第12讲 二次函数(下)

合集下载

二次函数的图象与性质(讲)

二次函数的图象与性质(讲)

备战2015年中考二轮讲练测第一篇 专题整合篇专题07 二次函数的图象与性质(讲案)一讲考点——考点梳理(一)二次函数的定义一般地,形如______________ (其中0a ≠,a 、b 、c 是常数)的式子,称y 是x 的二次函数.(1)决定抛物线的开口方向①0a >⇔开口向上;②0a <⇔开口向下. (2)c 决定抛物线与y 轴交点的位置①0c >⇔图象与y 轴交点在x 轴上方;②0c =⇔图象过原点;③0c <⇔图象与y 轴交点在x 轴下方.(3)a b 、决定抛物线对称轴的位置(对称轴:2b x a=-) ①a b 、同号⇔对称轴在y 轴左侧;②0b =⇔对称轴是y 轴;③a b 、异号⇔对称轴在y 轴右侧,简记为:左同右异中为0. (4)顶点坐标24()24b ac b a a--,. (5)24b ac ∆=-决定抛物线与x 轴的交点情况.①△>0⇔抛物线与x 轴有两个不同交点;②△=0⇔抛物线与x 轴有唯一的公共点(相切);③△<0⇔抛物线与x 轴无公共点.(6)二次函数是否具有最大、最小值由a 判断.①当a>0时,抛物线有最低点,函数有最小值;②当a<0时,抛物线有最高点,函数有最大值.(7)242a b a b c a b c ±±+±+、、 的符号的判定:xb +与a 同号,若对称轴在直线x=1的右侧,则2a b +与a 异号,若对称轴为直线x=1,则2a b +=0,简记为:1的两侧判2a b +,左同右异中为0;②若对称轴在直线1x =-的左侧,则2a b -与a 异号,若对称轴在直线1x =-的右侧,则2a b -与a 同号,若对称轴为直线1x =-,则2a b -=0,简记为:-1的两侧判2a b -,左异右同中为0;③当1x =时,y a b c =++,所以a b c ++的符号由1x =时,对应的函数值y 的符号决定;当1x =-时,y a b c =-+,所以a b c -+的符号由1x =-时,对应的函数值y 的符号决定;当2x =时,42y a b c =++,所以42a b c ++的符号由2x =时,对应的函数值y 的符号决定;当2x =-时,42y a b c =-+,所以42a b c -+的符号由2x =-时,对应的函数值y 的符号决定; 简记为:表达式,请代值,对应y 值定正负; 对称轴,用处多,三种式子a 相约;y 轴两侧判a b 、,左同右异中为0;1的两侧判2a b +,左同右异中为0; -1两侧判2a b -,左异右同中为0. (三)二次函数的解析式①一般式:2y ax bx c =++()0≠a ,用于已知三点,求抛物线的解析式.②顶点式:2()y a x h k =-+,用于已知顶点坐标或最值或对称轴,求抛物线的解析式. ③交点式:()()21x x x x a y --=,其中1x 、2x 是二次函数与x 轴的两个交点的横坐标.若已知对称轴和在x 轴上的截距,也可用此式.(四)二次函数的增减性当0a >时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当0a <时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少.(五)二次函数图象的平移 方法一:顶点法二次函数的平移实际上是顶点的平移,故可以把原抛物线化为顶点式,通过顶点的平移来寻找答案。

近年中考数学第一部分基础知识过关第三章函数及其图象第12讲二次函数精练(2021年整理)

近年中考数学第一部分基础知识过关第三章函数及其图象第12讲二次函数精练(2021年整理)

(泰安专版)2019版中考数学第一部分基础知识过关第三章函数及其图象第12讲二次函数精练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((泰安专版)2019版中考数学第一部分基础知识过关第三章函数及其图象第12讲二次函数精练)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(泰安专版)2019版中考数学第一部分基础知识过关第三章函数及其图象第12讲二次函数精练的全部内容。

第12讲二次函数A组基础题组一、选择题1。

(2018陕西)对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C。

第三象限D。

第四象限2.(2018威海)抛物线y=ax2+bx+c(a≠0)如图所示,下列结论错误的是()A.abc〈0 B。

a+c<bC.b2+8a〉4acD.2a+b>03。

(2017甘肃兰州)将抛物线y=3x2—3向右平移3个单位长度,得到的新抛物线的表达式为( )A。

y=3(x—3)2—3 B。

y=3x2C。

y=3(x+3)2—3 D。

y=3x2-64.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()A。

—1≤x≤9 B.—1≤x〈9C。

—1〈x≤9D。

x≤—1或x≥95。

在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( )二、填空题6。

(2017湖北武汉)已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0)。

最新中考数学总复习第一部分数与代数 第12讲 二次函数

最新中考数学总复习第一部分数与代数 第12讲 二次函数
题23, 题23, 题23, 题10,
10, 题25
数的
题22,
题25 题25 题25 题25
图象和性质
题25
题25
二次函数的 题12,4 题7,
平移

3分
返回
数学
二次函数的
解析式
(待定系数)
二次函数图
象的
顶点坐标、
对称轴

25(1),
2分
题7,3分


25(1),
25(3),
1分
1分

23(3),
2
2
∴k= 3 或 k=2,即 k 的值为 2 或 3.
返回
数学
(3)∵函数的对称轴为直线 x=2,当 m<2 时,当 x=m 时,y 有最大
4m
1
值, 3 =- 3 (m-2)+3,解得 m=± 5,∴m=- 5;
4m
当 m≥2 时,当 x=2 时,y 有最大值,∴
3
9
=3,∴m= .
4
9
综上所述,m 的值为- 5或 4.

题23(1) 3分
23(2),
(2),6分 题
3分
25(3),
2分
题10,
3分

23(3),
1分
返回
数学
二次函数与一元
二次方程、不等

题25(1), 题10,3
题23(3),
25(1),

5分

4分
(与x轴的交点坐
2分
标)
题10,3分
题25(3), 题25(3), 题25(3), 题25(3),
A,B(-1,0)两点,则下列说法正确的是( D )

第12讲 方程与函数

第12讲 方程与函数

第十二讲 方程与函数方程思想是指在解决问题时,通过等量关系将已知与未知联系起来,建立方程或方程组,然后运用方程的知识使问题得以解决的方法;函数描述了自然界中量与量之间的依存关系,函数思想的实质是剔除问题的非本质特征,用联系和变化的观点研究问题.转化为函数关系去解决.方程与函数联系密切,我们可以用方程思想解决函数问题,也可以用函数思想讨论方程问题,在确定函数解析式中的待定系数、函数图象与坐标轴的交点、函数图象的交点等问题时,常将问题转化为解方程或方程组;而在讨论方程、方程组的解的个数、解的分布情况等问题时,借助函数图象能获得直观简捷的解答.【例题求解】【例1】 若关于的方程mx x =-1有解,则实数m 的取值范围 .思路点拨 可以利用绝对值知识讨论,也可以用函数思想探讨:作函数x y -=1,mx y =函数图象,原方程有解,即两函数图象有交点,依此确定m 的取值范围.【例2】设关于x 的方程09)2(2=+++a x a ax 有两个不相等的实数根1x ,2x ,且1x <1<2x ,那么a 取值范围是( )A .5272<<-aB .52>aC .72-<a D .0112<<-a思路点拨 因根的表达式复杂,故把原问题转化为二次函数问题来解决,即求对应的二次函数与x 轴的交点满足1x <1<2x 的a 的值,注意判别式的隐含制约.【例3】 已知抛物线0)21(22=+-+=a x a x y (0≠a )与x 轴交于两点A(1x ,0),B(2x ,0)( 1x ≠2x ).(1)求a 的取值范围,并证明A 、B 两点都在原点O 的左侧;(2)若抛物线与y 轴交于点C ,且OA+OB =OC 一2,求a 的值.思路点拨 1x 、2x 是方程0)21(22=+-+a x a x 的两个不等实根,于是二次函数问题就可以转化为二次方程问题加以解决,利用判别式,根与系数的关系是解题的切入点.【例4】 抛物线)1(2)45(2212+++-=m x m x y 与y 轴的正半轴交于点C ,与x 轴交于A 、B 两点,并且点B 在A 的右边,△ABC 的面积是△OAC 面积的3倍.(1)求这条抛物线的解析式;(2)判断△OBC 与△OCA 是否相似,并说明理由.思路点拨 综合运用判别式、根与系数关系等知识,可判定对应方程根的符号特征、两实根的关系,这是解本例的关键.对于(1),建立关于m 的等式,求出m 的值;对于(2)依m 的值分类讨论.【例5】 已知抛物线q px x y ++=2上有一点M(,0y )位于x 轴下方.(1)求证:此抛物线与轴交于两点;(2)设此抛物线与x 轴的交点为A(1x ,0),B(,0),且1x <2x ,求证:1x <0x <2x .思路点拨 对于(1),即要证042>-q p ;对于(2),即要证0))((2010<--x x x x .注:(1)抛物线与x 轴交点问题常转化为二次方程根的个数、根的符号特征、根的关系来探讨,需综合运用判别式、韦达定理等知识.(2)对较复杂的二次方程实根分布问题,常转化为用函数的观点来讨论,基本步骤是:在直角坐标系中作出对应函数图象,由确定函数图象大致位置的约束条件建立不等式组.(3) 一个关于二次函数图象的命题:已知二次函数c bx ax y ++=2(0≠a )的图象与x 轴交于A (1x ,0),B(,0)两点,顶点为C .①△ABC 是直角三角形的充要条件是:△=442=-ac b .②△ABC 是等边三角形的充要条件是:△=1242=-ac b学历训练1.已知关于x 的函数1)1(2)6(2++-++=m x m x m y 的图象与x 轴有交点,则m 的取值范围是 .2.已知抛物线23)1(2----=k x k x y 与x 轴交于A (α,0),B(β,0)两点,且1722=+βα,则=k .3.已知二次函数y=kx 2+(2k -1)x —1与x 轴交点的横坐标为x 1、x 2(x 1<x 2),则对于下列结论:①当x=-2时,y=l ;②当x>x 2,时,y>O ;③方程kx 2+l(2k -1)x —l=O 有两个不相等的实数根x 1、x 2;④x 1<-l ,x 2>-l ;⑤x 2-x 1=kk 241+,其中所有正确的结论是 (只需填写序号) .4.设函数)5(4)1(2+-+-=k x k x y 的图象如图所示,它与x 轴交于A 、B 两点,且线段OA 与OB 的长的比为1:4,则k =( ).A .8B .一4C .1lD .一4或115.已知:二次函数y =x 2+bx+c 与x 轴相交于A(x 1,0)、B(x 2,0)两点,其顶点坐标为P(-2b ,4b -4c 2),AB =|x 1-x 2|,若S △APB =1,则b 与c 的关系式是 ( ) A .b 2-4c+1= 0 B .b 2-4c -1=0C .b 2-4c+4=0D .b 2-4c -4=06.已知方程1+=ax x 有一个负根而且没有正根,那么a 的取值范围是( )A .a >-1B .a =1C .a ≥1D .非上述答案7.已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图,二次函数y=ax 2+bx +c (a≠0)的图象经过点A 、B ,与y 轴相交于点C .(1)a 、c 的符号之间有何关系?(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证a 、c 互为倒数;(3)在(2)的条件下,如果b=-4,AB=43,求a 、c 的值.8.已知:抛物线c bx ax y ++=2过点A(一1,4),其顶点的横坐标为21,与x 轴分别交于B(x 1,0)、C(x 2,0)两点(其中且1x <2x ),且132221=+x x . (1)求此抛物线的解析式及顶点E 的坐标;(2)设此抛物线与y 轴交于D 点,点M 是抛物线上的点,若△MBO 的面积为△DOC 面积的32倍,求点M 的坐标. 9.已知抛物线m mx x y 223212--=交x 轴于A (1x ,0)、B (2x ,0),交y 轴于C 点,且1x <0<2x ,()1122+=+CO OB AO .(1)求抛物线的解析式;(2)在x 轴的下方是否存在着抛物线上的点P ,使∠APB 为锐角,若存在,求出P 点的横坐标的范围;若不存在,请说明理由.10.设m 是整数,且方程0232=-+mx x 的两根都大于59-而小于73,则= .11.函数732+-=x x y 的图象与函数63322+-+-=x x x x y 的图象的交点个数是 .12.已知a 、b 为抛物线2))((----=d c x c x y 与x 轴交点的横坐标,b a <,则b c c a -+-的值为 .13.是否存在这样的实数k ,使得二次方程0)23()12(2=+--+k x k x 有两个实数根,且两根都在2与4之间?如果有,试确定k 的取值范围;如果没有,试述理由.14.设抛物线452)12(2++++=a x a x y 的图象与x 轴只有一个交点. (1)求a 的值;(2)求61832-+a a 的值.15.已知以x 为自变量的二次函数23842---=n nx x y ,该二次函数图象与x 轴的两个交点的横坐标的差的平方等于关于x 的方程0)4)(1(2)67(2=++++-n n x n x 的一整数根,求n 的值.16.已知二次函数的图象开口向上且不过原点O ,顶点坐标为(1,一2),与x 轴交于点A ,B ,与y 轴交于点C ,且满足关系式OB OA OC ⋅=2.(1)求二次函数的解析式;(2)求△ABC 的面积.17.设p 是实数,二次函数p px x y --=22的图象与x 轴有两个不同的交点A (1x ,0)、B(2x ,0).(1)求证:032221>++p x px ;(2)若A 、B 两点之间的距离不超过32-p ,求P 的最大值. (参考答案。

2025高考数学必刷题 第12讲、函数与方程(学生版)

2025高考数学必刷题  第12讲、函数与方程(学生版)

第12讲函数与方程知识梳理一、函数的零点对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.二、方程的根与函数零点的关系方程()0f x =有实数根⇔函数()y f x =的图像与x 轴有公共点⇔函数()y f x =有零点.三、零点存在性定理如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0,f c c =也就是方程()0f x =的根.四、二分法对于区间[],a b 上连续不断且()()0f a f b ⋅<的函数()f x ,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.求方程()0f x =的近似解就是求函数()f x 零点的近似值.五、用二分法求函数()f x 零点近似值的步骤(1)确定区间[],a b ,验证()()0f a f b ⋅<,给定精度ε.(2)求区间(),a b 的中点1x .(3)计算()1f x .若()10,f x =则1x 就是函数()f x 的零点;若()()10f a f x ⋅<,则令1b x =(此时零点()01,x a x ∈).若()()10f b f x ⋅<,则令1a x =(此时零点()01,x x b ∈)(4)判断是否达到精确度ε,即若a b ε-<,则函数零点的近似值为a (或b );否则重复第(2)—(4)步.用二分法求方程近似解的计算量较大,因此往往借助计算完成.【解题方法总结】函数的零点相关技巧:①若连续不断的函数)(x f 在定义域上是单调函数,则)(x f 至多有一个零点.②连续不断的函数)(x f ,其相邻的两个零点之间的所有函数值同号.③连续不断的函数)(x f 通过零点时,函数值不一定变号.④连续不断的函数)(x f 在闭区间][b a ,上有零点,不一定能推出0)()(<b f a f .必考题型全归纳题型一:求函数的零点或零点所在区间【例1】(2024·广西玉林·博白县中学校考模拟预测)已知函数()h x 是奇函数,且()()2f x h x =+,若2x =是函数()y f x =的一个零点,则(2)f -=()A .4-B .0C .2D .4【对点训练1】(2024·吉林·通化市第一中学校校联考模拟预测)已知0x 是函数()tan 2f x x =-的一个零点,则0sin 2x 的值为()A .45-B .35-C .35D .45【对点训练2】(2024·全国·高三专题练习)已知函数()()()222,log ,log 2x f x x g x x x h x x =+=+=-的零点依次为,,a b c ,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<【对点训练3】(2024·全国·高三专题练习)已知()e ln 2x f x x =++,若0x 是方程()()e f x f x -'=的一个解,则0x 可能存在的区间是()A .()0,1B .()1,2C .()2,3D .()3,4【解题总结】求函数()x f 零点的方法:(1)代数法,即求方程()0=x f 的实根,适合于宜因式分解的多项式;(2)几何法,即利用函数()x f y =的图像和性质找出零点,适合于宜作图的基本初等函数.题型二:利用函数的零点确定参数的取值范围【例2】(2024·山西阳泉·统考三模)函数()22log f x x x m =++在区间()1,2存在零点.则实数m 的取值范围是()A .(),5-∞-B .()5,1--C .()1,5D .()5,+∞【对点训练4】(2024·全国·高三专题练习)函数3()2xf x a x=--的一个零点在区间()1,3内,则实数a 的取值范围是()A .()7,+∞B .(),1-∞-C .()(),17,-∞-+∞ D .()1,7-【对点训练5】(2024·河北·高三学业考试)已知函数2()21x f x a =-+是R 上的奇函数,若函数(2)y f x m =-的零点在区间()11-,内,则m 的取值范围是()A .11(,)22-B .(11)-,C .(2,2)-D .()01,【对点训练6】(2024·浙江绍兴·统考二模)已知函数()2ln f x x ax b =++,若()f x 在区间[]2,3上有零点,则ab 的最大值为__________.【对点训练7】(2024·上海浦东新·高三上海市进才中学校考阶段练习)已知函数()sin sin f x ax a x =-在(0,2π)上有零点,则实数a 的取值范围___________.【解题总结】本类问题应细致观察、分析图像,利用函数的零点及其他相关性质,建立参数关系,列关于参数的不等式,解不等式,从而获解.题型三:方程根的个数与函数零点的存在性问题【例3】(2024·黑龙江哈尔滨·哈尔滨三中校考模拟预测)已知实数x ,y满足2y +=,e 5x x +=,则2x y +=________.【对点训练8】(2024·新疆·校联考二模)已知函数()3234f x ax x =+-,若()f x 存在唯一的零点0x ,且00x <,则a 的取值范围是________.【对点训练9】(2024·天津滨海新·统考三模)已知函数24,0()11,0x x a x f x a x x⎧++≤⎪=⎨++>⎪⎩,若函数()()1g x f x ax =--在R 上恰有三个不同的零点,则a 的取值范围是________.【对点训练10】(2024·江苏·校联考模拟预测)若曲线ln y x x =有两条过()e,a 的切线,则a 的范围是______.【对点训练11】(2024·天津北辰·统考三模)设R a ∈,对任意实数x ,记(){}2min e 2,e e 24x x x f x a a =--++.若()f x 有三个零点,则实数a 的取值范围是________.【对点训练12】(2024·广东·统考模拟预测)已知实数m ,n 满足()202323ln 22020e e ln ln 2e 02m m n n---=--=,则mn =___________.【解题总结】方程的根或函数零点的存在性问题,可以依据区间端点处函数值的正负来确定,但是要确定函数零点的个数还需要进一步研究函数在这个区间的单调性,若在给定区间上是单调的,则至多有一个零点;如果不是单调的,可继续分出小的区间,再类似做出判断.题型四:嵌套函数的零点问题【例4】(2024·全国·高三专题练习)已知函数()21,02211,0x x x f x x x ⎧+≤⎪=⎨⎪--+>⎩,若关于x 的方程()()()2210f x k xf x kx -++=有且只有三个不同的实数解,则正实数k 的取值范围为()A .10,2⎛⎤ ⎥⎝⎦B .()1,11,22⎡⎫⋃⎪⎢⎣⎭C .()()0,11,2U D .()2,+∞【对点训练13】(2024·全国·高三专题练习)已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足()A .0m >且0n >B .0m <且0n >C .01m <<且0n =D .10m -<<且0n =【对点训练14】(2024·四川资阳·高三统考期末)定义在R 上函数()f x ,若函数()1y f x =-关于点()1,0对称,且()()[)21,0,1,e 2,1,,x x x f x x -⎧-∈⎪=⎨-∈+∞⎪⎩则关于x 的方程()()221f x mf x -=(m R ∈)有n 个不同的实数解,则n 的所有可能的值为A .2B .4C .2或4D .2或4或6【对点训练15】(2024·全国·高三专题练习)已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为A .3B .1或3C .4或6D .3或4或6【解题总结】1、涉及几个根的取值范围问题,需要构造新的函数来确定取值范围.2、二次函数作为外函数可以通过参变分离减少运算,但是前提就是函数的基本功要扎实.题型五:函数的对称问题【例5】(2024·全国·高三专题练习)已知函数()211f x 2x x 2x 2⎛⎫=+≤≤ ⎪⎝⎭的图象上存在点P ,函数g (x )=ax -3的图象上存在点Q ,且P ,Q 关于原点对称,则实数a 的取值范围是()A .[]4,0-B .50,8⎡⎤⎢⎥⎣⎦C .[]0,4D .5,48⎡⎤⎢⎥⎣⎦【对点训练16】(2024·全国·高三专题练习)已知函数()x f x e =,函数()g x 与()f x 的图象关于直线y x =对称,若()()h x g x kx =-无零点,则实数k 的取值范围是()A .21e ,e ⎛⎫ ⎪⎝⎭B .1,e e ⎛⎫⎪⎝⎭C .(e,)+∞D .1,e ⎛⎫+∞ ⎪⎝⎭【对点训练17】(2024·全国·高三专题练习)已知函数12ln ,(e)ey a x x =-≤≤的图象上存在点M ,函数21y x =+的图象上存在点N ,且M ,N 关于x 轴对称,则a 的取值范围是()A .21e ,2⎡⎤--⎣⎦B .213,e ∞⎡⎫--+⎪⎢⎣⎭C .213,2e ⎡⎤---⎢⎥⎣⎦D .2211e ,3e ⎡⎤---⎢⎥⎣⎦【对点训练18】(2024·全国·高三专题练习)已知函数()2g x a x =-(1x e e≤≤,e 为自然对数的底数)与()2ln h x x =的图象上存在关于x 轴对称的点,则实数a 的取值范围是()A .211,2e ⎡⎤+⎢⎥⎣⎦B .21,2e ⎡⎤-⎣⎦C .2212,2e e ⎡⎤+-⎢⎥⎣⎦D .)22,e ⎡-+∞⎣【解题总结】转化为零点问题题型六:函数的零点问题之分段分析法模型【例6】(2024·浙江宁波·高三统考期末)若函数322ln ()x ex mx xf x x-+-=至少存在一个零点,则m 的取值范围为()A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎡⎫++∞⎪⎢⎣⎭C .1,e e ⎛⎤-∞+ ⎝⎦D .1,e e ⎡⎫++∞⎪⎢⎣⎭【对点训练19】(2024·湖北·高三校联考期中)设函数32()2ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是A .21,e e ⎛⎫-∞+ ⎪⎝⎭B .210,e e ⎛⎫+ ⎪⎝⎭C .210,e e ⎛⎤+ ⎥⎝⎦D .21,e e ⎛⎤-∞+ ⎝⎦【对点训练20】(2024·福建厦门·厦门外国语学校校考一模)若至少存在一个x ,使得方程2ln (2)x mx x x ex -=-成立.则实数m 的取值范围为A .21m e e≥+B .21m e e≤+C .1m e e≥+D .1m e e≤+【对点训练21】(2024·湖南长沙·高三长沙一中校考阶段练习)设函数()22xx f x x x a e =--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是()A .1(0,1e+B .1(0,e e +C .1[,)e e ++∞D .1(,1]e-∞+【解题总结】分类讨论数学思想方法题型七:唯一零点求值问题【例7】(2024·全国·高三专题练习)已知函数()222e ex xf x x a +--=++++有唯一零点,则实数=a ()A .1B .1-C .2D .2-【对点训练22】(2024·全国·高三专题练习)已知函数()()π4π4sin cos x x f x e ea x x -=+-+有唯一零点,则=a ()A .πeB .4πeC D .1【对点训练23】(2024·全国·高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin xg x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为A .1-或12B .1或12-C .1-或2D .2-或1【对点训练24】(2024·全国·高三专题练习)已知函数()()222212e 222x x x f x a a ---=-+-有唯一零点,则负实数=a A .2-B .12-C .1-D .12-或1-【解题总结】利用函数零点的情况求参数的值或取值范围的方法:(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图像的上、下关系问题,从而构建不等式求解.题型八:分段函数的零点问题【例8】(2024·天津南开·高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是()A .[)1,0-B .[)1,-+∞C .(),0∞-D .(],1-∞【对点训练25】(2024·全国·高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是()A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤⎪⎢⎥⎝⎭⎣⎦【对点训练26】(2024·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩,若函数()()()g x f x f x =--,则函数()g x 的零点个数为()A .1B .3C .4D .5【对点训练27】(2024·全国·高三专题练习)已知函数()f x =()22122,2212,sin x a x a x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是()A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【解题总结】已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.题型九:零点嵌套问题【例9】(2024·全国·高三专题练习)已知函数2()()(1)()1x x f x xe a xe a =+-+-有三个不同的零点123,,x x x .其中123x x x <<,则3122123(1)(1)(1)x x xx e x e x e ---的值为()A .1B .2(1)a -C .1-D .1a-【对点训练28】(2024·全国·高三专题练习)已知函数()()()2ln ln f x ax x x x x =+--,有三个不同的零点,(其中123x x x <<),则2312123ln ln ln 111x x x x x x ⎛⎫⎛⎫⎛⎫---⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为A .1a -B .1a-C .-1D .1【对点训练29】(2024·辽宁·校联考二模)已知函数()()()()229ln 3ln 33f x x a x x a x =+-+-有三个不同的零点1x ,2x ,3x ,且1231x x x <<<,则2312123ln ln ln 333x x x x x x ⎛⎫ ⎛⎫⎛⎪⎫---⎪ ⎪⎝⎭⎝⎭⎭⎝的值为()A .81B .﹣81C .﹣9D .9【对点训练30】(2024·重庆南岸·高三重庆市第十一中学校校考阶段练习)设定义在R 上的函数()f x 满足22()9(3)3(3)x x f x x a xe a e =+-+-有三个不同的零点123,,,x x x 且1230,x x x <<<则3122312333x x x x x x e e e ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值是()A .81B .-81C .9D .-9【解题总结】解决函数零点问题,常常利用数形结合、等价转化等数学思想.题型十:等高线问题【例10】(2024·全国·高三专题练习)设函数()22,0ln ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩①若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是()0,1②若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是()0,∞+③若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭④方程()()2110f x a f x a ⎛⎫-++= ⎪⎝⎭的不同实根的个数只能是1,2,3,6四个结论中,正确的结论个数为()A .1B .2C .3D .4【对点训练31】(2024·全国·高三专题练习)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a=有四个不同的解1234,,,,x x x x 且1234x x x x <<<,则()3122341x x x x x ⋅++⋅的取值范围是()A .(]1,1-B .[]1,1-C .[)1,1-D .()1,1-【对点训练32】(2024·四川泸州·高一四川省泸县第四中学校考阶段练习)已知函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<,则()()341233x x x x --的取值范围是()A .()0,3B .(]0,4C .(]3,4D .()1,3【对点训练33】(2024·全国·高三专题练习)已知函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝的取值范围是()A .(95,42)B .(1,4)C .4)D .(4,6)【解题总结】数形结合数学思想方法题型十一:二分法【例11】(2024·辽宁大连·统考一模)牛顿迭代法是我们求方程近似解的重要方法.对于非线性可导函数()f x 在0x 附近一点的函数值可用()()()()000f x f x f x x x '≈+-代替,该函数零点更逼近方程的解,以此法连续迭代,可快速求得合适精度的方程近似解.利用这个方法,解方程3310x x -+=,选取初始值012x =,在下面四个选项中最佳近似解为()A .0.333B .0.335C .0.345D .0.347【对点训练34】(2024·全国·高三专题练习)函数()f x 的一个正数零点附近的函数值用二分法逐次计算,参考数据如下:()12f =-()1.50.625f =()1.250.984f =-()1.3750.260f =-()1.4380.165f =()1.40650.052f =-那么方程的一个近似解(精确度为0.1)为()A .1.5B .1.25C .1.41D .1.44【对点训练35】(2024·全国·高三专题练习)利用二分法求方程3log 3x x =-的近似解,可以取的一个区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)【对点训练36】(2024·全国·高三专题练习)用二分法求函数()lg 2f x x x =+-的一个零点,根据参考数据,可得函数()f x 的一个零点的近似解(精确到0.1)为()(参考数据:lg1.50.176≈,lg1.6250.211≈,lg1.750.243≈,lg1.8750.273≈,lg1.93750.287≈)A .1.6B .1.7C .1.8D .1.9【对点训练37】(2024·全国·高三专题练习)用二分法求函数()()ln 11f x x x =++-在区间[]0,1上的零点,要求精确度为0.01时,所需二分区间的次数最少为()A .6B .7C .8D .9【解题总结】所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.求方程()0f x =的近似解就是求函数()f x 零点的近似值.。

二次函数 公开课一等奖课件

二次函数  公开课一等奖课件

解 : 方 程 x 2 2 x = k 在 [ - 1 , 1 ] 有 解 ,
即 y x 2 2 x (x 1 )2 1 , x [ 1 ,1 ] 与直线y =k有交点,
fm in(x)≤ k≤ fm a x(x),
y
由图象 ,得 f(1)≤ k≤f(1).
1≤ k≤ 3.
Y=k
x -1 1
(k )
k 0
f (k) 0
根的分布
k1x1x2k2
图象 y
k1 o k2 x
充要条件
0
k
1
b 2a
k2
f (k1) 0
f ( k 2 ) 0
m npq
y f (m ) 0
m x1 n
p x2 q
np mo
q
x
f (n ) 0 f(p) 0 f (q ) 0
主页
根的分布
两个实根有 且仅有一根 在区间[ k 1 , k 2 ] 内
图象
y
充要条件
k1
o x1
k2
x2 x
f(k1)f(k2)0
y
f (k1) 0
x1
o k1
k2
x2 x
k1
b 2a
k1
2
k2
y
x1
o k1
k2
x2 x
主页
f (k2) 0
k1
k2 2
b 2a
k2
【1】假设方程x2 -2x =k在区间[ -1,1]上有解, 那么实数k的取值范围为-_1_≤__k_≤__3______.
方,
f (2) 0, f (2) 0,
即22xx2 2 22xx130,0,

数学总复习课件: 二次函数的图像与性质

记左减右增
简记左增右减
自主学习
(续表)
函数 最值
二次函数 y=ax2+bx+c(a,b,c 为常数,a≠0)
a>0
a<0
抛物线有最低点,当 x=-2ba 抛物线有最高点,当 x=-2ba
时 , y 有 最 小 值 , y = 最 小 值 时,y 有最大值,y = 最大值
4ac-b2
4ac-b2
4a
的面积;若不存在,请说明理由.
解:(1)根据题意,
a+b+c=0,
a=-1,
得4a+2b+c=0,解得b=3,
c=-2,
c=-2,
∴二次函数的解析式为 y=-x2+3x-2.
(2)①当△AOC∽△EDB 时,
AO CO 得ED=BD.
∵AO=1,CO=2,BD=m-2, ∴E1D=m-2 2, ∴ED=m-2 2. ∵点 E 在第四象限,∴E1m,2-2 m.
-2ba,4ac4-a b2
在对称轴的左侧,即当 在对称轴的左侧,即当 x<-
x<-2ba时,y 随 x 的增大 2ba时,y 随 x 的增大而增大;
增减性 而减小;在对称轴的右 在对称轴的右侧,即当 x>-
侧,即当 x>-2ba时,y 2ba时,y 随 x 的增大而减小,
随 x 的增大而增大,简
0),:由 对 称 性与可,它 的 对为称 轴 为 直 x= 2
1
∴知抛物线的顶点为线P-2,92.已知抛物-线上的三点 A(-5,
0),B(1,0),P-2,92,设一般式. 设 y=ax2+bx+c,把 A,B,P 的坐标分别代入,得
25a-5b+c=0, a+b+c=0, 4a-2b+c=92,

九年级数学下册二次函数的应用教案

课题:2.4二次函数的应用教学目标:1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值问题.3.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.进一步体会数学与人类社会的密切联系.教学重点与难点:重点:经历探究矩形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.难点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.课前准备:导学案,多媒体课件.教学过程:一、创设情境,导入新课活动内容:(利用导学案)探究活动:以小组为单位,用长1米的绳子围成不同的图形,看哪个小组围成的图形最多,并估算出所围成的这些图形中,哪个图形的面积最大?处理方式:学生先把答案写在导学案上,然后小组内交流,班级内比较的到当场合款相等时面积最大.设计意图:增加学生的动手能力和小组合作探究能力,同时也为了复习图形的面积公式,会用估算的方法比较这些图形的面积大小,探究其中的规律,为本节课学习最大面积问题做好铺垫.二、探究学习,感悟新知活动内容:(多媒体展示)问题一:探究两边在直角三角形直角边上内接矩形的最大面积 如图,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和AD 分别在两直角边上.(1)设长方形的一边AB =x m ,那么AD 边的长度如何表示?(2)设长方形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少?解:(1)∵BC ∥AD , ∴△EBC ∽△EAF .∴EB BCEA AF=. 又AB =x ,BE =40-x , ∴404030x BC-=.∴BC =34(40-x ). ∴AD =BC =34(40-x )=30-34x . (2)y =AB ·AD =x (30-34x )=-34x 2+30x =-34(x 2-40x +400-400) =-34(x 2-40x +400)+300 =-34(x -20)2+300. 当x =20时,y 最大=300.即当x 取20m 时,y 的值最大,最大值是300m 2.处理方式:学生讨论交流,在导学案上完成后,学生之间互相展示结果讨论补充,教师适时点评,并在多媒体上展示正确结果.设计意图:从矩形的面积公式入手,利用相似三角形的性质表示出另外一条边,才能列出函数表达式,这一过程先由学生独立思考后,分组合作探究、交流,帮助个别存在困难的同学解决.此题的思路也是解决矩形最大面积问题最常用的方法.问题二:探究一边在直角三角形斜边上内接矩形的最大面积(多媒体展示)如图,在一个直角三角形的内部作一个矩形ABCD ,其中BC 在斜边上,,A D 在直角边上.如果设矩形的一边m AD x =,那么AB 边的长度如何表示?当x 取何值时,矩形面积y 的值最大?最大值是多少?解:设矩形的一边m AD x =,由GAD ∆GFD ∆,得AD GMEF GN=, 即5024x GM=, ∴1225GM x =.∴122425AB MN GN GM x ==-=-. 21212(24)242525ABCDS AD AB x x x x ==-=-+矩形.当24251222()25b x a =-=-=⨯-时,y 有最大值,最大值为224300124()25y -==⨯-最大值 处理方式:在有了前面解答问题的经验之后,让学生自主探究,寻求变量与不变量之间的关系,仿照第一种情况,再一次体验解决此类问题的步骤和方法,本环节相当于对问题1的巩固练习,学生在认真听讲的前提下完成应该没有问题,提醒学生计算要认真. 设计意图:在上一道题的基础上,利用相似三角形的性质表示出矩形的另一条边长,列出二次函数表达式,但此题上了难度,难度在于利用的是相似三角形对应高的比等于相似比这一性质,而且还要用到等积法求直角三角形斜边上的高.充分发挥学生的主动探究能力,并由个别程度较好的学生讲解,最后再板书进行反思总结.三、例题解析,新知应用 活动内容:(多媒体出示例题)某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:∵7x +4y +πx =15, ∴y =1574x xπ--.设窗户的面积是S (m 2),则S =12πx 2+2xy=12πx 2+2x ·1574x x π-- =12πx 2+(157)2x x x π-- =-3.5x 2+7.5x=-3.5(x 2-157x ) =-3.5(x -1514)2+1575392. ∴当x =1514≈1.07时, S 最大=1575392≈4.02. 即当x ≈1.07m 时,S 最大≈4.02m 2,此时,窗户通过的光线最多. 答案:.02.407.12m S m x =≈最大时,处理方式:本题含有两个图形的面积计算,主要是想进一步提高学生分析问题和解决问题的能力,巩固训练列二次函数表达式和求最值的方法.让学生理解通过窗户光线多少与窗户面积大小有关.此题处理起来比较繁琐,教师要给予学生及时的指导和帮助,同时也告诉学生数学基本运算也是培养大家做事严谨、有耐心的一个很好的途径.设计意图:在学生已有的探究“面积最大值”经验获取的体会中,让学生继续沿着这条探究路线走下去,既能巩固前面的探究方法,又能让学生再次感受“数学来源于生活”.方法提炼:我们已经做了不少用二次函数知识解决实际问题的例子,现在大家能否根据前面的例子作一下总结,解决此类问题的基本思路是什么呢?与同伴进行交流.(学生讨论,教师多媒体展示)(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解;(5)检验结果的合理性,拓展等.设计意图:趁热打铁,及时进行小结,总结做题的方法及思路,抓住这种题目的本质,达到举一反三的目的和效果.四、拓展提升,学以致用一养鸡专业户计划用116m 长的竹篱笆靠墙围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大为多少?解:设AB 长为x m ,则BC 长为(116-2x )m ,长方形面积为S m 2. 根据题意得S =x (116-2x )=-2x 2+116x=-2(x 2-58x +292-292)=-2(x -29)2+1682.当x =29时,S 有最大值1682,这时116-2x =58.即设计成长为58m ,宽为29m 的长方形时,能使围成的长方形鸡舍的面积最大,最大面积为1682m 2.处理方式:学生通过思考并交流讨论,探索出需要利用本节课学的知识解决题目,教师利用多媒体展示答案. 活动的设计意在通过问题的变式促使学生灵活运用知识,在解决实际问题中,重视知识的发展,有利于后续学习兴趣的培养.设计意图:让同学们通过刚才的学习和体验后进行练习,深入浅出地对题目进行分析和理解并解决问题,虽然并不要求他们在以后都用这样的方法解题,但对于培养他们形成良好的心理素质和培养他们分析问题、解决问题的能力是很有帮助的.五、回顾反思,提炼升华师:同学们,通过这节课的学习,你有哪些收获?那些疑惑?有何感想?学会了哪些方法?先想一想,再分享给大家.(1)通过本节课掌握了利用相似三角形的性质表示矩形的另一边,是列矩形面积函数关系式的关键.(2)图形最大面积问题,实质上是二次函数的最值问题.(3)解决此类问题,首先要理解问题,分析问题中的变量和常量,以及它们之间的关系是难点,用数学的方式表示它们间的关系是关键,化归为二次函数运用公式求解是易错点,要做对做全需要我们一定基本功扎实,养成良好的数学素养!处理方式:学生畅谈自己的收获,教师补充.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,进一步培养学生总结归纳的能力与合作互助的意识.六、达标检测,反馈提高师:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)1.如图,已知△ABC 是一等腰三角形铁板余料,其中AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件DEFG,使EF 在BC 上,点D 、G 分别在边AB 、AC 上.问矩形DEFG 的最大面积是多少?2.如图,△ABC 中,∠B=90°,AB=6cm,BC=12cm.点P 从点A 开始,沿AB 边向点B 以每秒1cm 的速度移动;点Q 从点B 开始,沿着BC 边向BQCAF E BG D C A点C 以每秒2cm 的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ 的面积最大?最大面积是多少?参考答案1.过A 作AM⊥BC 于M,交DG 于N,则AM=222012-=16cm. 设DE=x cm,S 矩形=y cm 2,则由△ADG∽△ABC,故AN DG AM BC =,即161624x DG-=,故DG=32(16-x ). ∴y =DG ·DE=32(16-x )x =-32(x 2-16x)=-32(x -8)2+96,从而当x =8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.2.设第t 秒时,△PBQ 的面积为y cm 2.则∵AP=t cm,∴PB=(6-t )cm;又BQ=2t.∴y =12PB ·BQ=12(6-t )·2t =(6-t )t =-t 2+6t =-(t -3)2+9,当t =3时,y 有最大值9.故第3秒钟时△PBQ 的面积最大,最大值是9cm 2.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本47页,习题2.8第1、2、3题. 选做题:课本48页,习题2.8第4题. 结束语:师:同学们,本节课的学习你们给我留下了深刻的印象,同时也给了我太多的感动与惊喜,谢谢你们!就让我把这份感动与惊喜埋在心底“一生一世”,相信你们的明天会更美好!祝愿同学们:象雄鹰一样飞的更高,飞的更远!(多媒体播放歌曲“飞的更高”结束本课)2.4.1二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排 1课时 三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 四、教学难点运用二次函数的知识解决实际问题. 五、教学过程 (一)导入新课引导学生把握二次函数的最值求法: (1)最大值: (2)最小值: (二)讲授新课 活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.yx x ++π=由 157.4x x y --π=得2215722()242x x x x S xy x π--ππ=+=+窗户面积271522x x =-+ 2715225().21456x =--+2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时即当x ≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2. (四)归纳小结“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.2.(芜湖·中考)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.(潍坊·中考)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围. (2)生物园的面积能否达到210平方米?说明理由.【答案】 1.12.52. 2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积302,.322x ==-+当时金属框围成的图形面积最大 )((()2x 60402m ,10221032210210m .=--⨯-=此时矩形的一边长为另一边长为()2S3002002m.=-最大3.解; (1)设矩形广场四角的小正方形的边长为x米,根据题意得:4x2+(100-2x)(80-2x)=5 200,整理得x2-45x+350=0,解得x1=35,x2=10,经检验x1=35,x2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则y=30[4x2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y=80x2-3 600x+240 000,配方得y=80(x-22.5)2+199 500,当x=22.5时,y的值最小,最小值为199 500,所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD中,∠B=∠C=90°,∴在Rt△BFE中,∠1+∠BFE=90°,又∵EF⊥DE,∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED,∴BF BECE CD=, ∴8y xx m-=即28x x ym-=⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m -=得关于x 的方程:28120x x -+=,得1226x x ==,∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED , 此时, Rt △BFE ≌Rt △CED ,∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2. 即△DEF 为等腰三角形,m 的值应为6或2. 5. 解:(1)依题意得:y=(40-2x)x . ∴y=-2x 2+40x .x 的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x 2+40x=210. 即x 2-20x+105=0. ∵ a=1,b=-20,c=105, ∴2(20)411050,--⨯⨯<∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计2.4.1二次函数的应用探究: 例题:“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性. 七、作业布置 课本P47练习练习册相关练习八、教学反思课题:2.4.2二次函数的应用教学目标:知识与技能1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.过程与方法经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.情感态度与价值观1.体会数学与人类社会的密切联系,了解数学的价值。

最全初三二次函数概念的图像与性质完整版.doc

龙文教育学科导学教师:学生:年级:日期: 星期: 时段:学情分析二次函数部分内容中考难度不大,所以本套教案注重于基础知识的准确掌握。

课题二次函数的图像与性质学习目标与考点分析学习目标:1、理解二次函数的概念;会识别最基本的二次函数并利用二次函数的概念求解析式中的未知数;2、熟练的画出各种抛物线的图像,根据解析式的变化判断图像的平移方法;3、熟练的选用合适的解析式利用待定系数法求解析式。

学习重点图像的平移;待定系数法求解析式学习方法讲练结合、师生讨论、启发引导学习内容与过程教学内容:知识回顾1.一般地,形如y=ax2 +bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中,x 是自变量,a,b,c分别是函数解析式的二次项系数,一次项系数和常数项.2.二次函数的解析式及其对称轴(1)二次函数解析式的一般式(通式):,它的顶点坐标为(,),对称轴为;(2)二次函数解析式的顶点式(通式):,顶点坐标为(,)对称轴是;(3)二次函数解析式的交点式:。

此时抛物线的对称轴为。

其中,(x1,0)(x2,0)是抛物线与X轴的交点坐标。

显然,与X轴没有交点的抛物线不能用此解析式表示的3.二次函数y=a(x-h) 2+k的图像和性质4.二次函数的平移问题5. 二次函数y=ax2 +bx+c中a,b,c的符号与图像性质的关系:6.抛物线y=ax2+bx+c与X轴的交点个数与一元二次方程的根的判别式△的符号之间的的关系二次函数的常规解法:一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。

我们称y=ax2+bx+c(a≠0)为一般式(三点式)。

例:二次函数图象经过A(1,3)、B(-1,5)、C(2,-1)三点,求此二次函数的解析式。

说明:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。

所以将已知三点的坐标分别代入y=ax2+bx+c (a≠0)构成三元一次方程组,解方程组得a、b、c的值,即可求二次函数解析式。

2022中考数学 第一轮 考点系统复习 第三章 函数第12讲 二次函数的图象与性质(练本)课件


设直线BC的解析式为y=kx+b′.
将点B(-3,0),C(0,3)代入,

3k b b 3,
0,解得
k b
1, 3,
∴直线BC的解析式为y=x+3.
∵S△CPD∶S△BPD=1∶2,即
1 CD PN 2 1 BD PN
,1
2

CD BD
1 2
2
,∴BD=2CD,

BD BC
BD BD CD
4.(2021·绍兴)关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正 确的是( D )
A.有最大值4 C.有最大值6
B.有最小值4 D.有最小值6
5.对于二次函数y=3(x-2)2+1的图象,下列说法正确的是( C )
A.开口向下 C.有最低点
B.对称轴是直线x=-2 D.与x轴有两个交点
中考先锋数学 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给
那些善于独立思考的人,给那些具有锲而不舍的人。2022年3月下午7时13分22.3.319:13March 3, 2022
3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022年3月3日星期四7时13分37秒19:13:373 March 2022
解得
a
b
1, 2,
∴抛物线的解析式为y=-x2-2x+3=-(x+1)2+4,
∴顶点坐标为(-1,4).
(2)连接PB,PO,PC,BC.PO交BC于点D,当S△CPD∶S△BPD=1∶2时,求点
D的坐标.
解:过点D作DM⊥y轴于点M,过点P作PN⊥BC于点N.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档