高中数学重点——任意角的知识点总结
高中数学必修四1.1.1任意角_课件

B2 α O β A
探究二:象限角
思考4:为了进一步研究角的需要,我们 常在直角坐标系内讨论角,并使角的顶 点与原点重合,角的始边与x轴的非负半 轴重合,那么对一个任意角,角的终边 可能落在哪些位置? y 如何定义这些角? o
x
1)角的顶点于坐标原点重合
2)始边与X的非负半轴重合 终边落在第几象限就称角是第几象限
解:⑴∵-120º =-360º +240º , ⑶ ∵-950º12’=-3×360º+129º48’, ∴240º 的角与-120º 的角终边相同, ∴129º48’的角与-950º12’的角终边相同, 它是第三象限角. 它是第二象限角. ⑵ ∵640º =360º +280º , ∴280º 的角与640º 的角终边相同, 它是第四象限角.
记法:角 或 ,可简记为
思考3:度量一个角的大小,既要考虑旋转方 向,又要考虑旋转量,对于α =210°, =-150°,=-660°,你能用图形表示这 些角吗?你能总结一下作图的要点吗?
画图表示一个大小一定的角, 先画一条射线作为角的始边, 再由角的正负确定角的旋转 γ 方向,再由角的绝对值大小 确定角的旋转量,画出角的 终边,并用带箭头的螺旋线 B1 加以标注.
边
顶点 范围:0o≤α≤360o 边
307C: 反身翻腾 3周半(抱膝)
程菲跳: 踺子后手翻转体180度接前 直空翻540度
探究一:角的概念的推广
思考1:怎样升级角的定义,让它更科学 更合理? B 始边 终边
o A
角的定义:由平面内一条射线绕其 顶点 端点从一个位置旋转到另一个位置 所组成的图形.
必修四 第一章三角函数
1.1.1任意角
人教A版高中数学必修第一册5.1.1任意角课件

由图可知: ①420°是第一象限角. ②855°是第二象限角. ③-510°是第三象限角.
解题方法(任意角和象限角的表示)
1.判断角的概念问题的关键与技能. (1)关键:正确的理解角的有关概念,如锐角、平角等; (2)技能:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.
2.象限角的判定方法. (1)图示法:在坐标系中画出相应的角,视察终边的位置,确定象限. (2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的情势; 第二步,判断β的终边所在的象限; 第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.
答案:-25° 395°
题型分析 举一反三
题型一 任意角和象限角的概念
【例 1】 (1)给出下列说法: ①锐角都是第一象限角;②第一象限角一定不是负角;③小于 180°的角是钝角、直角或锐角;④始边和终边重合的角是零角. 其中正确说法的序号为________(把正确说法的序号都写上). (2)已知角的顶点与坐标原点重合,始边与 x 轴的非负半轴重合, 作出下列各角,并指出它们是第几象限角. ①420°,②855°,③-510°.
(2)写出与 α=-910°终边相同的角的集合,并把集合中适合不等 式-720°<β<360°的元素 β 写出来.
解析:(1)-885°=-1 080°+195°=(-3)×360°+195°. (2)与α=-910°终边相同的角的集合为{β|β=k·360°-910°,k∈Z}, ∵-720°<β<360°,即-720°<k·360°-910°<360°,k∈Z, ∴k取1,2,3. 当k=1时,β=360°-910°=-550°; 当k=2时,β=2×360°-910°=-190°; 当k=3时,β=3×360°-910°=170°.
高中数学任意角的三角函数及基本公式

高中数学任意角的三角函数及基本公式高中数学中,我们学习了任意角的三角函数及其基本公式。
在本文中,我将详细介绍任意角的概念以及正弦、余弦、正切等三角函数的定义和性质,同时也会重点介绍相关的基本公式。
首先,任意角是指一个角,并不限于特定的范围。
它可以是锐角、直角、钝角,也可以是超过360度的角。
为了方便起见,我们通常使用角的标准位置来描述任意角。
标准位置是指一个角的顶点位于坐标原点O,其中 initial side 落在 x 轴上方,terminal side 以逆时针方向转过的角。
在坐标平面中,我们用角的顶点和 terminal side 与 x 轴的夹角来表示这个角的大小。
这个夹角称为角的终边与 x 轴正半轴的夹角。
在任意角的基础上,我们引入了三角函数的概念。
在一个一元直角三角形中,我们可以定义正弦、余弦和正切这三个基本的三角函数。
设角A的终边与单位圆相交于点P(x, y),其中点P到圆心的距离为r=1、则正弦函数 sin(A) 定义为点P的y坐标,即 sin(A) = y;余弦函数 cos(A) 定义为点P的x坐标,即 cos(A) = x;正切函数 tan(A) 定义为 sin(A) 除以 cos(A),即 tan(A) = y/x。
在讨论三角函数的性质之前,我们先来了解一下单位圆。
单位圆是指半径为1的圆,圆心坐标为原点O(0,0)。
在单位圆上,以原点O为起点,以终边为终点的角A对应于圆弧∠POB。
角的度数等于角所对应的圆弧的长度,换句话说,角的度数等于弧度制下的角度。
因此,1弧度等于单位圆的半径。
接下来,我们来讨论一下正弦、余弦和正切函数的基本公式。
1.正弦函数的基本公式根据三角函数定义,我们可以得到 sin(A) = y,通过单位圆和直角三角形的关系,我们可以得到 sin(A) = \(\frac{y}{r}\) =\(\frac{y}{1}\) = y。
2.余弦函数的基本公式根据三角函数定义,我们可以得到 cos(A) = x,通过单位圆和直角三角形的关系,我们可以得到 cos(A) = \(\frac{x}{r}\) =\(\frac{x}{1}\) = x。
高中数学-三角函数知识点总结

三角函数知识点一、三角函数知识点 1.角的定义:(1)00~0360角的定义:从一点O 出发的两条射线OB OA ,所形成的图形叫做角,这点O 叫做角的顶点,射线OB OA ,叫做角的两边(2)任意角的定义:角可以看成是平面内一条射线绕着它的端点从一个位置OA 旋转到另一个位置OB 所形成的图形,端点O 叫做角的顶点,射线OA 叫做角的始边,射线OB 叫做角的终边2.规定:(1)正角:按逆时针方向旋转形成的角叫正角 (2)负角:按顺时针方向旋转形成的角叫负角 (3)零角:一条射线不作任何旋转形成的角叫零角这样,我们就把角的概念推广到了任意角,包括正角,负角,零角 注:角的度量需注意:既要考虑旋转方向,又要考虑旋转量3.终边相同的角:所有与α终边相同的角连同α在内组成的集合{}Z k k S ∈⋅+==,3600αββ 4.象限角和轴线角:将角放在直角坐标系中,让角的顶点与原点重合,角的始边与x 轴非负半轴重合,则(1)象限角:角的终边落在第几象限,则称该角为第几象限角 (2)轴线角:角的终边落在坐标轴上,则称该角为轴线角 5.1º的角的定义:规定周角的3601为1度的角,记作:01,这种用度作为单位来度量角的单位制叫做角度制6.1弧度角的定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1rad ,读作:1弧度,这种以弧度为单位来度量角的制度叫做弧度制7.弧度数(1)我们规定,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 (2)半径为R 的圆的圆心角α所对的弧长为l ,则角α的弧度数为Rl=α,角α的正负由α终边的旋转方向决定注:弧度制与角度制区别:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制,1弧度≠1度(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是周角的3601所对的圆心角的大小(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制; (4)以弧度和度为单位的角,都是一个与半径无关的定值 8.弧度制与角度制的换算(1)弧度制与角度制下的一些特殊角①角度制下零度的角:00,弧度制下零度的角:0rad , 区别数值相同,单位不同 ②角度制下平角:0180,弧度制下平角:πrad ③角度制下周角:0360,弧度制下平角:2πrad (2)弧度制与角度制的换算①角度化成弧度:=0360 π2 ,0180 π2 ,01 01745.0 ②弧度化成角度:π2 0360 ,π 0180 ,rad 1 '01857 注:角度和弧度互化9.扇形的弧长公式和面积公式(1)角度制下扇形的弧长公式:180Rn l π=;扇形的面积公式:3602R n S π=(2)弧度制下扇形的弧长公式:R l α=;扇形的面积公式:Rl R S 21212==α10.角度制下和弧度制下轴线角和象限角的集合 (1)轴线角的集合①终边在x 轴的非负半轴上{}Z k k x x ∈⋅=,3600={}Z k k x x ∈=,2π②终边在x 轴的非正半轴上{}Z k k x x ∈+⋅=,18036000={}Z k k x x ∈+=,2ππ ③终边在x 轴上{}Z k k x x ∈⋅=,1800={}Z k k x x ∈=,π④终边在y 轴的非负半轴上{}Z k k x x ∈+⋅=,9036000={}Z k k x x ∈=,2π ⑤终边在y 轴的非正半轴上{}Z k k x x ∈-⋅=,9036000={}Z k k x x ∈+=,2ππ⑥终边在y 轴上{}Z k k x x ∈+⋅=,9018000=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ⑦终边在坐标轴上{}Z k k x x ∈⋅=,900=⎭⎬⎫⎩⎨⎧∈=Z k k x x ,2π (2)象限角的集合①第一象限角的集合{}Z k k x k x ∈+⋅<<⋅,90360360000=⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ②第二象限角的集合{}Z k k x k x ∈+⋅<<+⋅,180360903600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,222ππππ③第三象限角的集合{}Z k k x k x ∈+⋅<<+⋅,2703601803600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ④第四象限角的集合{}Z k k x k x ∈+⋅<<+⋅,3603602703600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,22232ππππ ={}Z k k x k x ∈⋅<<-⋅,36090360000=⎭⎬⎫⎩⎨⎧∈<<-Z k k x k x ,222πππ11.两角的终边对称结论(1)α与β的终边关于x 轴对称Z k k ∈=+,2πβα (2)α与β的终边关于y 轴对称Z k k ∈+=+,2ππβα (3)α与β的终边关于原点轴对称Z k k ∈++=,2ππβα (4)α与β的终边共线Z k k ∈+=,πβα(5)α与β的终边关于直线x y =对称Z k k ∈+=+,22ππβα(6)α与β的终边关于直线x y -=对称Z k k ∈+=+,232ππβα (7)α与β的终边互相垂直Z k k ∈++=,2ππβα12.三角函数定义:(1)任意角的三角函数定义1:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边上任意一点P 的坐标为),(y x ,它到原点的距离022>+=y x r ,则 ①比值r y 叫做角α的正弦,记作αsin ,即=αsin r y ②比值r x 叫做角α的余弦,记作αcos ,即=αcos r x ③比值x y 叫做角α的正切,记作αtan ,即=αtan x y ④比值y x 叫做角α的余切,记作αcot ,即=αcot yx (2)任意角的三角函数定义2:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边与单位圆的交点为P ),(y x ,则 ①=αsin y ②αcos x ③=αtan xy④=αcot y x三角函数都是以角为自变量,以比值为函数值的函数,又由于角与实数是一一对应的,所以三角函数也可以看作是以实数为自变量的函数13.三角函数的定义域和值域三角函数定义域值域αsin =yR ]1,1[- αcos =y R]1,1[-αtan =y⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππR αcot =y{}Z k k x x ∈≠,πR14.三角函数值在各象限的符号αsin αcos αtan记法1:正弦上正,余弦右正,正切一三正 记法2:一全正,二正弦,三正切,四余弦 15.诱导公式:公式一:终边相同的角的同一三角函数值相等角度制下 弧度制下=+⋅)360sin(0αk αsin =+)2sin(απk αsin =+⋅)360cos(0αk αcos =+)2cos(απk αcos =+⋅)360tan(0αk αtan =+)2tan(απk αtan =+⋅)360cot(0αk αcot =+)2cot(απk αcot公式二:角度制下 弧度制下=+)180sin(0ααsin - =+)sin(απαsin - =+)180cos(0ααcos - =+)cos(απαcos - =+)180tan(0ααtan =+)tan(απαtan =+)180cot(0ααcot =+)cot(απαcot公式三:角度制下 弧度制下=-)180sin(0ααsin =-)sin(απαsin =-)180cos(0ααcos - =-)cos(απαcos - =-)180tan(0ααtan - =-)tan(απαtan - =-)180cot(0ααcot - =-)cot(απαcot -公式四:角度制下 弧度制下=-)sin(ααsin - =-)sin(ααsin - =-)cos(ααcos =-)cos(ααcos =-)tan(ααtan - =-)tan(ααtan - =-)cot(ααcot - =-)cot(ααcot -公式五:角度制下 弧度制下=-)90sin(0ααcos =-)2sin(απαcos=-)90cos(0ααsin =-)2cos(απαsin-)90tan(0ααcot =-)2tan(απαcot=-)90cot(0ααtan =-)2cot(απαtan公式六:角度制下 弧度制下=+)90sin(0ααcos =+)2sin(απαcos=+)90cos(0ααsin - =+)2cos(απαsin -=+)90tan(0ααtan - =+)2tan(απαtan -=+)90cot(0ααcot - =+)2cot(απαcot -公式七:角度制下 弧度制下=+)270sin(0ααcos - =+)23sin(απαcos -=+)270cos(0ααsin =+)23cos(απαsin=+)270tan(0ααcot - =+)23tan(απαcot -=+)270cot(0ααtan - =+)23cot(απαtan -公式八:角度制下 弧度制下=-)270sin(0ααcos - =-)23sin(απαcos -=-)270cos(0ααsin - =-)23cos(απαsin -=-)270tan(0ααcot =-)23tan(απαcot=-)270cot(0ααtan - =-)23cot(απαtan -记忆口诀:奇变偶不变符号看象限 16.部分特殊角的三角函数:αcos21 22 23 1αtan/3-1-33- 017.三角函数线:(1)有向线段:当角α的终边不在坐标轴上时,我们把MP 、OM 、AT 都看成带有方向的线段,这种带方向的线段叫有向线段规定:与坐标轴相同的方向为正方向(2)这几条与单位圆有关的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线注:(1)正弦线、余弦线、正切线分别解释了正弦函数x y sin =,余弦函数x y cos =、正切函数x y tan =的几何意义(2)正弦线、余弦线、正切线的方向与坐标轴正方向相同时,对应的三角函数值为正,与坐标轴正方向相反时,对应的三角函数值为负 18.同角三角函数的关系:(1)平方关系:1cos sin 22=+αα (2)商数关系:=αtan ααcos sin 、=αcot ααsin cos (3)倒数关系:1cot tan =αα 注意公式的变形:(1)1cos sin 22=+x x ⇒x x 22cos 1sin -=、x x 22sin 1cos -= (2)⇒=αααcos sin tan =αsin ααcos tan 、⇒=αααsin cos cot =αcos ααsin cot (3)ααααααcos sin ,cos sin ,cos sin -+的关系:①=+2)cos (sin ααααcos sin 21+ ②=-2)cos (sin ααααcos sin 21- ③=-++22)cos (sin )cos (sin αααα219.正弦函数x y sin =、余弦函数x y cos =、正切函数x y tan =的图像和性质 函数x y sin = x y cos = x y tan =图形定义域 RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ值域]1,1[-]1,1[-R最值当Z k k x ∈+=,22ππ时,有最大值当Z k k x ∈-=,22ππ时,有最大值当Z k k x ∈=,2π时,有最大值当Z k k x ∈+=,22ππ时,有最大值无最大值无最小值单调性在Zk k k ∈+-],22,22[ππππ上递增在Zk k k ∈++],232,22[ππππ上递减在Z k k k ∈-],2,2[πππ上递增在Z k k k ∈+],2,2[πππ上递减在Zk k k ∈+-),2,2(ππππ上递增奇偶性 奇函数偶函数奇函数周期性π2=Tπ2=Tπ=T 对称性关于Z k k x ∈+=,2ππ对称关于点Z k k ∈),0,(π中心对称关于Z k k x ∈=,π对称 关于点Zk k ∈+),0,2(ππ中心对称关于点Z k k ∈),0,2(π中心对称20.三角函数周期结论(1)函数B x A y ++=)sin(ϕω(其中0,≠ωA )的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,≠ωA )的周期=T ωπ2函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (2)函数)sin(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)cos(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (3)函数B x A y ++=)sin(ϕω(其中0,,≠B A ω)的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,,≠B A ω)的周期=T ωπ221.函数B x A y ++=)sin(ϕω)0,0(>>ωA 的图像的作法(1)图像变换法:函数B x A y ++=)sin(ϕω的图像可由正弦函数x y sin =经过一系列的变换得到:①先平移变换,再周期变换:x y sin =———————————→)sin(ϕ+=x y —————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω ②先周期变换,再平移变换:x y sin =———————————→)sin(x y ω=——————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω (2)五点作图法:函数B x A y ++=)sin(ϕω的图像画法:一个周期内起关键作用的五个点的横坐标可由=+ϕωx ππππ2,23,,2,0得到 22.函数变换结论: (1)平移变换01左右平移:①将函数)(x f y =的图象向左移a 个单位得函数)(a x f y +=的图象 ②将函数)(x f y ω=的图象向左移a 个单位得函数))((a x f y +=ω的图象02上下平移:将函数)(x f y =的图象向上移b 个单位得函数b x f y +=)(的图象(2)伸缩变换①函数)(x f y ω=的图象可由函数)(x f y =的图象上每一点的纵坐标不变,横坐标变为原来的ω1倍得到 ②函数)(x Af y =的图象可由函数)(x f y =的图象上每一点的横坐标不变,纵坐标变为原来的A 倍得到 (3)翻折变换①函数)(x f y =的图象可将函数)(x f y =的图像y 轴右侧的图像保留,y 轴左侧的图像由y 轴右侧的图像沿y 轴翻折得到②函数)(x f y =的图象可将函数)(x f y =的图像在x 轴上方的图像保留,x 轴下方的图像沿x 轴翻折到x 轴上方得到 23.两个函数的对称性结论(1)函数)(x f y -=与)(x f y =的图象关于x 轴对称 (2)函数)(x f y -=与)(x f y =的图象关于y 轴对称 (3)函数)(x f y --=与)(x f y =的图象关于原点对称 (4)函数)(1x fy -=与)(x f y =的图象关于x y =对称(5)函数)2(x a f y -=与)(x f y =的图象关于a x =对称(6)函数)2(x a f y --=与)(x f y =的图象关于点)0,(a 对称24.函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y )0,0(>>ωA 的奇偶性结论 (1)函数)sin(ϕω+=x A y 为奇函数⇔Z k k ∈=,πϕ(2)函数)sin(ϕω+=x A y 为偶函数⇔Z k k ∈+=,2ππϕ(3)函数)cos(ϕω+=x A y 为奇函数⇔Z k k ∈+=,2ππϕ(4)函数)cos(ϕω+=x A y 为偶函数⇔Z k k ∈=,πϕ 二、三角变换25.两角和与差的正弦余弦正切公式:(1)=+)sin(βαβαβαsin cos cos sin +,记作)(βα+ S (2)=-)sin(βαβαβαsin cos cos sin -,记作)(βα- S (3)=+)cos(βαβαβαsin sin cos cos -,记作)(βα+C (4)=-)cos(βαβαβαsin sin cos cos +,记作)(βα-C (5)=+)tan(βαβαβαtan tan 1tan tan -+,记作)(βα+T(6)=-)tan(βαβαβαtan tan 1tan tan +-,记作)(βα-T26.二倍角的正弦、余弦、正切公式 (1)=α2sin ααcos sin 2(2)=α2cos αα22sin cos -=1cos 22-α=α2sin 21-(3)=α2tan αα2tan 1tan 2- 注:二倍角公式的变形:(1)=+2)cos (sin ααααcos sin 21+;=-2)cos (sin ααααcos sin 21-(2)升幂缩角公式:=+αcos 12cos 22α;=-αcos 12sin 22α(3)降幂扩角公式:=α2sin 22cos 1α-;=α2cos 22cos 1α+ =α2sin 2α2cos 1-;=α2cos 2α2cos 1+27.半角公式:(1) =2sinα22cos 1α-±=2cosα22cos 1α+±=2tanααα2cos 12cos 1+-±(2)=2tanαααsin cos 1-=ααcos 1sin +28.辅助角公式: (1)=+θθcos sin b a )sin(22ϕ++x b a ,其中=ϕsin 22b a b +,=ϕcos 22b a a +(2)=+θθcos sin b a )cos(22ϕ-+x b a ,其中=ϕsin 22ba a +,=ϕcos 22ba b +29.万能公式=α2sin αα2tan 1tan 2+ =α2cos αα22tan 1tan 1+- =α2tan αα2tan 1tan 2- 30.积化和差公式=βαcos sin )]sin()[sin(21βαβα-++=βαsin cos )]sin()[sin(21βαβα--+ =βαcos cos )]cos()[cos(21βαβα-++ =βαsin sin )]cos()[cos(21βαβα--+-31.和差化积公式=+βαsin sin 2cos2sin2βαβα-+=-βαsin sin 2sin2cos2βαβα-+=+βαcos cos 2cos2cos2βαβα-+=-βαcos cos 2sin2sin2βαβα-+-。
2019A新高中数学必修第一册:1.1.3 任意角和弧度制复习小结

提示: 测出扇形半径, 再测出圆心角或弧长,
可用扇形弧在桌面上滚动而测弧长.
(1)
S1 S2
=
1
2 1
2
rl1 rl2
=
l1 l2
=
a1r a2r
=
a1 a2
.
B组 1. 每人准备一把扇子, 然后与本小组其他同学的
对比, 从中选出一把展开后看上去形状较为美观的扇
子, 并用计算器算出它的面积 S1. (1) 假设这把扇子是从一个圆面中剪下的, 而剩余
解: (2) “有人” 说法不正确.
分针每分钟顺时针转的度数为 36600=6.
而时针每分钟顺时针转
360 1260
=0.5,
11 12 1
10
2
9
3
8
4
765
时针与分针重合时, 角度相差 k·360, (终边重合)
设时针与分针经过 t 分钟重合, t≤1440 (24h),
则 6t=0.5t+k·360 (k 为重合次数),
知识要点
4. 和某范围内终边相同的角的集合
y
b
g
a
O
x
{g |a+k·360< g <b+k·360, kZ}.
终边在上半平面的角的集合
{g |k·360< g <180+k·360, kZ}.
终边在右半平面内角的集合
{g |-90+k·360< g <90+k·360, kZ}.
知识要点
5. 弧度制 弧长等于半径的圆心角叫做 1 弧度的角.
C(-
1 2
高中数学 任意角

S { | 45 k 360 , k Z } { | 225 k 360 , k Z } 45 2k 180 , k Z 45 (2k 1) 180 , k Z
α O
A
思考1:一般地,一条射线绕其端点旋转,既可以按逆时针方向旋 转,也可以按顺时针方向旋转. 你认为将一条射线绕其端点按逆时针方向旋转600所形成的角,与按 顺时针方向旋转600所形成的角是否相等?
60° -60° 60°
思考2:为了区分形成角的两种不同的旋转方向,可作怎样的规定? 如果一条射线没有作任何旋转,它还形成一个角吗?
问题提出
1.角是平面几何中的一个基本图形,角是可以度量大小的. 在平面几何中,角的取值范围如何? 角的范围:[00,3600].
╭╮ ●
●
●
●
●
锐角
直角
钝角
平角
周角
2.我们学习了0°~360°范围的角,但在实际问题中还会遇到其 他角.如在体操、花样滑冰、跳台跳水等比赛中,常常听到“转 体10800”、“转体12600”这样的解说.再如钟表的指针、拧动 螺丝的扳手、机器上的轮盘等,它们按照不同方向旋转所成的角, 不全是0°~3600范围内的角.因此,仅有0°~360°范围内的角 是不够的,我们必须将角的概念进行推广.
(3) 终边相同的角不一定相等, 终边相等的角有无数多个,它们相差3600的整数倍.
例1 在 0 360 范围内,找出与 95012'角终边相同的角, 并判断它是第几象限角.
95012' 129 48' 3 360
练1 写出与下列各角终边相同的角的集合S,并把S中在
高中数学三角函数知识点归纳总结

高中数学三角函数知识点归纳总结知识网络】三角函数是数学中的一种基本函数,广泛应用于各个领域。
在研究三角函数时,需要掌握弧长公式、同角三角函数的基本关系式、三角函数的角度制与任意角的概念、图像和性质、弧度制三角函数和角公式、倍角公式、差角公式等知识。
任意角的概念与弧度制】角是由沿x轴正向的射线围绕原点旋转所形成的图形,逆时针旋转为正角,顺时针旋转为负角,不旋转为零角。
同终边的角可表示为计算与化简的形式,也可以用证明恒等式的方式进行表达。
已知三角函数值求角时,可以利用如下公式:α=β+k360°(k为整数)在x轴上的角为α=k180°(k为整数),在y轴上的角为α=90°+k180°(k为整数)。
第一象限角、第二象限角、第三象限角和第四象限角的定义和表示方式不同。
需要区分第一象限角、锐角以及小于90的角。
弧度制】弧度制是一种角度表示方法,弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad。
角度与弧度的转化公式为1°=π/180 rad。
角度与弧度对应表可以帮助我们更好地理解它们之间的关系。
弧长和面积的计算公式分别为l=α×R和S=1/2×α×R^2.任意角的三角函数】三角函数包括正弦、余弦和正切。
它们的值可以通过终边上任意点的坐标和半径来计算。
三角函数值对应表可以帮助我们更好地理解它们的取值范围和变化规律。
三角函数在各象限中的符号:在第一象限,x、y坐标都为正,所以sinα>0,cosα>0,tanα>0.在第二象限,x坐标为负,y坐标为正,所以sinα>0,cosα<0,tanα<0.在第三象限,x、y坐标都为负,所以sinα0.在第四象限,x坐标为正,y坐标为负,所以sinα0,tanα<0.三角函数线:设任意角α的顶点在原点O,始边与x轴非负半轴重合,终边与单位圆相交于P(x,y),过P作x轴的垂线,垂足为M;过点A(1,0)作单位圆的切线,它与角α的终边或其反向延长线交于点T。
高中三角函数知识点

高中数学必修4知识点总结第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα=. 6、弧度制与角度制的换算公式:2360π= ,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭.7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、角三角函数的基本关系()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数 sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 14、函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++ ;③00a a a +=+= .⑸坐标运算:设()11,a x y =,()22,b x y = ,则()1212,a b x x y y +=++ .18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y = ,则()1212,a b x x y y -=-- . 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+;③()a b a b λλλ+=+ .⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)baCBAa b C C -=A -AB =B22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学重点——任意角的知识点总结
三角函数是高考数学的重点,也是历年各套高考题必考的知识点,更在每年的高考题中所占比例最大的知识点之一。
平常考试和高考中常考的三角函数,主要包括正弦函数sin y x =、余弦函数cos y x =、正切函数tan y x =,及这三个三角函数的复合函数,或是由这三个基本函数通过平移变换、伸缩变换、对称变换后得到的函数。
常见的考题类型主要有求最值、值域、周期、单调区间等。
本文的任意角还有课本后面章节的弧度制、三角函数概念,一起构成了三角函数诱导公式1-6推导的理论基础。
另外,学好这部分知识有助于快速判断角的终边位置,而判断角的终边位置是判断这个角对应的三角函数符号(正负)的一个关键步骤。
下面将本节的知识点整理和总结如下。
一、相关概念主要有任意角、相反角、象限角、轴线角。
1.任意角分为正角、负角和零角。
(1)正角:一条射线扰其端点按逆时针方向旋转形成的角。
(2)负角:一条射线扰其端点按顺时针方向旋转形成的角。
(3)零角:一条射线没有经过任何旋转形成的角。
度数大小为0︒。
【注1】零角的始边与终边重合,但始边与终边重合的角未必是零角,如360︒,720︒角等。
【注2】正常情况下,钟表的指针走动时形成的都是负角;调整时间逆时针回拨时才会出现正角。
2.相反角:旋转量相同但旋转方向不同的两个角叫做相反角。
3.象限角和轴线角
如果一个角的顶点与坐标系原点重合,角的起始边与x 轴的非负半轴重合,那么角的终边在第几象限,就称这个角为第几象限角。
如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,此时也称其为轴线角。
如:30︒为第一象限角,135︒为第二象限角,270︒终边在y 轴非负半轴(有时也说负半轴)上,为轴线角。
二、终边相同的角
1.因为在平面直角坐标系中,角的始边都是x 轴的非负半轴,所以终边相同的角相差的是一个周角的整数倍。
因为角旋转方向的逆和顺分别对应角在数值上的增大和减小,所以这个整数可以是正整数也可以是负整数。
具体见如下定义:
所有与角α终边相同的角,连同角α在内,可构成一个集合
{}360,S k k Z ββα==+⋅︒∈
即,任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和。
2.在任意角范围内表示终边相同的角时,一般在0︒到360︒间找一个相同终边的角,再加上360,k k Z ⨯︒∈。
3.角度制下的量度有“度”、“分(')”、“秒( '' )”。
相邻的量度间进制为60。
三、典型例题
例1.求与60︒的角终边相同的角的集合。
【答案】{}60360,k k Z αα=︒+⨯︒∈。
例2.在任意角范围内表示与525-︒终边相同的角。
【解析】在[)0,360︒︒内与525-︒终边相同的角为5252360195α=-︒+⨯︒=︒, ∴所有与525-︒终边相同的角可表示为195360,k k Z β=︒+︒∈。
例3.求所有终边在直线y x =上的角。
【解析】在[)0,360︒︒内,终边在y x =上的角有45︒和225︒,
与45︒终边相同的任意角可表示为
145'360452'180,'k k k Z α=︒+⨯︒=︒+⨯︒∈;①(180︒偶数倍) 与225︒终边相同的任意角可表示为
()2225'360452'1180,'k k k Z α=︒+⨯︒=︒++︒∈;②(180︒奇数倍) ①②合起来为45180,k k Z α=︒+⨯︒∈(180︒整数倍)
【注】终边在一条直线上的角,可以任选直线上的一个角再加上“180,k k Z ⨯︒∈”即可。
故上面例3的有“45180,k k Z α=︒+⨯︒∈”和“225180,k k Z α=︒+⨯︒∈”两种正确答案。