2013年全国各地高考文科数学试题分类汇编16:选修部分学生版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国各地高考文科数学试题分类汇编16:选修部分
一、选择题
1 .(2013年高考大纲卷(文))不等式222x -<的解集是 ( )
A .()-1,1
B .()-2,2
C .()()-1,00,1
D .()()-2,00,2
二、填空题
2 .(2013年高考陕西卷(文))(几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC
的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = ______.
P
3 .(2013年高考广东卷(文))(坐标系与参数方程选做题) 已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.
4 .(2013年高考陕西卷(文))A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x 的
不等式||||2x a x b -+->的解集是______.
5 .(2013年高考天津卷(文))如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与
CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为______.
6 .(2013年高考湖南(文))在平面直角坐标系xOy 中,若直线121,:x s l y s
=+⎧⎨=⎩(s 为参数)和
直线2,:21x at l y t =⎧⎨=-⎩
(t 为参数)平行,则常数a 的值为_____ 7 .(2013年高考陕西卷(文))(坐标系与参数方程选做题) 圆锥曲线2
2x t y t ⎧=⎨=⎩
(t 为参数)的焦点坐标是____________ .
8 .(2013年高考广东卷(文))(几何证明选讲选做题)
如图3,在矩形ABCD 中,AB =3BC =,BE AC ⊥,垂足为E ,则ED =_______.
图 3
9 .(2013年上海高考数学试题(文科))若2011x =,111
x y =,则x y +=________. 三、解答题
10.(2013年高考辽宁卷(文))选修4-1:几何证明选讲
如图,.AB O CD O E AD CD D 为直径,直线与相切于垂直于于,
BC 垂直于CD 于C EF ,,垂直于F ,连接,AE BE .证明:
(I);FEB CEB ∠=∠ (II)2
.
EF AD BC =
11.(2013年高考课标Ⅱ卷(文))选修4—1几何证明选讲:如图,CD 为△ABC 外接圆的切
线,AB 的延长线交直线CD 于点D ,,E F 分别为弦AB 与弦AC 上的点,且BC AE DC AF ⋅=⋅,,,,B E F C 四点共圆.
(Ⅰ)证明:CA 是△ABC 外接圆的直径;
(Ⅱ)若DB BE EA ==,求过,,,B E F C 四点的圆的面积与△ABC 外接圆面积的比值.
12.(2013年高考课标Ⅰ卷(文))选修4—4:坐标系与参数方程
已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨
=+⎩
(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.
(Ⅰ)把1C 的参数方程化为极坐标方程;
(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).
13.(2013年高考课标Ⅱ卷(文))选修4—4;坐标系与参数方程
已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩
(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.
(Ⅰ)求M 的轨迹的参数方程;
(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.
14.(2013年高考课标Ⅰ卷(文))选修4—1:几何证明选讲
如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .
(Ⅰ)证明:DB DC =;
(Ⅱ)设圆的半径为1,BC =,延长CE 交AB 于点F ,求BCF ∆外接圆的半径.
15.(2013年高考课标Ⅰ卷(文))选修4—5:不等式选讲
已知函数()|21||2|f x x x a =-++,()3g x x =+.
(Ⅰ)当2a =-时,求不等式()()f x g x <的解集;
(Ⅱ)设1a >-,且当1[,)22
a x ∈-时,()()f x g x ≤,求a 的取值范围 16.(2013年高考课标Ⅱ卷(文))选修4—5;不等式选讲
设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222
1a b c b c a
++≥.
17.(2013年高考辽宁卷(文))选修4-5:不等式选讲
已知函数()f x x a =-,其中1a >.
(I)当=2a 时,求不等式44)(--≥x x f 的解集;
(II)已知关于x 的不等式2)(2)2(≤-+x f a x f 的解集为{}|12x x ≤≤,求a 的值.
18.(2013年高考辽宁卷(文))选修4-4:坐标系与参数方程
在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐
标方程分别为4sin ,cos 4πρθρθ⎛⎫==-
= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;
(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为 ()3312
x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.