22平方根(第2课时)教学设计

22平方根(第2课时)教学设计
22平方根(第2课时)教学设计

第二章实数

2. 平方根(第2课时)

成都市锦西中学赵天成

西南交大附中田晓红

一、学生起点分析

学生在七年级上册学习“棋盘上的故事”就认识了一种运算“乘方”,并能熟练计算任何一个数的平方.知道正数的平方是正数,负数的平方是正数,0的平方是0.在八年级上册第二章《实数》的学习中又认识了算术平方根的概念和表示方法,已能求非负数的算术平方根.那么这一课时进一步学习平方根.本节也为后面学习“立方根”做基础.

二、教学任务分析

《平方根》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第二节.本节安排了两个课时完成.第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根.在具体的例子中抽象出概念,发展学生的抽象概括能力.本节课是第二课时,继续学习平方根的概念及其运用.并对“平方根”和“算术平方根”,“平方”和“开平方”的概念做辨析,使学生在“引导-探索-类比-发现”中发展学习数学的能力.为此,本节课的教学目标是

①了解平方根、开平方的概念,明确算术平方根与平方根的区别和联系.

②进一步明确平方与开平方是互逆的运算关系.

③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的

应用能力.

教学重点是

①了解平方根、开平方的概念.

②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平

方根和平方根.

③了解平方根与算术平方根的区别与联系.

教学难点是

①平方根与算术平方根的区别和联系.

②负数没有平方根,即负数不能进行开平方的运算.

三、教学过程设计:

本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节 第一环节 复习旧知 引入新知;第二环节 形成概念,辨析概念;第三环节 例题和巩固练习;第四环节 课堂小结;第五环节 思维拓展;第六环节 布置作业.

第一环节 复习旧知 引入新知

内容:方法一 复习引入

1.什么叫算术平方根?

3的平方等于9,那么9的算术平方根就是 3 . 52的平方等于 254 ,那么25

4 的算术平方根就是_____52_________.

展厅的地面为正方形,其面积49平方米,则边长_ 7_米.

2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何?

乘方有没有逆运算?

平方与算术平方根之间的关系?

已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____.

方法二 复习引入

问题 平方等于9,254,49的数还有吗?

目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash 情景引入,增加动画效果.

效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣.

说明 数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望.

第二环节 : 新课学习

内容 (一)探究新知

填空

32=(9 ) (-3)2=(9 ) ( )2=9 02=0

(1

2)2=(14))214= (不存在)2=-4 (12-)2=((二)形成概念(1)

一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.而把正的平方根叫做a 的算术平方根.

表达式为:若x 2=a ,那么x 叫做a 的平方根. 记作 a ±.

例如:(±4)2

=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.

(三)探索平方与开平方的关系:

给出几组具体的数据,由平方探知开平方与平方的互逆关系.

(四)概念辨析

平方根与算术平方根的联系与区别

联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种.

2.只有非负数才有平方根和算术平方根.

3. 0的平方根是0,算术平方根也是0.

区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根.

2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a .

目的 形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系.

效果 由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概 念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠.

说明 平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方.

对这两个概念加以比较与区别有利于学生的理解与掌握.

第三环节 例题和新知巩固

(一)例题示范

求下列各数的平方根:

(1)64;(2)49121

;(3) 0.0004;(4)()225-;(5) 11

解 (1)()2648=±,648∴±的平方根是,8±=±即;

(2)()24949771211211111,=∴±±的平方根为,711±=±即;

(3)()20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即;

(4)()()()22,25252525=∴±±--2的平方根是, 25=±即;

(5)11±的平方根是目的 这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟 练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.

效果 通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正 确的符号化语言.

(二)思考提升

1.()25-的平方根是 ,_____,

49的平方根是_____;

2.2

= ,= ,= ,=_______;

3.= ,2

0a

≥=当 .

(三)巩固练习

1 .下列说法正确的是

①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.

2.下列说法不正确的是( ) .

(A)0的平方根是0 (B)22-的平方根是2±

(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数

3.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( ).

(A) a +1

(C) 2a +1

(D)

4.x

为何值,

有意义? 答 因为02

x -≥,所以0x ≤ 目的 围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解.

效果 学生基本能顺利解决这些问题,并利用探索的规律进行规范的表达.

第四环节 课堂小结

内容 引导学生总结本课时的知识、方法.

目的 让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯.

效果 在老师的引导下学生自己总结本节课的知识、方法,如

平方根的概念 若2x a =,则x 叫a

的平方根,x =平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根.

平方与开方之间的关系;

求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数.

第五环节 提高训练

内容

1.5+的小数部分为a

,5b ,求a b +的值.

2.已知实数a ,b

满足296b b +=

①若a ,b 为ABC ?的两边,求第三边c 的取值范围;

②若a ,b 为ABC ?的两边,第三边c 等于5,求ABC ?的面积.

目的 安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理.

第六环节 作业布置

习题2.4

四、教学设计反思

本节课是八年级上册第二章《平方根》的第二课时.主要知识是平方根的学习和运用.教材是教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整.(一)注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的.所以在学习平方根的概念时,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的经验不符.对此,在平方根的引入时,可多提一些具体的问题.如“9的算术平方根是3,也就是说,3的平方是9.还有其他的数,它的平方也是9吗?”等等,旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念.再让学生去讨论一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,然后通过具体的求平方根的练习,巩固新学的概念.

(二)鼓励学生进行探究和交流本节课为学生提供了有趣而富有数学含义的问题,让学生进行充分的探索和交流.如把正方形的面积不断的扩大为2倍、3倍、n倍,来引导学生充分进行交流、讨论与探索等数学活动,从中感受学习平方根的必要性.(三)设计之中多处运用类比的方法,使学生清楚新旧知识的区别和联系.类比概念“平方根”和“算术平方根”的区别和联系,“平方”和“开平方”运算.

(四)根据学生实际,灵活使用教材

教材上只安排了一道例题和几个想一想,为了让学生对新知巩固,我增加了部分练习题,围绕“平方根”这一知识点进行各种题型的变式练习.当然,选题要有层次,有梯度.老师们在进行教学时可以根据学生的实际情况作适当的取舍.

(五)建议

根据知识结构的逻辑关系与学生的认知规律,建议教材在内容安排上平方根置于算术平方根之前.

(完整版)《算术平方根》教学设计

《算术平方根》教学设计 都匀市杨柳街中学张启航 教材:人教版《义务教育课程标准实验教科书数学》七年级下 目标:1、知识与技能 (1)了解算术平方根的概念,懂得使用根号表示正数的算术平方根。 (2)会求正数的算术平方根并会用符号表示。 2、过程与方法 (1)经历算术平方根概念的形成过程,理解平方与开方之间是互为 逆,会求正数的算术平方根并会用符号表示。 (2)通过引导、启发学生探索、合作交流等数学活动,使学生掌握 研究问题的方法。 3、情感态度与价值观 让学生体验数学与生活实际是紧密联系着的,激发学生的学习兴趣。重点:算术平方根的概念。 难点:算术平方根的概念。 学情、教法分析: 《算术平方根》是人教版教材七年级数学第6章第一节的内容。 在此之前,学生们已经掌握了数的平方,这为过渡到本节内容的学习起到了铺垫的作用。本课是《实数》的开篇第一课,掌握好算术平方根的概念和计算,为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累。本节课中重难点不多,利于学生对知识的掌握,利于学生能力的发展。因此,本节课通过引导、启发学生探索、交流、

合作等数学活动,初步培养学生分析问题、解决问题的能力,使学生掌握研究问题的方法,从而学会学习。 教具:课件、计算机、投影仪。 过程: 一、创设情境,复习引入 1、我们知道,要求正方形的面积,只要知道边长,利用面积公式即可救出;知道面积,怎样求边长呢?如:“学校要举行美术作品比赛,小欧想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?” (1)谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的? (2)大家说了很多方法,我们知道52=25,所以这个正方形画布的边长应取5分米;现在请同学们根据这一方法填写下表: 2、想一想:如果正方形的面积是10 dm2,它的边长是多少? 表中的数,我们很容易知道是什么数的平方,但10是什么数的平方呢?这就是我们今天要学习的“算术平方根”,学习后大家说知道了。 二、感知新知识 1、算术平方根的概念 (1)从填表知道正数3的平方等于9,我们把正数3叫做9的算术平方根;正数4的平方等于16,我们把正数4叫做16的算术平方根。

平方根 教案(教学设计)

平方根 【第一课时】 【教学目标】 1.了解算术平方根的概念,会用根号表示一个数的算术平方根。 2.会求一个正数的算术平方根。 3.了解算术平方根的性质。 【教学重难点】 1.算术平方根的概念、性质,会用根号表示一个正数的算术平方根。 2.算术平方根的概念、性质。 【教学过程】 一、问题引入 1.教师活动:回顾上节课的拼图活动及探索无理数的过程,提出问题:面积为13的正方形的边长究竟是多少? 学生活动: (1)完成填空: a2=_____;b2=_____; c2=_____;d2=_____; e2=_____;f2=_____。 (2)a,b,c,d,e,f中哪些是有理数,哪些是无理数?你能表示它们吗? 2.师生互动: 集体交流后,说明无理数也需要一种表示方法。 二、讲授新课 算术平方根的概念:一般地,如果一个正数的平方等于___,那么,这个正数就叫做___的算术平方根。记为:“”读做根号。特别地,0的算术平方根是0。 例1:分别写出下列各数的算术平方根。 (要求一个数的算术平方根,一般的方法是先按平方的概念来找哪个数的平方等于这个数。)

例2:自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6 米高的建筑物上自由下落,到达地面需要多长时间? 学生活动:一个同学在黑板上板演,其他同学在练习本上做,然后交流。 三、小结 1.内容总结: 算术平方根的定义、表示; 2.方法归纳: 转化的数学方法:即将陌生的问题转化为熟悉的问题解决。 【第二课时】 【教学目标】 1.了解平方根的概念,会用根号表示一个数的平方根。 2.会求一个正数的平方根。 3.了解平方根和算术平方根的性质。 4.了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。 【教学重难点】 1.了解平方根和开平方的概念、性质,会用根号表示一个正数的算术平方根和平方根。 2.平方根和算术平方根的区别。负数没有平方根,即负数不能进行开平方运算。 【教学过程】 一、复习提问 1.算术平方根的概念,任何一个有理数都有算术平方根吗?算术平方根有什么性质。 2.9的算术平方根是__________,3的平方是___________,还有其他的数的平方是9吗? 二、讲授新课 1.想一想: 平方等于的数有几个?平方等于0.64的数呢? 学生活动:学生思考,然后交流,得出平方根的定义。 2.教师活动: 一般地,如果一个数的平方等于____,那么,这个数就叫做___的平方根,也叫做二次方根。

6.1平方根第二课时教案

学科:数学授课教师:张辉贤年级:七总第13课时课题6、1平方根(二)课时数 教学目标知识与技能 1、会用计算器求一个数的算术平方根;理解被开方数扩大 (或缩小)与它的算术平方根扩大(或缩小)的规律; 2、能用夹值法求一个数的算术平方根的近似值; 过程与方法会用计算器求一个数的算术平方根 情感价值观 体验“无限不循环小数”的含义,感受存在着不同于有理 数的一类新数。 教学重点夹值法及估计一个(无理)数的大小的思想。 教学难点夹值法及估计一个(无理)数的大小的思想。 教学方法 使用媒体多媒体 教学过程 教学 流程 教学活动学生活动设计意图 情境导入 我们已经知道:正数x满足=a,则称x是a的算术 平方根.当a恰是一个数的平方数时,我们已经能求出它 的算术平方根了,例如,=4;但当a不是一个数的 平方数时,它的算术平方根又该怎祥求呢?例如课本第 161页的大正方形的边长等于多少呢? 问题:究竟有多大? 建议:1、先让学生思考讨论并估计大概有多大,在此基础 上按书本讲解并板书.可以这样提出问题并讲解:由直观 可知招大于1而小于2,那么了是1点几呢?(接下 来由试验可得到平方数最接近2的1位小数是1.4,而平方 数大于2且最接近的1位小数是1.5,大于1.4而小于 1.5...... 用夹值法去逼 近一个(无理) 数,是一个重 要的求近似数 的方法,也是 一种无限逼近 的数学思想 在出现之 前,学生已经知 道利用乘方运 算,通过观察的 方法求一些完全 平方数的算术平 方根,但是对于 像2这样的非完 全平方数,如何 求它的算术平方 根,对学生来讲 是一个新问题. 教科书给出 两种求的 方法:一种是估 算,一种是使用

2 第2课时算数平方根

14.1平方根(第2课时) 教学设计思想: 平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点: 1.引导学生建立清晰的概念系统,首先在第1课进要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示.对于a表示a的算术平方根的条件是,被开方数a表示非负数,而a本身也表示非负数,因此在教 学中不能要求学生死记硬背,要向学生说明规定的合理性.为此,提出算术平方根的一种几何解释,即面积为a的正方形(a为正数),它的边长为a(a也是正数),从而直观、形 象地说明了算术平方根约定的合理性. 2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中. 教学目标: 知识与技能: 1.能说出平方根和算术平方根的概念,会用根号表示一个数的平方根。 2.知道开平方与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的平方根。 3a表示的是非负数a的平方根。 过程与方法: 1.通过对比体会平方根、算术平方根的联系和区别; 2.在学习开平方运算求一个非负数的平方根、算术平方根的过程中,体会开平方运算与平方运算之间的互逆关系. 情感态度价值观: 进一步感受到所学数学知识之间的内在联系. 教学重难点: 重点:平方根和算术平方根的概念和求法. 难点:弄清平方根与算术平方根的意义

教学方法: 探究学习 课时安排 2课时 教学用具 多媒体 教学过程: 第2课时 一、复习引入: 问:1.625的平方根是多少?这两个平方根的和是多少?2.-7和7是哪个数的平方根? 3.正数m的平方根怎样表示? 4.下列各数的平方根各是什么? (1)64;(2)0;(3)(-0.4)2;(4) 2 3 2 1? ? ? ? ? -;(5)-16;(6)(-4)3. 答: 1.625的平方根是25和-25,这两个平方根的和是0. 2.-7和7是49的平方根. 3.正数m的平方根表示为m ±. 4.(1)64的平方根是±64=±8. (2)0的平方根是0. (3)因为(-0.4)2=0.16,所以它的平方根是±16 .0=±0.4. (4)因为 2 3 2 1? ? ? ? ? -= 2 3 5 ? ? ? ? ? -= 9 25 ,所以 2 3 2 1? ? ? ? ? -的平方根是± 9 25 =± 3 5 . (5)因为-16<0,所以-16没有平方根. (6)因为(-4)3=-16<0,所以(-4)3没有平方根. 问:已知正方形的面积等于a,那么它的一条边长等于多少? 答:设正方形的一条边长为x,则x2=a,根据平方根的定义,x=±a.因为正方形的边

。《算术平方根》教案

6 .1算术平方根 袁新启 教材分析: 本课教材所处位置是本章的第一节,学生对数的认识要由有理数范围扩大到实数范围,而本课是学习无理数的前提,是学习实数的衔接与过渡,并且是以后学习实数运算的基础,对以后学习物理、化学等知识及实际问题的解决起着举足轻重的作用. 学情分析: 学生已掌握一些完全平方数,能说出一些完全平方数是哪些有理数的平方,同时对乘方运算也有一定的认识. 学习目标: 知识与技能:1.了解算术平方根的意义,会用根号表示一个非负数的算术平方根,会用平方运算求某些非负数的算术平方根; 2.经历从平方运算到求算术平方根的演变过程,体会两者的互逆关系,发展思维能力. 过程与方法:经历探索算术平方根的过程,能用算术平方根求某非负数的算术平方根. 情感态度和价值观:让学生体验数学与生活实际是紧密相连,激发学生的学习兴趣. 学习重难点:

重点:1.算术平方根的概念; 2.算术平方根与被开方数之间的大小变化规律. 难点:算术平方根的双重非负性. 教学过程: ●情景导入 (1)一个正方形桌面的边长是 1.5m,求这个桌面的面积是多少平方米? (2)已知一个正方形画布的面积是25dm2,求它的边长. (3)如果一个正方形展厅的地面面积为55m2,求它的边长. ●探究归纳 我们知道52=25,所以这个正方形画布的边长应取5分米; 现在请同学们根据这一方法填写下表: 正方形的面积 1 9 16 36 55 …边长 1 3 4 6 0.4 ?… 2 点●概念引入 定义:如果一个正数x的平方等于a,即 ,那么这个正数x就叫做a的算术平方根,记为“

”,读作“根号a”。a叫做被开方数。 规定:0的算术平方根是0。 【试一试】略 ●讨论性质 a可以取任何数吗? 表示的是什么数? 负数没有算术平方根。 算术平方根的双重非负性 例2、下列各式中哪些有意义?哪些无意义?为什么?

平方根(第2课时)教案(新版)新人教版

6.1 平方根(第2课时) 课题 备课日期年月日课型新授 教学目标 知识与技能 了解有的正数的算术平方根开不尽方; 了解无限不循环小数特点; 会比较开不尽方的正数的算术平方根与有理数的大小. 过程与方法 通过拼正方形,体验解决问题方法的多样性,发展学生的形象思维和抽象思 维; 探究2的大小,培养估算意识,了解从两个方向无限逼近的数学思想, 学会比较开不尽方的正数的算术平方根与有理数的大小. 情感态度 与价值观 认识数学和生活实际的密切关系,建立自信心,提高学习热情. 教学重点初步感受无理数,能进行比较 教学难点探究2大小 教学方法 教学用具多媒体 课时安排 1 教学内容设计与反思 板书设计: 6.1 平方根 一、无限不循环小数二、估算与比较三、计算器的使用

教 学 内 容 设计与反思 一、情境引入 用两个面积为1的小正方形拼成一个面积为2的大正方形,并求出这个大正方形的边长. 二、探究新知 1.拼法: 按下图所示,很容易用两个面积为1的小正方形拼成一个面积为2的大正方形. 2.问题: ①拼成的大正方形的边长是多少? ②你能像上节课那样得到一个平方等于2的正有理数吗?③我们只能把边长表示 为2,那么2是多大呢? 3.两端逼近法探究2的大小: ∵12=1,22 =4, ∴1<2<4; ∵1.42=1.96,1.52 =2.25, ∴1.4<2<1.5; ∵1.412=1.988,1.422 =2.0164, ∴1.41<2<1.42; ∵1.4142=1.999396,1.4152 =2.002225, ∴1.414<2<1.415; …… 如此进行下去,可以得到2的更精确地近似值.事实上,2=1.414 213 56…,同π一样,是一个无限不循环小数,这样的数与以前学的有理数一样吗? 得到:小数位数无限且小数部分不循环的小数叫无限不循环小数.像7,5,3,2这样,所有开方开不尽的正数的算术平方根都是无限不循环小 数. 4.用计算器计算算术平方根的三个步骤:①进入();②输入(被开方数);③输出() 用计算器计算,并将计算结果填在表中. 0625.0 625.0 25.6 5.62 625 6250 观察上表,你发现什么了吗? (1)被开方数增大,算术平方根怎样变化? (2)被开方数与算术平方根的小数点有何移动规律? (3)直接写出:_____625000;_____62500==. 得到:被开方数增大(或减小),则算术平方根也增大(或减小);被开方数的小数点向左(右)移动两位,它的算术平方根的小数点也相应的向左(右)移动一位. 5.例题讲解 调动学生思维的积极性,通过拼图活动,经历发现无理数的过程.通过形的研究来感受无理数的存在.从而对数的认识进一步加深,为实现从有理数 到实数的过渡 作好铺垫. 教师设计问题,逐层深入,对学生进行启 发引导,通过对2的大小估 计,再次从数的角度来感受无 理数的存在性. 培养学生的估算能力,渗透估算的思想和方 法,感受从两端无限逼近的数 学思想. 使学生明白所有开方开不尽 的正数的算术 平方根同圆周率π一样,都 是无限不循环 小数. 发挥计算器的 作用,使学生掌握使用计算 器计算算术平 方根的方法. 培养学生的观

北师大8上教案:2.2 第2课时 平方根1

第2课时平方根 1.了解平方根的概念,会用根号表示一个数的平方根;(重点) 2.了解开平方与平方是互逆运算,会用开平方运算求非负数的平方根.(难点) 一、情境导入 填空:(1)3的平方等于9,那么9的算术平方根就是________;(2)2 5 的平方等于 4 25 ,那 么4 25 的算术平方根就是________;(3)展厅的地面为正方形,其面积是49平方米,则边长为________米. 平方等于9,4 25 ,49的数还有吗? 二、合作探究 探究点一:平方根的概念及性质【类型一】求一个数的平方根 求下列各数的平方根:

(1)12425;(2)0.0001;(3)(-4)2;(4)81. 解析:把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根. 解:(1)∵12425=4925,(±75)2=4925,∴12425的平方根为±75,即±12425=±75 ; (2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±0.0001=±0.01; (3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±(-4)2=±4; (4)∵(±3)2=9=81,∴81的平方根是±3. 方法总结:正确理解平方根的概念,明确是求哪一个数的平方根.如(4)中就是求9的平方根. 【类型二】 利用平方根的性质求数的值 一个正数的两个平方根分别是2a +1和a -4,求这个数. 解析:因为一个正数的平方根有两个,且它们互为相反数,所以2a +1和a -4互为相反数,根据互为相反数的两个数的和为0列方程求解. 解:由于一个正数的两个平方根是2a +1和a -4,则有2a +1+a -4=0.即3a -3=0,解得a =1.所以这个数为(2a +1)2=(2+1)2=9. 方法总结:一个正数的平方根有两个,它们互为相反数,即它们的和为零. 探究点二:开平方及相关运算

平方根的教学设计

平方根(第2课时)的教学设计 一.学生学情分析 学生在七年级上册学习“棋盘上的故事”就认识了一种运算“乘方”,并能熟练计算任何 一个数的平方.知道正数的平方是正数,负数的平方是正数,0的平方是0. 在八年级上册第 二章《实数》的学习中又认识了算术平方根的概念和表示方法,已能求非负数的算术平方根. 那么这一课时进一步学习平方根本节课是第二课时,继续学习平方根的概念及其运用.并对 “平方根”和“算术平方根”,“平方”和“开平方”的概念做辨析,使学生在“引导---探 索---类比----发现”中发展学习数学的能力. 二.学习任务分析 第二章《实数》的第二节.本节安排了两个课时完成.第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根.在具体的例子中抽象出概念,发展学生的 抽象概括能力.本节课是第二课时,继续学习平方根的概念及其运用.并对“平方根”和 “算术平方根”,“平方”和“开平方”的概念做辨析,使学生在“引导---探索---类比 ----发现”中发展学习数学的能力. 三.学习目标 知识目标 1.了解平方根、开平方的概念. 2.明确算术平方根与平方根的区别和联系. 3.进一步明确平方与开平方是互逆的运算关系. 能力目标 1.经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力. 2.培养学生求同与求异的思维,通过比较提高思考问题、辨析问题的能力. 情感目标 1.在学习中互相帮助、交流、合作、培养团队的精神. 2.在学习的过程中,培养学生严谨的科学态度. 四.重点、难点 重点: 1.了解平方根开、平方根的概念. 2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方 根和平方根. 3.了解平方根与算术平方根的区别与联系. 难点: 1.平方根与算术平方根的区别和联系. 2.负数没有平方根,即负数不能进行平方根的运算. 五.学习方法 自主合作探究

第2 课时平方根

13.1平方根(第2课时) [学习目标] 1. 明确平方根与算术平方根的联系与区别 2.会求某些正数(完全平方数)的算术平方根和平方根并会用符号表示. 教学过程 一、[学]导P33 7.8 7.填空: (1)0.36的平方根是__________; (2)9的平方根是___________; (3)3的算术平方根是_____________; (4)(-3 1)2的算术平方根是___________. 8.判断下列说法正确是否正确: (1)4的平方根是2; ( ) (2)0的平方根是0; ( ) (3)-1的平方根是-1; ( ) (4)-9没有平方根; ( ) (5)0.9的平方根是±0.3; ( ) (6)49等于7; ( ) (7)5表示5的算术平方根; ( ) (8)6±表示6的平方根. ( ) 二、导导P33 9.10.11 9.请用符号表示下列各数的平方根并写出其结果. (1)0.04; (2)400; (3)25. 10.请用符号表示下列各数的平方根并写出其结果。 (1)0.04; (2) 4 1; (3)0.16.

11.小明要剪一个面积为9cm 2的正方形纸片,则边长是多少呢?如果还想剪一个面积为7cm 2的正方形纸片,则边长又是多少呢? 三、升导P33 12.13.14.15.16 12.(1)一个数的平方等于它本身,这个数是__________; (2)一个数的平方根等于它本身,这个数是__________; (3)一个数的算术平方根等于它本身,这个数是_________. 13.(1)81的算术平方根是____________; (2)(-2)2的算术平方根为____________. 14.直接写出下列各式中x 的值. (1)若x =2,则x=__________; (2)若2+x =2,则x=___________; (3)x 2-25=0,则x=______________; (4)32+x 2=52,则x=____________. 15.(1)22=______,2)3(-=______,25=______, 2)7(-=______,29=______,20=______; (2)对于任意数α,2a =_________. 16.已知3a-1与13-5a 是x 的两个平方根,求x 的值. 小测本:B15 四、作业 书P47 1.2.3.4

平方根(二)教学设计

第二章实数 2.平方根(二) 西南交大附中田晓红 一.学生起点分析 学生在七年级上册学习“棋盘上的故事”就认识了一种运算“乘方”,并能熟练计算任何一个数的平方.知道正数的平方是正数,负数的平方是正数,0的平方是0. 在八年级上册第二章《实数》的学习 中又认识了算术平方根的概念和表示方法,已能求非负数的算术平方根.那么这一课时进一步学习平方 根.本节也为后面学习“立方根”做基础. 二.教学任务分析 《平方根》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第二节.本节安排了两个课时完成.第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根.在 具体的例子中抽象出概念,发展学生的抽象概括能力.本节课是第二课时,继续学习平方根的概念及 其运用.并对“平方根”和“算术平方根”,“平方”和“开平方”的概念做辨析,使学生在“引导--- 探索---类比----发现”中发展学习数学的能力. 三.学习目标 知识目标 1.了解平方根、开平方的概念. 2.明确算术平方根与平方根的区别和联系. 3.进一步明确平方与开平方是互逆的运算关系. 能力目标 1.经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力. 2.培养学生求同与求异的思维,通过比较提高思考问题、辨析问题的能力. 情感目标 1.在学习中互相帮助、交流、合作、培养团队的精神. 2.在学习的过程中,培养学生严谨的科学态度. 四.教学重点: 1.了解平方根开、平方根的概念. 2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根. 3.了解平方根与算术平方根的区别与联系. 教学难点: 1.平方根与算术平方根的区别和联系. 2.负数没有平方根,即负数不能进行平方根的运算. 3. 五.教学方法

2.2 平方根(第2课时)教学设计

第二章实数 2. 平方根(第2课时) 一、学生起点分析 学生在七年级上册学习“棋盘上的故事”就认识了一种运算“乘方”,并能熟练计算任何一个数的平方.知道正数的平方是正数,负数的平方是正数,0的平方是0.在八年级上册第二章《实数》的学习中又认识了算术平方根的概念和表示方法,已能求非负数的算术平方根.那么这一课时进一步学习平方根.本节也为后面学习“立方根”做基础. 二、教学任务分析 《平方根》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第二节.本节安排了两个课时完成.第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根.在具体的例子中抽象出概念,发展学生的抽象概括能力.本节课是第二课时,继续学习平方根的概念及其运用.并对“平方根”和“算术平方根”,“平方”和“开平方”的概念做辨析,使学生在“引导-探索-类比-发现”中发展学习数学的能力.为此,本节课的教学目标是 ①了解平方根、开平方的概念,明确算术平方根与平方根的区别和联系. ②进一步明确平方与开平方是互逆的运算关系. ③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的 应用能力. 教学重点是 ①了解平方根、开平方的概念. ②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平 方根和平方根. ③了解平方根与算术平方根的区别与联系. 教学难点是 ①平方根与算术平方根的区别和联系. ②负数没有平方根,即负数不能进行开平方的运算. 三、教学过程设计: 本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节第一环节复

习旧知 引入新知;第二环节 形成概念,辨析概念;第三环节 例题和巩固练习;第四环节 课堂小结;第五环节 思维拓展;第六环节 布置作业. 第一环节 复习旧知 引入新知 内容:方法一 复习引入 1.什么叫算术平方根? 3的平方等于9,那么9的算术平方根就是 3 . 52的平方等于 254 ,那么25 4 的算术平方根就是_____52_________. 展厅的地面为正方形,其面积49平方米,则边长_ 7_米. 2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何? 乘方有没有逆运算? 平方与算术平方根之间的关系? 已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____. 方法二 复习引入 问题 平方等于9,254,49的数还有吗? 目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash 情景引入,增加动画效果. 效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣. 说明 数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望. 第二环节 : 新课学习 内容 (一)探究新知 填空

《3.1平方根》教学设计

《3.1平方根》教学设计 一、教学目标 1.知识目标: 理解平方根和算术平方根的概念,了解平方与开平方的关系。 2.能力目标: 学会平方根、算术平方根的表示法和平方根、算术平方根,并运用以上知识解决实际问题。 3.情感目标: 学习从特殊到一般的数学思想方法,培养学生从实践到理论,从具体到抽象的辨证唯物主义观点。 二、教学重点和难点 1.重点:平方根的概念。 2.难点:平方根的概念和平方根的表示方法较为抽象,是本节课的难点。 三、教学方法 1 .本着以人为本的教育理念,主动地发展学生的个性特长,让学生学会学习,培养学生可持续发展学习的能力,本节课主要采用探究式和启发式的教学方法。 2.使用现代教育技术和引导学生动手实践,使学生能充实地学习数学,把注意力集中在决策、反思、归纳、推理和问题解决上。 四、教学过程 1.创设情境,设疑引新 (媒体展示)小明家的新房刚刚装修好,星期天小明的爸爸带着小明去挑选餐桌。他们看中了一款非常漂亮的餐桌,可是不知道边长是多少,正当小明的爸爸犯愁的时候,小明看了看桌子上的标签,得意的说:“我知道了”。 几秒之后提问:同学们你们知道吗? (设疑之后,引导学生解决这个问题的本质,即求平方等于100的数是什么?) 随后,再说几个数让同学们找哪个数的平方等于它。有了以上的铺垫,解决这一问题对于学生来说已是轻而易举,即轻松地引入课题) 2 师生互动,探究新知 2.1 概念引入 由具体问题开始讲解:∵(±1.2)2=1.44 ∴平方得1.44的数有两个是+1.2, 又边长不为负,因此为1.2m 于是说:∵(±1.2)2=1.44 ∴±1.2叫做1.44的平方根

2.2平方根第2课时(5案)

2.2 平方根(第2课时) 精讲案 第一环节 复习旧知 引入新知 1.什么叫算术平方根? 3的平方等于9,那么9的算术平方根就是 3 . 52的平方等于 254 ,那么25 4 的算术平方根就是_____52 _________. 展厅的地面为正方形,其面积49平方米,则边长_ 7_米. 2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何? 乘方有没有逆运算? 平方与算术平方根之间的关系? 已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____. 第二环节 : 新课学习 内容 (一)探究新知 填空 32=(9 ) (-3)2=(9 ) ( )2=9 02=0 (1 2) 2=(14))214= (不存在)2=-4 (1 2-)2=((二)形成概念(1) 一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方

根.而把正的平方根叫做a 的算术平方根. 表达式为:若x 2=a ,那么x 叫做a 的平方根. 记作 a ±. 例如:(±4)2 =16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根. (三)探索平方与开平方的关系: 给出几组具体的数据,由平方探知开平方与平方的互逆关系. (四)概念辨析 平方根与算术平方根的联系与区别 联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种. 2.只有非负数才有平方根和算术平方根. 3. 0的平方根是0,算术平方根也是0. 区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根. 2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a . 第三环节 例题和新知巩固 (一)例题示范 求下列各数的平方根: (1)64;(2)49121 ;(3) 0.0004;(4)()225-;(5) 11 解 (1)() 2648=±,648∴±的平方根是,8±=±即; (2)()2 4949771211211111,=∴±±的平方根为,711±=±即; (3)() 20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即; (4)()()()22,25252525=∴±±--2的平方根是, 25=±即; (5)11±的平方根是 (二)巩固练习1.()25-的平方根是 ,_____,49的平方根是_____;

平方根教学设计

平方根之教学设计 双沟完全中学:马黎明 2018.2.25

平方根之教学设计 教学目标: 知识与技能: 1、能说出平方根概念,会用根号表示一个数的平方根。 2、知道开平方与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的平方根。 过程与方法: 在学习开平方运算求一个数的平方根的过程中,体会开平方运算与平方运算之间的互逆关系。 情感态度价值观: 在师生互助、生生互助中给学困生学习的空间,增强学困生学习的信心。 教学重难点: 教学重点:平方根的概念及求法。 教学难点:平方根的求法。 教学方法: 观察讨论交流法 教学媒体 多媒体课件 教学过程: 一、问题导入 我们学习了有理数的加、减、乘、除和乘方运算,但在现实生活中,有些问题仅运用这五种运算是无法解决的。例如个面积为25平方米的正方形展厅,它的边长应是多少?如果是50呢?解决这个问题就要运用一种新的运算方法,

这种运算叫做开方。这节课我们就来学习平方根。 二、学习新知 (一)平方根概念 1、结合52=25切入平方根。 2、(出示音频文件)如果一个数的平方等于a ,那么这个数就叫做a 的平方根(二次方根)。 用数学语言表达即为:若x 2=a ,则x 叫做a 的平方根。 (二)平方根性质 1、当出示问题,学生连线 X x 2 42,(-4)2; 23()5,23()5 ;(10)2,(-10)2 02 2、说说16、 25 9 、100、0的平方根是哪些数? 2、讨论问题:(小组合作) (1).当一个正数和一个负数互为相反数时,它们的平方有什么关系? (2).正数有平方根吗?如果有,有几个?它们的有什么关系? (3).0有平方根吗?如果有,它是什么数? (4).负数有平方根吗? 3、通过具体实例弄懂上述问题,然后总结出: 一个正数有两个平方根,它们互为相反数; 0有一个平方根,它是0本身; 负数没有平方根。 (三)平方根的表示方法 一个正数a 的正的平方根,用符号“ ”表示,a 叫做被开方数,2叫做根指数,正数a 的负的平方根用符号“-”表示,a 的平方根合起来记作,其中 读作“二次根号”,

《平方根第2课时》示范公开课教学设计【北师大版八年级数学上册】

第二章 实数 2. 2 平方根 第 2 课时 教学设计 平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方 根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么, 并能分清 它们的区别与联系,引导学生建立清晰的概念系统,有针对性的、有梯度的、形式多样的课 堂练习题, 让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到 自己原有的认知结构中. 1. 能说出平方根和算术平方根的概念,会用根号表示一个数的平方根;知道开平方与平方 表示的是非 负数a 的平方根. 2. 通过对比体会平方根、算术平方根的联系和区别;在学习开平方运算求一个数的平方根、 算术平方根的过程中,体会开平方运算与平方运算之间的互逆关系. 3. 进一步感受到所学数学知识之间的内在联系. 【教学重点】 平方根和算术平方根的概念和求法. 【教学难点】 弄清平方根与算术平方根的意义 有两个边长为1的正方形,剪刀.

一、复习回顾 1. 什么叫算术平方根? 2. 我们已经学习过哪些运算?它们中互为逆运算的是什么? 思考:乘方有没有逆运算? 二、合作交流,探究新知 (一)平方根的概念及性质 (1) 3 的平方等于9,那么9 的算术平方根就是_____. (2) 2 5 的平方等于 4 25 ,那么 4 25 的算术平方根就是____. (3) 展厅地面为正方形,其面积49 m2,则边长为___m. 问题:平方等于9, 4 25 ,49 的数还有吗? 平方根的定义: 一般地,如果一个数x 的平方等于a,即x2=a,那么这个数x 就叫做a 的平方根(或二次方根). 平方根的表示方法、读法 试一试: 1. 144 的平方根是什么? 2. 0 的平方根是什么?

人教版初一数学下册平方根教学设计

平方根教学设计 一、教学目标: 知识与技能目标: 1.知道平方根的概念,能熟练地求出一个正数的平方根。 2.能描述平方根的特征,理解开方与乘方两者之间的联系与区别。 过程与方法目标: 让学生在观察、探索等活动中,获得对非负数的平方根特点的认识。 情感与态度目标: 1.学生积极参与数学活动,培养其对数学的好奇心与求知欲。 2.过数学活动,使学生获得成功的体验,并形成实事求是的态度。 二、教学重、难点: 重点:对平方根概念的描述与刻画 难点:对平方根性质的探索 三、学情分析: 知识背景:学生已经学会了乘方运算. 能力背景:能借助乘方运算解决其逆运算-----开平方 预测目标:1.能熟练地求一个正数的平方根. 2.知道乘方与开方的联系与区别 四、教具准备: 多媒体 五、教学过程: (一)创设情景,引入新课 师:小明到装饰城购买瓷砖,老板给了他一块面积为4dm2的正方形瓷砖,聪明的你能告诉小明这块瓷砖的边长吗?(幻灯片显示) 生:2dm(学生异口同声) 师:若面积为5 dm2 ,则边长为多少呢? 生1:边长为2.5 dm(生1好耍小聪明,回答问题不假思索) 生2:边长不能为2.5 dm 师:为什么? 生2:因为如果边长为2.5 dm,那么它的面积就为6.25 dm2,所以不正确. (此时学生中出现了一阵骚动,有的学生还怀疑数字出错了,建议把数字改为9,并说出其中的原因.) 生3:要是能知道几的平方等于5就好了.(生3是一个基础较好的学生,很爱动脑筋,此时有不少学生对他的见解表示赞成) (二)实践探索,揭示新知: 1.平方根的定义(幻灯片显示) 一般地,如果一个数的平方根等于a,那么这个数叫做a的平方根,也称为二次方根.也就是说,如果x2=a,那么x叫做a的平方根. 例如:22=4,(-2)2=4,±2叫做4的平方根 32=9,(-3)2=9,±3叫做9的平方根 2.探索平方根的性质: a.看一看:观察下面的式子: (幻灯片显示) ①12=1, (-1)2=1 ②0.52=0.25, (-0.5)2=0.25 ③( )2= , (- )2= (1)请你写出一个与上面式子类同的式子;

人教版初中七年级数学下册优秀教案6.1 平方根第2课时

6.1 平方根 第2课时 教学目标 【知识与技能】 1.掌握平方根的概念,明确平方根与算术平方根之间的联系与区别. 2.能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系. 【过程与方法】 通过探索平方根与算术平方根的区别与联系,学会用算术平方根解决平方根的问题. 【情感态度】 通过对平方根的学习,培养学生从多方面,多角度分析问题,解决问题的思想意识,养成全面分析问题的习惯. 教学重难点 【教学重点】 平方根的概念和求一个数的平方根. 【教学难点】 平方根和算术平方根的联系与区别. 课前准备 无 教学过程 一、情境导入,初步认识 问题已知一个数的平方等于16,这个数是多少?如何表示这个数呢? 【教学分析】由于42=16,(-4)2=16,故平方等于16的数有两个:4和-4,把4和-4叫做16的平方根,记为4=16,则-4=-16,把4和-4称为16的平方根. 提出平方根定义:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,即若x2=a,则x为a的平方根,记为x=±a. 二、思考探究,获取新知 把求一个数a的平方根的运算,叫做开平方,而平方运算与开平方运算互为逆运算,根据这种关系,可以求一个数的平方根. 例1 求下列各数的平方根和算术平方根. 分析:一个正数的平方根有两个,且互为相反数,其中正的平方根为算术平方根.可根据平方与开平方的互逆关系,通过平方运算求一个数的平方根.

【教学说明】一个正数的平方根有两个,不要丢掉其中负的平方根,算术平方根是其中 的一个正平方根,不要弄错了符号.求平方根时一定要把所求的数化成x 2 的形式,同时注意正数有两个平方根. 例2计算下列各题. 分析:(1)484就是求484的算术平方根;(2)是求4 1 12的平方根,可把带分数化成假分数;(4)应先求出被开方数的大小. 【教学说明】提醒学生注意分清每个算式的符号(包括性质符号). 例3 求下列各式的值. 分析:先要弄清每个符号表示的意义,并注意运算顺序. 【教学说明】(1)混合运算的运算顺序是先算开平方,再乘除,后加减,同一级运算按

平方根 公开课获奖教案

2.2 平方根 第2课时 平方根 第一环节 复习旧知 引入新知 内容:方法一 复习引入 1.什么叫算术平方根? 3的平方等于9,那么9的算术平方根就是 3 . 52的平方等于 254 ,那么25 4 的算术平方根就是_____52 _________. 展厅的地面为正方形,其面积49平方米,则边长_ 7_米. 2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何? 乘方有没有逆运算? 平方与算术平方根之间的关系? 已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____. 方法二 复习引入 问题 平方等于9, 25 4 ,49的数还有吗? 目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash 情景引入,增加动画效果. 效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣. 说明 数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望. 第二环节 : 新课学习

内容 (一)探究新知 填空 32 =(9 ) (-3)2=(9 ) ( )2=9 02 =0 (1 2 )2 =(14))21 4= (不存在) 2 =-4 (12 - )2 =((二)形成概念(1) 一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.而把正的平方根叫做a 的算术平方根. 表达式为:若x 2 =a ,那么x 叫做a 的平方根. 记作 a ±. 例如:(±4)2 =16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根. (三)探索平方与开平方的关系: 给出几组具体的数据,由平方探知开平方与平方的互逆关系. (四)概念辨析 平方根与算术平方根的联系与区别 联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种. 2.只有非负数才有平方根和算术平方根. 3. 0的平方根是0,算术平方根也是0. 区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根. 2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a . 目的 形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系. 效果 由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并

平方根(第一课时)教学设计

第二章实数 2.平方根(一) 一、学生起点分析 学生已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.这节课的教学,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性. 二、教学任务分析 本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,因此确定本节的教学目标如下: ·知识与技能目标 1.了解算术平方根的概念,会用根号表示一个数的算术平方根. 2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根. 3.了解算术平方根的性质. ·过程与方法目标 1.在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力. 2.在合作交流等活动中,培养他们的合作精神和创新意识. ·情感与态度目标 1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲. 教学重点: 了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根. 教学难点: 对算术平方根的概念和性质的理解. 三、教法学法 教学方法:讲授法. 课前准备: 教具:教材,多媒体课件,电脑. 学具:教材,笔,练习本.

四、教学过程: 本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置. 本节课教学流程为: 第一环节:问题情境 方法一:问题导入 内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有a 2=2,a = ,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习. 方法二:问题导入 内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空: x 2= ,y 2= ,z 2= ,w 2= . 意图:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性. 效果:能表示x 2=2,y 2=3,z 2=4,w 2=5;能求得z =2,但不能求得x 、y 、w 的值. 说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二。 第二环节:初步探究 内容1:情境引出新概念 x 2=2,y 2=3,z 2=4,w 2=5,已知幂和指数,求底数x ,你能求出来吗? 意图:让学生体验概念形成过程,感受到概念引入的必要性. 效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x 、y 、w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方. 说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?” 内容2:在上面思考的基础上,明晰概念: 一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00 . 意图:对算术平方根概念的认识. 效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的. 内容3:简单运用 巩固概念

相关文档
最新文档