第二章 电阻电路的分析

第二章 电阻电路的分析
第二章 电阻电路的分析

第二章电阻电路的分析

本章的主要任务是学习电阻电路的分析计算方法,并运用这些方法分析计算各种电阻电路中的电流、电压和功率。

本章基本要求

1.正确理解等效电路的概念,并利用等效变换化简电路。

2.掌握电阻串、并联等效变换、电阻的Y形连接与Δ形连接的等效变换、电源的等效变换。

3.电阻电路的分压公式和分流公式的应用。

4.运用支路电流法和结点电压法分析计算电路。

5.运用叠加定理分析计算电路。

6.熟练应用戴维宁定理和诺顿定理分析计算电路。

7.应用戴维宁定理或诺顿定理求解电路中负载电阻获得的最大功率。

8.学会含有受控源电路的分析计算。

9.了解非线性电阻电路的分析方法。

本章习题解析

2-1电路如图2-1所示,设电路中每个电阻均为9Ω。试将电路分别变换为Y 形电路和△形电路。

图2-1

解将ADE、DBF、EFC组成的△形电路等效变换成形电路,如图2-1(a)所示,其中每个电阻为

然后将图2-1(a)所示电路再进行等效变换,其变换过程如图2-1(b)和(c)所示。

由图2-1(c)即可得到原电路的Y形电路和△形电路,分别如图2-1(d)和(e)所示。

图2-1(a) 图2-1(b)

2-2在图2-2中,已知电压源U s=27V,电阻 R1=R2=6Ω,R3=R4=R5=2Ω,R6=R7=6Ω。试求支路电流I1、I2和I3。

解由电路可知,、、、和组成电桥电路,且,

故它是平衡电桥,因此可将原电路等效变换为图2-2(a)所示电路。由欧姆定律,得

由分流公式得

2-3试用电源等效变换法将图2-3所示的各电路化简。

图2-3

解将原电路逐步等效变换,最终化简成为最简电路。化简过程如图所示。

2-4电路如图2-4所示,试用电源等效变换法求电流I。

解首先利用电源的等效变换求出电阻以左部分的最简等效电路,逐步等效化简过程如图所示。

在最简的等效电路中,由欧姆定律得

所以

2-5 如图2-5所示,已知电压源U s1=140V,U s2=90V,电阻 R1=20Ω,R2=5Ω,

R3=60Ω。试用支路电流法求各支路电流I1、I2和I3。

解根据给定的电路可列得1个独立的KCL方程和2个独立的KVL方程

代入数据并整理得:

解得:,,

2-6 如图2-6所示,已知电压源U s1=80V,U s2=30V,U s3=220V,电阻 R1=20Ω,R2=5Ω,R3=10Ω,R4=4Ω。试计算开关S断开和闭合时各支路电流。

解(1)当S断开时,电路如图2-6 (a)。根据电路图可列得1个独立的KCL方程和2个独立的KVL方程,回路方向取顺时针方向。

可得支路电流方程

代入数据整理,解得

(2)S闭合,电路如图2-6 (b)。

选参考结点,得1个结点电压。

列结点电压方程

代入数值

解得

由结点电压和支路电压的关系可求得支路电流

2-7 在图2-7中,已知电压源U s=20V,电流源I s1=2A,I s2=3A,电阻 R1=3Ω,R2=2Ω,R3=1Ω,R4=4Ω。试求各支路电流及各元件的功率,并验证电路的功率是否平衡。

解对1、2、3结点列写独立的KCL方程

对中间回路列写KVL方程

联立方程,代入数据,可解得支路电流

A,A,A, A

电阻消耗的功率为

20V电压源发出的功率为

2A电流源发出的功率为

3A电流源发出的功率为

,功率平衡。

2-8 电路如图2-8所示,试计算开关S断开和闭合时A点的电位和各支路电流。

解(1)S断开时,电路如图2-8(a),利用结点电压法解题。选参考结点,

得到1个结点电压,即为A点电压,列结点电压方程

由结点电压和支路电压的关系,可求得支路电流

(2)S闭合,电路如图2-8(b),选参考结点,结点电压方程

得支路电流

2-9 在图2-9所示电路中,U s1=9V,U s2=4V,I s=11A,R1=3Ω,R2=2Ω,R3=6Ω。试求A点的电位和各电源的功率,并指出是发出功率还是吸收功率。

解采用结点电压法解本题,选参考结点,如图2-9(a),列结点电压方程

代入数据解得

由结点电压和支路电压的关系可求得各支路电流为

9V电压源吸收功率

4V电压源发出功率

11A电流源发出功率

2-10 在图2-10所示电路中,设U s1=U s2=8V,I s=2A,R1=2Ω,R2=3Ω,R3=6Ω。试求电流I1、I2和I3。

解采用结点电压法,选参考结点,如图2-10(a),可列出一个结点电压方程。

代入数据得

由结点电压和支路电压的关系可求得支路电流

2-11 在图2-11所示电路中,设U s1=10V,U s2=9V,U s3=6V,I s=1A,R1=2Ω,R2=3Ω,R3=3Ω,R4=3Ω,R5=6Ω。⑴以结点4为参考点,求结点1、2、3的结点电压;⑵求支路电流I1、I2、I3、I4和I5。

解(1)以结点4为参考点,得到3个结点电压、、可列结点电压方程

代入数据并整理方程得

解得,,

(2)由结点电压和支路电压的关系可求得各支路电流为

2-12 在图2-12所示电路中,设U s1=45V,U s2=8V,I s1=6A,I s2=5A,R1=2Ω,R2=10Ω,R3=1Ω,R4=2Ω。⑴试求各支路电流I1、I2、I3、I4和I5;⑵求电流源的端电压U1和U2。

解选参考结点,如图2-12(a),得3个结点电压、、,

列结点电压方程

代入数据整理得

解得,,

(1)由结点电压和支路电压的关系可得各支路电流为

由KCL方程可得

(2)电流源的端电压

由,可得

2-12* 用叠加定理计算图2-12所示电路的电压U。若电压源的电压升高到12 V,则电压U升高到多少伏

解(1)首先画出两个独立电源单独作用时的分电路如图2-12*(a)和图2-12*(b)。

3A电流源单独作用时,分电路如图2-12*(a),两个并联电阻阻值为,

其两端电压为,由分流公式和欧姆定律可得

9V电压源单独作用时,分电路如图2-12*(b),应用结点电压法求

解得

故由叠加定理得

(2)若电压源电压升高到12,由齐性定理可知

可得

2-13 如图2-13所示,试分别计算开关S合在a点和b点时,各支路电流I1、I2和I3。

解(1)S合在a点时,有两个电压源作用于电路,采用叠加定理求取。20V电压源单独作用时的分电路如图2-13(a),

由KVL方程

可得

由分流公式得,

10V电压源单独作用时的分电路如图2-13(b),

由KVL方程

可得

由分流公式得,

由叠加定理可得

(2)S合在b点,有三个独立源作用于电路,可将其分成两组:2个电压源为一

组,电流源为一组,则(1)中求得的支路电流将是2个电压源、作用

时的响应分量

电阻电路的一般分析方法

电路常用分析方法 第一:支路电流法:以各支路电流为未知量列写电路方程分析电路的方法。 独立方程的列写:(1)从电路的n 个结点中任意选择n-1个结点列写KCL 方程; (2)选择基本回路列写b-(n-1)个KVL 方程。 支路电流法的一般步骤: 第二:回路电流法:以基本回路中沿回路连续流动的假想电流为未知量列写电路方程分析电路的方法。它适用于平面和非平面电路。 1.列写的方程:回路电流法是对独立回路列写KVL 方程,方程数为:)1(--n b ,与支路电流法相比,方程减少1-n 个。 2.回路电流法适用于复杂电路,不仅适用于平面电路,还适用于非平面电路回路电流法的一般步骤: (1)选定)1(--=n b l 个独立回路,并确定其绕行方向; (2)对l 个独立回路,以回路电流为未知量,列写其KVL 方程; (3)求解上述方程,得到l 个回路电流; (4)求各支路电流。 回路电流法的特点: (1)通过灵活的选取回路可以减少计算量; (2)互有电阻的识别难度加大,易遗漏互有电阻。 理想电流源支路的处理: 网孔电流法是回路电流法的一种特例。引入电流源电压,增加回路电流和电流源

电流的关系方程。 i来表示。 第三:网孔电流法:是一种沿着网孔边界流动的假想的环流,用 m 1.网孔电流法:是以网孔电流作为电路的独立变量的求解方法,仅适用于平面电路。 2.基本思想:利用假想的网孔电流等效代替支路电流来列方程。 3.列写的方程:KCL自动满足。只需对网孔回路,列写KVL方程,方程数为网孔数。 网孔电流法的一般步骤: (1)选定各网孔电流的参考方向,它们也是列方程时的绕行方向。(通常各网孔电流都取顺时针方向或都取逆时针方向) (2)根据电路,写出自阻、互阻及电源电压。 (3)根据推广公式,列网孔方程。 (4)求解网孔方程,解得网孔电流。 (5)根据题目要求,进行求解。 第四:结点电压法:以结点电压为未知量列写电路方程分析电路的方法。适用于结点较少的电路。 结点电压法的一般步骤为: (1)选定参考结点,标定1 n个独立结点; - (2)对1 - n个独立结点,以结点电压为未知量,列写其KCL方程; (3)求解上述方程,得到1 n个结点电压; - (4)通过结点电压求各支路电流; (5)其他分析。

第二章电路的等效变换

第二章电子电路的等效变换 一、教学基本要求 本章着重介绍等效变换的概念。等效变换的概念在电路理论中广泛应用。所 谓等效变换,是指将电路中的某部分用另一种电路结构与元件参数代替后,不影 响原电路中未作变换的任何一条支路中的电压和电流。在学习中首先弄清等效变 换的概念是什么?这个概念是根据什么引出的?然后再研究各种具体情况下的 等效变换方法。 重点: 1.电路等效的概念; 2.电阻的串、并联; 3.实际电源的两种模型及其等效变换; 难点: 1.等效变换的条件和等效变换的目的; 2.含有受控源的一端口电阻网络的输入电阻的求解 二、学时安排总学时:6 教学内容学时1.引言电路的等效变换电阻的串联和并联2 2.电阻的Y形连接和△连接的等效变换电压源和电流源的串联和并联2 3.实际电源的两种模型及其等效变换输入电阻2三、教学内容: §2-1引言 1.电阻电路 仅由电源和线性电阻构成的电路称为线性电阻电路(或简称电阻电路)。 2.分析方法 (1)欧姆定律和基尔霍夫定律是分析电阻电路的依据; (2)对简单电阻电路常采用等效变换的方法,也称化简的方法。

§2-2电路的等效变换 1.两端电路(网络) 任何一个复杂的电路,向外引出两个端钮,且从一个端子流入的电流等于从另一端子流出的电流,则称这一电路为二端电路(或一端口电路)。若两端电路仅由无源元件构成,称无源两端电路。 2.两端电路等效的概念结构和参数完全不相同的两个两端电路B 与C,当它们的端口具有相同的电压、电流关系(VCR),则称B 与C 是等效的电路。 相等效的两部分电路B 与C 在电路中可以相互代换,代换前的电路和代换后的电路对任意外电路A 中的电流、电压和功率而言是等效的,即满足: 需要明确的是:上述等效是用以求解A 部分电路中的电流、电压和功率,若要求图(a)中B 部分电路的电流、电压和功率不能用图(b)等效电路来求,因为,B 电路和C 电路对A 电路来说是等效的,但B 电路和 C 电路本身是不相同的。结论: (1)电路等效变换的条件: 两电路具有相同的VCR; (2)电路等效变换的对象:未变化的外电路A 中的电压、电流和功率; (3)电路等效变换的目的:化简电路,方便计算。 两端电路 无源两端电路 (a) (b)

第2章电阻电路等效变换习题与答案

第2章 习题与解答 2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 2Ω 3Ω (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω 2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。 a b 8Ω a b 8Ω (a) (b) 题2-2图 解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。

8Ω a b (a) (b) 题2-3图 解:(a )开关打开时(84)//43ab R =+=Ω 开关闭合时4//42ab R ==Ω (b )开关打开时(612)//(612)9ab R =++=Ω 开关闭合时6//126//128ab R =+=Ω 2-4试求题2-4图(a )所示电路的电流I 及题2-4图( b )所示电路的电压 U 。 6Ω6Ω (a) (b) 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 1I 21/(16//123//621/(142)3A =++++=)= 从上往下流过3Ω电阻的电流为36 I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126 I 31A 126 = ?=+ 所以 312I I -I =1A = (b )从下往上流过6V 电压源的电流为 66 I 4A 1.5 = ==(1+2)//(1+2)

第2章电阻电路的等效变换习题及答案汇总

; 第2章 习题与解答 2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 2Ω 3Ω (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω 2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。 》 a b 8Ω a b 8Ω (a) (b) 题2-2图 解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。

8Ω a b (a) (b) @ 题2-3图 解:(a )开关打开时(84)//43ab R =+=Ω 开关闭合时4//42ab R ==Ω (b )开关打开时(612)//(612)9ab R =++=Ω 开关闭合时6//126//128ab R =+=Ω 2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b )所示电路的电压U 。 6Ω6Ω (a) (b) / 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 1I 21/(16//123//621/(142)3A =++++=)= 从上往下流过3Ω电阻的电流为36 I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126 I 31A 126 = ?=+ 所以 312I I -I =1A =

(b )从下往上流过6V 电压源的电流为 66 I 4A 1.5 = ==(1+2)//(1+2) 从上往下流过两条并联支路的电流分别为2A $ 所以 U 22-12=2V =?? 2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。 2Ω (a) (b) 题2-5图 解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥 1 a 所以 111 //11332 ab R =++=Ω()() % (b )将图中的两个Y 形变成△形,如图所示

答案第2章 电阻电路的等效变换(含答案)

第二章 电阻电路的等效变换 一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) .1. 如图所示电路的等效电阻为12 122 R R R R +- [√] 解: 2 1212 2 1 22R R U U R R U R R U U R U I -+ = -+= 2 2221-+== R R R R I U R eq .2. 当R11、R2与R3并联时等效电阻为: 123 123 R R R R R R ++ [×] .3. 两只额定电压为110V 的电灯泡串联起来总可以接到220V 的电压源上使用。[×] 解:功率不同的不可以。 .4. 电流相等的两个元件必属串联,电压相等的两个元件必属并联。[×] .5. 由电源等效变换可知, 如图A所示电路可用图B电路等效代替,其中/s s i u R =则图A 中的R i 和R L 消耗的功率与图B中R i 和R L 消耗的功率是不变的。 [×] 解:对外等效,对内不等效。 可举例说明。 .6. 一个不含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个线性电阻。 [√] .7. 一个含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个电压源与一个电阻串联或一个电流源与一个电阻并联。 [√] .8.已知图示电路中A、B两点电位相等,则AB支路中必然电流为零。 [×] 解:根据KVL 有: B A BA AB BA U U R I U R I E -+=+=55 5 R E I BA = .9. 图示电路中, 既然AB两点电位相等, 即UAB =0,必有I AB =0 [×] 解:A I AB 195 459424=?+-?+=

第二章_简单电阻电路分析.

习题 2-1 求题 2-1图所示电路的等效电阻。 Ω 题 2-1图 解在图 2-1电路中 , 电阻 R 4 和 R 5 并联后与 R 3串联 , 其这部分电路的等效电阻R ’ 为 45345412 ' 69412 R R R R R R ?=+ =+=Ω++ 这个等效电阻R ’ 又和原电路中的 R 2 并联后, 再与 R 1 串联 , 所以图 2. 1 -5所示电路 等效电阻 R 为 212' 918 511' 918 R R R R R R ?=+=+=Ω++ 2-2 电阻分压电路如题 2-2图所示。若输入电压in u =10V , 11k ΩR =,现希望输出电压 out u =7.5V , 求 2R 。

u in 题 2-2图 解 out u = 2in in 1 12 2 1 1R u u R R R R =++ 由此解出 in out 12out 10V 7.5V 17.5V 3 u u R R u --=== 所以2133k ΩR R == 2-3 求题 2-3图中的 ab R 。 (a

(b a 题 2-3图 解将图 2-3(a 改画成图 2-3(b ,发现 5个电阻构成了一个平衡电桥。很容易算出 62 422 ab R = +=Ω。 2-4 在题 2-4图所示的电流表中,已知磁电系测量机构的满偏电流为 100A u ,线圈电阻 2k Ωm R =,若该电流表的量限为 10mA ,求分流电阻 n R 。 题 2-4图 解 n m m n R I I R R = + 由此可以解出 n R 如下:

6336 10010A 2101010A 10010A m m n m I R R I I ---???==-?-?Ω =20.202Ω 2-5 电路如题 2-5图所示。已知 U S =200V,其电源的输出功率 P =400W 。求 R x =? 50 Ω 题 2-5图 解因为电源的输出功率 P 等于这个电路的等效电阻 R 所消耗的功率,所以 则 22 s 200100400 U R P ===Ω 参看图 2-5-1, 可知等效电阻 R 为 50 (50 100

电阻电路的等效变换习题解答第2章

第二章(电阻电路的等效变换)习题解答 一、选择题 1.在图2—1所示电路中,电压源发出的功率为 B 。 A .4W ; B .3-W ; C .3W ; D .4-W 2.在图2—2所示电路中,电阻2R 增加时,电流I 将 A 。 A .增加; B .减小; C .不变; D .不能确定 3.在图2—3所示电路中,1I = D 。 A .5.0A ; B .1-A ; C .5.1A ; D .2A 4.对于图2—4所示电路,就外特性而言,则 D 。 A . a 、b 等效; B . a 、d 等效; C . a 、b 、c 、d 均等效; D . b 、c 等效 5.在图2—5所示电路中,N 为纯电阻网络,对于此电路,有 C 。 A .S S I U 、 都发出功率; B .S S I U 、都吸收功率; C .S I 发出功率,S U 不一定; D .S U 发出功率,S I 不一定 二、填空题 1. 图2—6(a )所示电路与图2—6(b )所示电路等效,则在图2—6(b )所示电路 中,6= S U V ,Ω=2R 。 2.图2—7(a )所示电路与图2—7(b )所示电路等效,则在图2—7(b )所示电路中, 1= S I A ,Ω=2R 。 3.在图2—8所示电路中,输入电阻Ω=2 ab R 。 4.在图2—9所示电路中,受控源发出的功率是30-W 。 5.在图2—10所示电路中,2A 电流源吸收的功率是20-W 。 三、计算题 1.对于图2—11所示电路,试求:1).电压1U 、2U ;2).各电源的功率, 并指出是 吸收还是发出。

第二章-电阻电路的等效变

第二章-电阻电路的等效变

————————————————————————————————作者:————————————————————————————————日期:

第二章 电阻电路的等效变换 2.1 学习要点 1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。 2. 电源的串联、并联及等效变换。 3. “实际电源”的等效变换。 4. 输入电阻的求法。 2.2 内容提要 2.2.1 电阻的等效变换 1. 电阻的串联:等效电阻: R eq = ∑ 1 =k n k R ;分压公式:u k =eq k eq ×R R u ; 2. 电阻的并联:等效电导:G eq = ∑ 1 =k n k G ;分流公式:q e G G i i k eq k ×=; 2.2.2. 电阻的Y 与△的等效变换 1. △→Y :一般公式: Y 形电阻= 形电阻之和 形相邻电阻的乘积 ??; 即 31 232331********* 231231212 311++= ++= ++R R R R R R R R R R R R R R R R R R 2312= 2. Y →△:一般公式:形不相邻电阻 形电阻两两乘积之和 形电阻= Y Y ?;

u - R i u u - - i + + + 图 G i 即: 2 1 33221311 1 33221233 1 3322112++= ++= ++= R R R R R R R R R R R R R R R R R R R R R R R R 2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。 表2.1 电源的串联、并联等效变换 连接情况 等效结果或计算公式 说 明 n 个电压源的串联 sn s s s s u u u u u ±±±=k 21 u s 为等效电压源,当u k 与u s 的参考方向相同时,u sk 前取“+”号,反之取“-”号 n 个电流源的并联 sn sk s s s i i i i i ±±±=21 i s 为等效电流源,当i sk 与i s 的参考方向相同时,i sk 前取“+”号,反之取“-”号 电压源u s 与一个非理想电压源支路并联 对外电路可等效成该电压源u s ⑴与电压源u s 并联可以是电阻、电流源,也可是复杂的支路 ⑵仅是对外电路等效 电流源i s 与一个非理想电流源支路串联 对外电路可等效成该电流源i s ⑴与电流源i s 串联可以是电阻、电压源,也可是复杂的支路 ⑵仅是对外电路等效 2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”

习题六简单非线性电阻电路分析.

习题六 简单非线性电阻电路分析 6-1 如题图6-1所示电路中,其中二极管和稳压二极管均采用理想特性,试分别画出其端口的DP 图。 题图6-1 6-2 设一混频器所用的非线性电阻特性为 2210u a u a a i ++= 当其两端电压)()(t w A t w A u 2211cos cos +=时,求)。(t i 6-3 试画出下列电阻元件的u -i 特性,并指出3的单调性、压控的还是流控的? (1)u e i -=; (2)2 i u =; (3)3 01 .01.0u u i +-=。 6-4 试写出题图6-4所示分段线性非线性电阻的u -i 特性表达式。 题图6-4 6-5 如题图6-5(a )所示电路为一逻辑电路,其中二极管的特性如题图6-5(b )所示。当U 1 = 2 V ,U 2 = 3 V ,U 3 = 5 V 时,试求工作点u 。

题图6-5 6-6 如题图6-6所示电路含有理想二极管,试判断二极管是否导通? 6-7 设有一非线性电阻的特性为u u i 343 -=,它是压控的还是流控的?若)(wt u cos =,求该电阻上的电流i 。 6-8 如题图6-8所示为自动控制系统常用的开关电路,K 1和K 2为继电器,导通工作电流为0.5 mA 。D 1和D 2为理想二极管。试问在图示状态下,继电器是否导通工作? 题图6-6 题图6-8 6-9 如题图6-9所示为非线性网络,试求工作点u 和i 。 题图6-9 6-10 如题图6-10所示网络,其中N 的A 矩阵为 A =?? ????Ω5.1s 05.055.2

02分电阻电路的分析方法-(1)

电阻电路的分析方法 一、是非题 1.图示三个网络a、b端的等效电阻相等。 2.当星形联接的三个电阻等效变换为三角形联接时,其三个引出端的电流和两两引出端的电压是不改变的。 3.对外电路来说,与理想电压源并联的任何二端元件都可代之以开路。 4.如二端网络的伏安特性为U=205I,则图示支路与之等效。 5.两个电压值都为U S的直流电压源,同极性端并联时,可等效为一个电压源,其电压值仍为U S。 6.左下图示电路中,如100V电压源供出100W功率,则元件A吸收功率20W。 7.对右上图示电路,如果改变电阻R1,使电流I1变小,则I2必增大。

8.图示电路中,节点1的节点方程为 9.实际电源的两种模型,当其相互等效时,意味着两种模型中的电压源和电流源对外提供的功率相同。 10.两个二端网络分别与20电阻连接时,若电流均为5A,电压均为100V,则这两个网络相互等效。 答案部分 1.答案(+) 2.答案(+) 3.答案(+) 4.答案(+) 5.答案(+) 6.答案() 7.答案()8.答案()9.答案()10.答案()

二、单项选择题 2.在左下图示电路中,当开关S由闭合变为断开时,灯泡将 (A)变亮(B)变暗(C)熄灭 3.右上图示电路中电流I为 (A)趋于无限(B)12A(C)6A(D)9A 4.当标明“100,4W”和“100,25W”的两个电阻串联时,允许所加的最大电压是(A)40V (B)70V (C)140V 5.电路如左下图所示,已知电压源电压U S=230V,阻R S=1。为使输出电压为220V、功率为100W的灯泡正常发光,则应并联 (A)22盏灯 (B)11盏灯 (C)33盏灯 6.对右上图示电路,节点1的节点方程为 (A)6U1U2=6 (B)6U1=6 (C)5U1=6 (D)6U12U2=2

第2章电阻电路的等效变换习题及答案

第2章习题与解答 2-1试求题2-1图所示各电路血端的等效电阻心,。 解:(a)心,=1 + 4//(2 + 6//3) = 30 (b)心=4//(6//3 + 6//3) = 2C 2 —2试求题2-2图所示各电路弘〃两点间的等效电阻 IQ 5G _| ------ [ ----- 1.5Q 4G (a) (b) 题2—2图 解:(a) 心=3 + [(8 + 4)//6 + (l + 5)]//10 = 8G (b) R ah =[(4//4 + 8)//10 + 4]//9 + 4 + l ?5 = 10C 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻尺血o IQ 4Q 3G (b) (a)

题2—3图 解:(a)开关打开时心=(8 + 4)//4 = 3。 开关闭合时^,=4/74 = 20 (b)开关打开时 R ah =(6 + 12)/7(6+12) = 90 开关闭合时心=6//12 + 6//12 = 8。 2—4试求题2—4图(a)所示电路的电流/及题2—4图(b)所示电路的电压U 。 解:(a)从左往右流过1G 电阻的电流为 I] =21/(1 + 6//12 + 3//6)二21/(l+4 + 2) = 3A 从上往下流过3 O 电阻的电流为I.= —x3 = 2A 3 + 6 从上往下流过120电阻的电流为I p =—^-x3 = lA 12 + 6 所以1 =【3叫2 = 1 A ⑹从下往上流过6V 电压源的电流为 "击莎 1Q + O1V 3Q 6Q (a) 12Q 6Q 题2—4图

从上往下流过两条并联支路的电流分别为2A 所以U = 2x2-lx2=2V 2 — 5试求题2 — 5图所示各电路ab端的等效电阻R ah,其中/?] = = 1。。 2Q 题2-5图 解:(a)如图,对原电路做厶-丫变换后,得一平衡电桥 所以心,=(*+*)//(1 + 1)= *° (b)将图中的两个Y形变成△形,如图所示 2.5Q 5Q 白80 4Q 4Q T 50 T T 2Q 即得 所以陰=L269G 2 —6计算题2 —6图所示电路中弘b两点间的等效电阻。 (b)

第二章_简单电阻电路分析

习题 2-1 求题2-1图所示电路的等效电阻。 U I +_ R 1R 2R 3R 4R 518 Ω 5Ω 6Ω 12 Ω 4Ω 题2-1图 解 在图2-1电路中, 电阻R 4 和R 5 并联后与R 3串联, 其这部分电路的等效电阻 R ’为 45345412 '69412 R R R R R R ?=+ =+=Ω++ 这个等效电阻R ’ 又和原电路中的R 2 并联后,再与R 1 串联,所以图2. 1 -5所示电路 等效电阻R 为 212'918 511'918 R R R R R R ?=+=+=Ω++ 2-2 电阻分压电路如题2-2图所示。若输入电压in u =10V ,11k ΩR =,现希望输出电压 out u =7.5V ,求2R 。 R 1 R 2 u in +_ _ + u out 题2-2图 解 out u = 2in in 1 12 2 1 1R u u R R R R =++ 由此解出 in out 12out 10V 7.5V 17.5V 3 u u R R u --=== 所以 2133k ΩR R ==

2-3 求题2-3图中的ab R 。 6 Ω2 Ω2 Ω6Ω 6Ω a b (a ) (b ) a 6Ω 2Ω 6Ω6Ω 2 Ω b 题2-3图 解 将图2-3(a )改画成图2-3(b ),发现5个电阻构成了一个平衡电桥。很容易算出 62 422 ab R = +=Ω。 2-4 在题2-4图所示的电流表中,已知磁电系测量机构的满偏电流为100A u ,线圈电阻 2k Ωm R =,若该电流表的量限为10mA ,求分流电阻n R 。 R n I m R m 题2-4图 解 n m m n R I I R R = + 由此可以解出n R 如下: 6336 10010A 2101010A 10010A m m n m I R R I I ---???==-?-?Ω =20.202Ω 2-5 电路如题2-5图所示。已知U S =200V ,其电源的输出功率P =400W 。求R x =?

第二章-电阻电路的等效变

第二章 电阻电路的等效变换 2.1 学习要点 1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。 2. 电源的串联、并联及等效变换。 3. “实际电源”的等效变换。 4. 输入电阻的求法。 2.2 内容提要 2.2.1 电阻的等效变换 1. 电阻的串联:等效电阻: R eq = ∑ 1 =k n k R ;分压公式:u k =eq k eq ×R R u ; 2. 电阻的并联:等效电导:G eq = ∑ 1 =k n k G ;分流公式:q e G G i i k eq k ×=; 2.2.2. 电阻的Y 与△的等效变换 1. △→Y :一般公式: Y 形电阻= 形电阻之和 形相邻电阻的乘积 ??; 即 31 232331********* 231231212 311++= ++= ++R R R R R R R R R R R R R R R R R R 2312= 2. Y →△:一般公式:形不相邻电阻 形电阻两两乘积之和 形电阻= Y Y ?;

图 2.1 即: 2 1 33221311 1 33221233 1 3322112++= ++= ++= R R R R R R R R R R R R R R R R R R R R R R R R 2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。 表2.1 电源的串联、并联等效变换 2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”

R u =R i =1/G i u s =i s R i =i s /G i 两者等效互换的原则是保持其端口的V AR 不变。 2.2.5 输入电阻的求法 一端口无源网络输入电阻的定义(见图2.2): R in =u/ i 1. 当一端口无源网络由纯电阻构成时,可用电阻的 串并联、Y 形与△形等效变换化简求得。 2. 当一端口无源网络内含有受控源时,可采用外加电压法或外加电流法求得: 即输入电阻 R in =u s /i 或 R in =u/ i s 方法是:在端口处加一电压源u s (或电流源i s ), 再求比值u s /i 或u/ i s ,该比 值即是一端口无源网络的输入电阻。此方法也适用于由纯电阻构成的一端口网络。 2.3 例题 例2.1 求图2.3所示电路等效电阻R in 。 解:由△→Y 将图2.3等效成题解2.3图,其中: 3 211333213223212 1'1 ++++++R R R R R R R R R R R R R R R R R R '= = =’ ()()5 ' '''' in R R R R R R R R R R ++++++=4325243 1 例2. 2 求图2.4所示电路的等效电阻R ab 。 解:本电路包含两个T 型电阻网络,且其参数成比例。若在a 、b 之间加一电压源,则c 、d 两点电位必相 题解2.3图 图 2.3 R 5 ' 5 ' + 图2.2 图 2.4 a b

电阻电路的等效变换习题解答第2章

第二章(电阻电路的等效变换)习题解答 一、选择题 1.在图2—1所示电路中,电压源发出的功率为 B 。 A .4W ; B .3-W ; C .3W ; D .4-W 2.在图2—2所示电路中,电阻2R 增加时,电流I 将 A 。 A .增加; B .减小; C .不变; D .不能确定 3.在图2—3所示电路中,1I = D 。 A .5.0A ; B .1-A ; C .5.1A ; D .2A 4.对于图2—4所示电路,就外特性而言,则 D 。 A . a 、b 等效; B . a 、d 等效; C . a 、b 、c 、d 均等效; D . b 、c 等效 5.在图2—5所示电路中,N 为纯电阻网络,对于此电路,有 C 。 A .S S I U 、 都发出功率; B .S S I U 、都吸收功率; C .S I 发出功率,S U 不一定; D .S U 发出功率,S I 不一定 二、填空题 1. 图2—6(a )所示电路与图2—6(b )所示电路等效,则在图2—6(b )所示电路 中,6=S U V ,Ω=2R 。

2.图2—7(a )所示电路与图2—7(b )所示电路等效,则在图2—7(b )所示电路中,1=S I A ,Ω=2R 。 3.在图2—8所示电路中,输入电阻Ω=2ab R 。 4.在图2—9所示电路中,受控源发出的功率是30-W 。 5.在图2—10所示电路中,2A 电流源吸收的功率是20-W 。 三、计算题 1.对于图2—11所示电路,试求:1).电压1U 、2U ;2).各电源的功率, 并指出是吸收还是发出。

第3章 电阻电路的一般分析答案

第三章 电阻电路的一般分析 一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) .1. 利用节点KCL方程求解某一支路电流时,若改变接在同一节点所有其它已知支路电流的参考方向,将使求得的结果有符号的差别。 [×] .2. 列写KVL方程时,每次一定要包含一条新支路才能保证方程的独立性。 [√] .3. 若电路有n个节点,按不同节点列写的n-1个KCL方程必然相互独立。 [√] .4. 如图所示电路中,节点A的方程为: (1/R 1 +1/ R 2 +1/ R 3)U =I S +US /R 3 [×] 解:关键点:先等效,后列方程。 图A 的等效电路如图B : 节点A的方程应为: 3 32)1 1( R U I U R R S S A +=+ .5. 在如图所示电路中, 有 122 32 /1/1/S S A I U R U R R += + [√] 解:图A 的等效电路如图B : .6. 如图所示电路,节点方程为: 12311()S S G G G U GU I ++-=; 3231S G U G U I -=; 13110GU GU -=. [×] 解:图A 的等效电路如图B : S S U G I U G G 1121)(+=+ .7. 如图所示电路中,有四个独立回路。各回路电流的取向如图示, 则可解得各回路 电流为: I1=1A;I2=2A; I3=3A;I4=4A。 [×] 解: ;11A I = ;22A I =

;33A I = ;7344A I =+= 二、选择题 (注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) .1. 对如图所示电路,下列各式求支路电流正确的是 C_。 (A ) 12112 E E I R R -= +; (B) 222E I R = (C) AB L L U I R = .2. 若网络有b 条支路、n 个节点,其独立KCL方程有_C_个,独立KVL方程有_D__个,共计为_A_个方程。若用支路电流法,总计应列_A_个方程;若用支路电压法,总计应列_A_个方程。 (A)b (B)2b (C)n-1 (D)b-n+1 .3. 分析不含受控源的正电阻网络时,得到下列的节点导纳矩阵Yn ,其中肯定错误的为 _ B 、C 、_ D 、E _。 (A) ???? ??--5.13.03.08.0(B) ??????--4.12.12.11 (C) ??????6.18.08.02 (D) ? ?????---14.04.02 (E) ?? ????--35.112 解:自导为正,值大互导;互导为负,其值相等。 .4. 列写节点方程时,图示部分电路中B点的自导为_F_S, BC间的互导为D_S,B点的注入电流为_B_A 。 (A) 2 (B) -14 (C) 3 (D) -3 (E) -10 (F) 4 解:图A 的等效电路如图B :

电路原理(邱关源)习题答案第二章 电阻电路的等效变换练习

第二章 电阻电路的等效变换 “等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。 所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。 由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。等效变换的目的是简化电路,方便地求出需要求的结果。 深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。 2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。若:(1) 38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。试求以 上3种情况下电压2u 和电流23,i i 。 解:(1)2R 和3R 为并联,其等效电阻842R k = =Ω,

则总电流 mA R R u i s 3504210011=+=+= 分流有 mA i i i 333.86502132=== = … V i R u 667.666508222=?== (2)当∞=3R ,有03=i mA R R u i s 1082100212=+=+= V i R u 80108222=?== (3)03=R ,有0,022==u i mA R u i s 502100 13=== 2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响影响如何 解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。因此有 3 2332R R i R i += 3 2322R R i R R u s +=

第2章电阻电路的等效变换习题及参考答案

精心整理 第2章习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b 2-2解:(a (b 2-3(a)(b) 解:(a (b 2-4(a) (b) 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 从上往下流过3Ω电阻的电流为36I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126I 31A 126=?=+ 所以312I I -I =1A =

(b )从下往上流过6V 电压源的电流为66I 4A 1.5 ===(1+2)//(1+2) 从上往下流过两条并联支路的电流分别为2A 所以U 22-12=2V =?? 2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。 (a) (b) 题2-5图 解:(a (b 即得 所以ab R 2-6解:(a 所以ab R (b 所以ab R 2-7U 及总电压ab U 题2-7图 解:将图中的Y 形变成△形,如图所示 所以(32.5//526//2)//2655510ab R =++=+=Ω 回到原图 已知128I I +=348I I +=1310840I I +=245240I I += 联立解得1 2.4I A =2 5.6I A =32I A =46I A = 所以121054U I I V =-+=

2-8试求题2-8图所示电路的输入电阻in R 。 (a)(b) 题2-8图 解:(a )如图所示,在电路端口加电压源U ,求I 所以21(1)in U R R R I μ==+- (b )如图所示,在电路端口加电压源U ,求I 12R R U 2-(b 2-6 2-题2-11图 解:先化简电路,如图所示 43Ω所以有41(2933 i i +-=3i A = 2-12题2-12图所示电路中全部电阻均为1Ω,试求电路中的电流i 。

电路原理(邱关源)习题答案第二章 电阻电路的等效变换练习

第二章 电阻电路的等效变换 “等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。 所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。 由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。等效变换的目的是简化电路,方便地求出需要求的结果。 深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。 2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。若:(1)38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。试求以上3种情况下电压2u 和电流23,i i 。 解:(1)2R 和3R 为并联,其等效电阻842R k ==Ω, 则总电流 mA R R u i s 3504210011=+=+=

分流有 mA i i i 333.86502132==== (2)当∞=3R ,有03=i (3)03=R ,有0,022==u i 2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响?影响如何? 解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。因此有 323 32R R i R i += 32322R R i R R u s += (2)由于1R 和电流源串接支路对其余电路来说可以等效为一个电流源,如题解图(b )所示。因此当1R 增大,对432,,R R R 及s u 的电流和端电压都没有影响。 但1R 增大,1R 上的电压增大,将影响电流源两端的电压, 因为 显然s i u 随1R 的增大而增大。 注:任意电路元件与理想电流源s i 串联,均可将其等效为理想电压源s i ,如本题中题解图(a )和(b )。但应该注意等效是对外部电路的等效。图(a )和图(b )中电流源两端的电压就不等于原电路中电流源两端的电压is u 。同时,任意电路元件与理想电压源s u 并联,均可将其等效为理想电压

线性电阻电路分析

第二章线性电阻电路分析 电阻电路:由电阻元件和独立电源组成的电路,称为电阻电路。独立电源在电阻电路中所起的作用与其它电阻元件完全不同,它是电路的输入或激励。独立电源所产生的电压和电流,称为电路的输出或响应。线性电阻电路:由线性电阻元件和独立电源组成的电路,称为线性电阻电路。其响应与激励之间存在线性关系,利用这种线性关系,可以简化电路的分析和计算。 上一章介绍的2b法的缺点是需要联立求解的方程数目太多,给手算求解带来困难。本章通过两个途径来解决这个问题。 1. 利用单口网络的等效电路来减小电路规模,从而减少方程数目。 2. 减少方程变量的数目,用独立电流或独立电压作变量来建立电路方程。 §2-l 电阻单口网络 单口网络:只有两个端钮与其它电路相连接的网络,称为二端网络。当强调二端网络的端口特性,而不关心网络部的情况时,称二端网络为单口网络,简称为单口(One-port)。 电阻单口网络的特性由端口电压电流关系(简称为VCR)来表征(它是 u-i平面上的一条曲线)。等效单口网络:当两个单口网络的VCR关系完全相同时,称这两个单口是互相等效的。 单口的等效电路:根据单口VCR方程得到的电路,称为单口的等效电路。单口网络与其等效电路的端口特性完全相同。一般来说,等效单口部的结构和参数并不相同,谈不上什么等效问题。 利用单口的等效来简化电路分析:将电路中的某些单口用其等效电路代替时,不会影响电路其余部分的支路电压和电流,但由于电路规模的减小,则可以简化电路的分析和计算。 一、线性电阻的串联和并联 1.线性电阻的串联 N1N2 VCR相同 等效

两个二端电阻首尾相联,各电阻流过同一电流的连接方式,称为电阻的串联。图(a)表示n个线性电阻串联形成的单口网络。 用2b方程求得端口的VCR方程为 其中 上式表明n个线性电阻串联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电阻值由上式确定。 2.线性电阻的并联两个二端电阻首尾分别相联,各电阻处于同一电压下的连接方式,称为电阻的并联。图(a)表示n个线性电阻的并联。 求得端口的VCR方程为 上式表明n个线性电阻并联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电导值由上式确定。两个线性电阻并联单口的等效电阻值,也可用以下公式计算 Ri i R R R R i R i R i R i R u u u u u n n n n = +???+ + + = +???+ + + = +???+ + + = ) ( 3 2 1 3 3 2 2 1 1 3 2 1 ∑ = = = n k k R i u R 1 Gu u G G G G u G u G u G u G i i i i i n n n n = +???+ + + = +???+ + + = +???+ + + = ) ( 3 2 1 3 3 2 2 1 1 3 2 1

电路原理(邱关源)习题答案第二章-电阻电路的等效变换练习

第二章电阻电路的等效变换 “等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。 所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。 由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。等效变换的目的是简化电路,方便地求出需要求的结果。 深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。 2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。若:(1)38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。试求以上3种情况下电压2u 和电流23,i i 。 解:(1)2R 和3R 为并联,其等效电阻842R k ==Ω,

则总电流 mA R R u i s 3504210011=+=+= 分流有 mA i i i 333.86502132==== V i R u 667.666508222=?== (2)当∞=3R ,有03=i mA R R u i s 1082100212=+=+= V i R u 80108222=?== (3)03=R ,有0,022==u i mA R u i s 50210013=== 2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响?影响如何? 解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。因此有 32332R R i R i +=32322R R i R R u s += (2)由于1R 和电流源串接支路对其余电路来说可以等效

相关文档
最新文档