BDO ∠=︒-∠. ∴BDC FAB ∠=∠.∵180BDC BDF ∠+∠=︒,∴180FAB BDF ∠+∠=︒∴360180AFD ABD FAB BDF ∠+∠=︒-∠-∠=︒.∴18090AFD ABD ∠=︒-∠=︒;②过B 作BM ⊥AD 于M ,∵∠ABD =90°,AB =4,BD =BC =3,AD =5, ∴ 125AB BD BM AD ⋅==, ∵AD ∥BC ,∴△BCD 边BC 上的高为125, ∴1112483432255ABD BCD S S +=⨯⨯+⨯⨯=, ∵∠AFD =90°,FG ⊥AE ,∴222AF FD AD +=,22222AF AG FD DG FG -=-=,∵DG =1,4AG BC DG =+=,AD =4+1=5,∴2225AF FD +=,2215AF FD -=,解得:25FD =,220AF =, ∴22220164FG AF AG =-=-=,∴FG =2, ∴1152522AFDS AD FG =⋅=⨯⨯=,∴四边形ABCF 的面积为AFD ABD BCD SS S ++=4873555+=. 【点睛】 本题考查等腰三角形的性质、平行线的性质、角平分线的定义、全等三角形的判定与性质、勾股定理及其逆定理、三角形的内角和定理、四边形的内角和、三角形的面积公式、等角的余角相等、解方程等知识,涉及知识点较多,综合性强,难度较难,解答的关键是熟练掌握相关知识的联系和运用. 4、(1(2)直角三角形(3)5(4)图形见解析【分析】(1)根据勾股定理计算即可;(2)求出BC 、AC 的长即可判断△ABC 的形状;(3)由(2)可知△ABC 是直角三角形,直接利用公式求面积;(4)分别画出A 、B 、C 关于直线l 的轴对称点111A B C 、、,再依次链接111A B C 、、即可.(1)AB (2)AC BC =∴22220AB AC BC +==∴△ABC 的形状是一个直角三角形(3)由(2)可知△ABC 是直角三角形∴11==22ABC S AB AC ∆⋅ (4)图形如图所示:【点睛】本题考查网格中作对称及利用勾股定理求边长,属于常规题,解题的关键是熟练在网格中找到线段所在的直角三角形.5、(1)见详解;(2)见详解;(3【分析】(1)根据平行线的性质和等腰三角形的判定定理解答即可;(2)根据三角形的内角和解答即可;(3)过点C 作CR ⊥AE 于R ,过点R 作RT ⊥CE 于T ,先证明△ABG ≌△CAR ,再根据全等三角形的性质解答即可.【详解】证明:(1)∵AB =AC ,∴∠B =∠ACB ,∵DE ∥AC ,∴∠ACB=∠E,∴∠B=∠E,∴DB=DE;(2)令∠DEA=α,则∠FEA=α,∠FED=2α,∵EF是△DBE的高,∴EF⊥DB,∴∠DFE=90°,∴∠D=90°-∠DEF=90°-2α,∵∠B+∠DEB+∠D=180°,∴2∠DEB+90°-2α=180°,∴∠DEB=45°+α,∴∠AEB=∠DEB-∠DEA=45°+α-α=45°,(3)如图3,过点C作CR⊥AE于R,过点R作RT⊥CE于T,则∠CRE=∠CTR=∠ETR=90°,∵∠AEB=45°,∴∠RCE=∠ERT=45°=∠CRT,∴RC∵DE∥AC,∴∠CAR=∠DEA,∵BG⊥AE,∴∠BGE=90°,∴∠GBE=90°-∠AEB=45°,即∠GBE=∠AEB,∴∠ABG=∠ABC-∠GBE=∠DEB-∠AEB=∠DEA=∠CAR,又∵AB=AC,∠AGB=∠CRA=90°,∴△ABG≌△CAR(AAS),∴AG= RC【点睛】本题考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中等题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
沪科版八年级下册第18章 勾股定理 单元测试卷
一、选择题(每题3分,共30分)
1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是
( )
A.25 B.14 C.7 D.7或25
2.直角三角形的一条直角边长是另一条直角边长的 ,斜边长为10,则它
的面积为( )
A.10 B.15 C.20 D.30
3. 如图,已知正方形 的面积为144,正方形 的面积为169,那么正
方形 的面积( )
A.313 B.144 C.169 D.25
4、下列说法中正确的是( )
A.已知cba,,是三角形的三边,则222cba
B.在直角三角形中,两边的平方和等于第三边的平方
C.在Rt△ 中,∠ °,所以222cba
D.在Rt△ 中,∠ °,所以
222
cba
5.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的
长不可能是( )
A.8 cm B.5 cm C.5.5 cm D.1 cm
6.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )
A
B
C
第3题图