2020年高考数学(理数)选择题强化专练——解析几何、立体几何、三角函数与解三角形、函数与导数含答案

合集下载

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥13平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由【答案】当AP =AB 时,有AD ∥平面MPC .13理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,==,DNNB DCMB 12在△ADB 中,=,∴AD ∥PN .APPB 12∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法:1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证AD 平行于PN ,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

一一一一一一一一一2.构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

2020届高考三角函数及解三角形汇编专题数学(理)Word版含解析

2020届高考三角函数及解三角形汇编专题数学(理)Word版含解析

专题06 三角函数及解三角形1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A .B .C .D .2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B5C3D55.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点2sin cos ++x xx x③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③D .①③④6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2- B. CD .27.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.9.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.13.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.14.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+ ⎪⎝⎭的值.15.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.17.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域.18.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αA .3B .13C .13-D .3-19.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知4cos 5=-α,()π,0∈-α,则πtan 4⎛⎫-= ⎪⎝⎭αA .17 B .7 C .17-D .7-20.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数π()sin()6f x x =+ω(0)>ω的相邻对称轴之间的距离为π2,将函数图象向左平移π6个单位得到函数()g x 的图象,则()g x = A .πsin()3x +B .πsin(2)3x +C .cos2xD .πcos(2)3x +21.【河南省郑州市2019届高三第三次质量检测数学试题】已知函数()()sin f x A x =+ωϕ,π0,0,2A >><ωϕ的部分图象如图所示,则使()()0f a x f a x +--=成立的a 的最小正值为A .π12 B .π6 C .π4D .π322.【山东省实验中学等四校2019届高三联合考试数学试题】在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC △的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭A .1B .2C D 23.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =cos )cos 0A C C b A ++=,则角A =A .2π3 B .π3 C .π6D .5π624.【广东省韶关市2019届高考模拟测试(4月)数学试题】在ABC △中,a 、b 、c 分别是内角A 、B 、C cos sin (cos cos )A A a C c A =+.(1)求角A 的大小;(2)若a =ABC △的面积为4,求ABC △的周长.25.【北京市昌平区2019届高三5月综合练习(二模)数学试题】已知函数1(=cos cos )+2f x x x x -). (1)求π()3f 的值;(2)当π[0,]2x ∈时,不等式()2c f x c <<+恒成立,求实数c 的取值范围.专题06 三角函数及解三角形详细解析1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.2sin cos ++x xx x当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B .5C 3D 5【答案】B【解析】2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】Dπ【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错. 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B . CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,再根据函数性质逐步得出,,A ωϕ的值即可.7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2. 【名师点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==11sin 22ABC S ac B ==⨯=△ 【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 9.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+--⨯-+综上,πsin 2410α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.10.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =. ππcos cos()cos cos sin sin 44ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-()sin 1202sin A C C ︒+-=,1sin 2sin 2C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 60C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2). 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<ABC S <<△.因此,△ABC面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 13.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值. 【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =. (2)由1cos 2B =-得sin 2B =.由正弦定理得sin sin c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin B C B C B C -=-=. 【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.14.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)-【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力. 15.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)c =(2.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+. 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.17.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[122-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π1223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[122-+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.18.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αAB.13C.13-D.3-【答案】B【解析】因为角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点(1)P,所以cos3==-α,因此21cos22cos13=-=αα.故选B.【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α的终边过点(1)P,求出cosα,再由二倍角公式,即可得出结果.19.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知4cos5=-α,()π,0∈-α,则πtan4⎛⎫-=⎪⎝⎭αA.17B.7C.17-D.7-【答案】C【解析】()4cos,π,05a=-∈-Qα,∴ππ,2⎛⎫∈--⎪⎝⎭α,33sin,tan54∴=-=αα,则πtan1tan41tan-⎛⎫-=⎪+⎝⎭ααα31143714-==-+.故选C.【名师点睛】本题主要考查了同角三角函数关系式及两角差的正切公式的简单应用,属于基础题.解答本题时,根据已知cosα的值,结合同角三角函数关系式可求tanα,然后根据两角差的正切公式即可求解.20.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数π()sin()6f x x =+ω(0)>ω的相邻对称轴之间的距离为π2,将函数图象向左平移π6个单位得到函数()g x 的图象,则()g x = A .πsin()3x + B .πsin(2)3x + C .cos2xD .πcos(2)3x + 【答案】C 【解析】由函数π()sin()(0)6f x x =+>ωω的相邻对称轴之间的距离为π2,得π22T =,即πT =,所以2ππ=ω,解得2=ω, 将函数π()sin(2)6f x x =+的图象向左平移π6个单位, 得到ππππ()sin[2()]sin 2cos 26636g x x x x ⎛⎫=++=++= ⎪⎝⎭的图象,故选C . 【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.解答本题时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果.21.【河南省郑州市2019届高三第三次质量检测数学试题】已知函数()()sin f x A x =+ωϕ,π0,0,2A >><ωϕ的部分图象如图所示,则使()()0f a x f a x +--=成立的a 的最小正值为A .π12B .π6 C .π4 D .π3 【答案】B 【解析】由图象易知,2A =,(0)1f =,即2sin 1=ϕ,且π2<ϕ,即6π=ϕ, 由图可知,11π()0,12f =所以11ππ11ππsin()0,π,126126k k ⋅+=∴⋅+=∈Z ωω,即122,11k k -=∈Z ω,又由图可知,周期11π2π11π24,121211T >⇒>∴<ωω,且0>ω, 所以由五点作图法可知2,2k ==ω, 所以函数π()2sin(2)6f x x =+,因为()()0f a x f a x +--=,所以函数()f x 关于x a =对称, 即有ππ2π,62a k k +=+∈Z ,所以可得ππ,26k a k =+∈Z , 所以a 的最小正值为π6. 故选B.【名师点睛】本题考查了三角函数的图象和性质,熟练运用三角函数的图象和周期对称性是解题的关键,属于中档题.解答本题时,先由图象,求出,,A ϕω,可得函数()f x 的解析式,再由()()0f a x f a x +--=易知()f x 的图象关于x a =对称,即可求得a 的值.22.【山东省实验中学等四校2019届高三联合考试数学试题】在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC △的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭A .1 BC D 【答案】D【解析】由()22a b c =+-,得2221sin 22ab C a b c ab =+-+,∵2222cos a b c ab C +-=,∴sin 2cos 2C ab C ab =+,cos 1C C -=,即π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, ∵0πC <<,∴ππ5π666C -<-<,∴ππ66C -=,即π3C =,则πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+= ⎪ ⎪⎝⎭⎝⎭12=, 故选D .【名师点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出C 的值以及利用两角和差的正弦公式进行计算是解决本题的关键.解答本题时,根据三角形的面积公式以及余弦定理进行化简求出C 的值,然后利用两角和的正弦公式进行求解即可.23.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =cos )cos 0A C C b A ++=,则角A =A .2π3B .π3 C .π6 D .5π6 【答案】D【解析】∵1a =cos )cos 0A C C b A ++=,cos cos cos A C C A b A =-,)cos A C B b A +==-,sin cos B b A =-,sin sin cos A B B A =-,∵sin 0B >cos A A =-,即tan A =, ∵(0,π)A ∈,∴5π6A =.故选D . 【名师点睛】本题主要考查解三角形,熟记正弦定理,两角和的正弦公式即可,属于基础题.解答本cos )cos 0A C C b A ++=sin cos B b A =-,再由正弦定理得到tan A =,结合(0,π)A ∈,即可求得A 的值. 24.【广东省韶关市2019届高考模拟测试(4月)数学试题】在ABC △中,a 、b 、c 分别是内角A 、B 、C cos sin (cos cos )A A a C c A =+.(1)求角A 的大小;(2)若a =ABC △,求ABC △的周长.【答案】(1)π3A =;(2).【解析】(1cos sin (cos cos )A A a C c A =+,∴由正弦定理可得:cos sin (sin cos sin cos )B A A A C C A =+sin sin()sin sin A A C A B =+=,cos B A sin sin A B =,∵sin 0B ≠,∴tan A =∵(0,π)A ∈, ∴π3A =.(2)∵π3A =,a =ABC △,1sin 2bc A ∴==, ∴5bc =,∴由余弦定理可得:2222cos a b c bc A =+-,即222212()3()15b c bc b c bc b c =+-=+-=+-,解得:b c +=∴ABC △的周长为a b c ++==.【名师点睛】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.(1)由正弦定理,cos sin sin B A A B =,由sin 0B ≠,可求tan A =(0,π)A ∈,可求π3A =.(2)利用三角形的面积公式可求5bc =,进而根据余弦定理可得b c +=ABC △的周长的值.25.【北京市昌平区2019届高三5月综合练习(二模)数学试题】已知函数1(=cos cos )+2f x x x x -).(1)求π()3f 的值;(2)当π[0,]2x ∈时,不等式()2c f x c <<+恒成立,求实数c 的取值范围.【答案】(1)1;(2)1(1,)2--. 【解析】(1)21(cos cos +2f x x x x -1=2cos 222x x - π=sin(2)6x -, 所以π()13f =. (2)因为π02x ≤≤, 所以ππ5π2666x -≤-≤, 所以1sin 226x π-≤-≤()1. 由不等式()2c f x c <<+恒成立,得1221c c ⎧<-⎪⎨⎪+>⎩,解得112c -<<-. 所以实数c 的取值范围为1(1,)2--.【名师点睛】本题主要考查三角函数的性质及其应用,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.(1)首先整理函数的解析式,然后结合函数的解析式求解函数值即可;(2)首先求得函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域,然后结合恒成立的结论得到关于c 的不等式组,求解不等式组可得c 的取值范围.。

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)

十年高考真题精解解析几何十年树木,百年树人,十年磨一剑。

本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。

三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。

(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一: 圆锥曲线的基础性质(2019新课标I 卷T10理科).已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2013新课标Ⅰ卷T4理科)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013新课标Ⅰ卷T10理科)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +(2015新课标I 卷T14理科)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014新课标Ⅰ卷T4理科)已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. B. 3 C.m D.3m(2011新课标I 卷T14理科)在平面直角坐标系xoy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C的方程为.(2012新课标I 卷T10文科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =C 的实轴长为(A (B ) (C )4 (D )8轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|. =±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方程标准方程 (>0) (a>0,b>0) px y 22=参数方程(t 为参数) 范围 ─a x a ,─b y b |x| a ,y R x 0中心原点O (0,0) 原点O (0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b) (a,0), (─a,0) (0,0)对称轴x 轴,y 轴;长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0)12222=+b y a x b a >12222=-by a x 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222)0,2(p F双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. (2)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. (3)共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为. 抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下. (2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设222a y x ±=-x y ±=2=e λ=-2222b y a x λ-=-2222b y a x 02222=-by a x )0(2222≠=-λλb y a x 02222=-b y a x 0=±b y a x )0(2222≠=-λλby a xA(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221p x AF p x x +==(AF 叫做焦半径).二、考向题型研究二: 简单的离心率求解问题(2019新课标I 卷T10文科)双曲线C :﹣=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C的离心率为( ) A .2sin40° B .2cos40°C .D .(2016新课标I 卷T5文科)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34(2011新课标I 卷T7理科)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A ,B 两点,|AB|为C 的实轴长的2倍,则C 的离心率为( ) A .B .C .2D .3(2012新课标I 卷T4文科)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45一、直接求出或求出a 与b 的比值,以求解。

2020年高考数学(理)热点专练01多选题与多空题(解析版)

2020年高考数学(理)热点专练01多选题与多空题(解析版)

热门01多项选择题与多空题(新高考)【变化状况】☆题型(次序)新高考的选择题由原“12个单项选择题”变为“8个单项选择题和变为“3个单空题和 1 个多空题”;解答题由原“5个必考题和4 个多项选择题”;填空题由原“4个单空题”2 个选考题”变为“6个必考题,无选考题”.☆题量(小题量)新高考的选择题总题量不变,共 12 个;填空题总题量不变,共4个;解答题本来是必考题 5 个,选考题二选一,此刻是必考题 6 个,无选考题,故总题量不变,但试卷上表现的解答题的数目减少一个 .☆分值新高考的选择题和填空题总分值无变化,解答题分值有变化,解答题分值有变化,解答题第一题 10 分,其余 5 道大题每题12 分 .☆考察知识点的散布(各模块的知识占比、能否为惯例意义的高频等)新高考的选择题的多项选择题的难度增添,重视统计、圆锥曲线、立体几何的部分以及函数专题,但也要注意三角、向量等其余知识的多项选择题,对其要求的学科思想与学科中心修养要求较高.填空题,增添一道多空题(有一个空变为了两个空),难度加大,但所占的分值比重与全国卷的相当 .解答题,本来的全国卷,17 题的地点是解三角的问题及数列的问题二选其一,且考察形式较新颖,新高考对数列及解三角形的模块地位相同考察. 注意不分文理以后,文科生增添了立体几何空间向量的部分,19 题的第二问正是很好的表现.选考题第22, 23 题不再考察,故不等式的选讲及极坐标与参数方程不作考试要求.其余专题部分基本保持不变.【满分技巧】☆ 掌握规则多项选择题由 1 个题干和 4 个备选项构成,备选项中起码有 2 个正确选项,所选正确答案将是 2 个、 3个或 4 个 .所以,在做多项选择题时应当注意,假如应试者所选答案中有错误选项,该题得零分;假如所有选对得 5 分,假如所选答案中没有错误选项,可是正确选项未所有选出,则得 3 分 .多空题不过填空题有本来的一个空改成了两个空,本来一道题一个空 5 分,此刻这道题的两个空一个2分一个 3 分.实质上得分的几率更高,一般前一个空较简单,假如太难的试题,起码能拿到 2 分 .☆ 惯例方法通用做多项选择题相同能够用直接选择法、清除法、比较法等常用的选择题做题方法,并且,有时能够综合使用多种方法来达成一个题目.做多空题也相同用平常求解一般填空题的方法即可.☆ 注意内容相互对峙的选项在多项选择题中,假如存在一对内容相互对峙的选项,而其余三项不存在内容对峙的状况,那么在此对峙两项中起码有一个正确项;若存在两对内容相互对峙的选项,则应当从两对对峙项中分别选择一个选项作为正确选项 .比如, ABCD四个待选项中,AB 相互对峙, CD 相互对峙,则两个正确选项常常需从AB 组以及 CD组中分别择一产生.自然,该规则也存在例外状况.☆ 注意互近选项或近似选项在多项选择题中,假如存在两对内容互近选项或近似选项,而这两对选项内容对峙,则此中一对互近或近似选项应当为正确选项.比如, ABCD四个待选项中,AB 两项内容邻近、近似,CD 两项内容邻近、近似,而AB 组与CD组内容对峙 .假如判断 A 项正确,那么AB 组都正确;假如判断 C 项正确,那么CD 组都正确.☆ 注意有承接关系或递进关系的选项在多项选择题中,假如两个或两个以上的选项之间存在承接关系或递进关系,即数个选项能同时成立,则常常这几个选项应一同被选择 .比如在ABCD四个待选项中,ABC三个选项间存在承接、递进关系,能同时成立,若 A 正确,则 ABC都应当为正确选项 .☆ 坚持宁缺勿滥做多项选择题时,慎重选择的意识要更为明确.一般第一选出最有掌握的 2 个选项,同时,在有足够把握确定还有其余正确答案时才持续选择,不然不选,免得选犯错误选项.这样,才能保证该题目得分.所以,要坚持宁缺勿滥,这一点与单项选择题不一样.☆ 要点保证多项选择题有必定难度,考试成绩的高低常常取决于多项选择题的得分.所以应试者应抓紧时间,保证在考试时间内把所有的多项选择题题目都做完.不论是单项选择仍是多项选择,都要注意看清楚题目要求是选择正确选项仍是选择错误选项.一般规范的考试应该是要求选择正确选项,可是,有时也因为某个知识点的特别性,不便要求选择正确选项,只好要求选择错误选项,所以,也要慎重.【常考知识】此类考题常与函数、向量、三角函数、概率、统计、圆锥曲线、立体几何等.【限时检测】(建议用时:30 分钟)1.已知向量 a(1, 2) , | b | 4 |a | , a ∥b ,则 b 可能是A . (4,8)B . (4, 8)C .( 4, 8)D . (4,8)【答案】 BDx2y24 122x 4 x4【分析】设 b2x, y ,依题意有,解得或.y 2x 0y 8y 8应选 BD.【名师点睛】本小题主要考察平面向量模的坐标运算,考察两个向量平行的坐标表示,属于基础题.求解时,设出 b 的坐标,依据已知条件列方程组,解方程组求得b 的可能取值 .2 .设 a , b , c 都是正数,且 4a6b9c,那么A . abbc 2acB . abbc ac2 2 11 21C .a bD .bacc【答案】 AD【分析】因为 a , b , c 都是正数,故可设 4a6b9cM,alog 4 M , b log 6 M , c log 9 M ,则1log M 4 , 1log M 6 , 1 log M 9 .1 12 a 1 2 1 bcQ log M 4 log M 9 2log M 6,ab bc2ac .ac ,即cb,去分母整理得,ba应选 AD.【名师点睛】此题考察对数的定义及运算性质,属于基础题.求解时,利用与对数定义求出a ,b ,c ,再依据对数的运算性质可得log M 4 log M 9 2log M 6 ,而后进行化简变形即可获得 .3 .已知函数 f x2sin (2xπ1,则以下说法中正确的选项是)3 A .函数 fxπ的图象对于点 ( ,0)对称3B .函数 fx 图象的一条对称轴是x π12C .若 xπ, π,则函数 fx 的最小值为313 2D .若 0 x 1x 2 ,则f x 1f x 2π【答案】 BCπ k π(kZ ) ,知函数 fπ πZ ) 对称,所以 A 不可立; 【分析】 A.令 2xx 对于点 (k,1)(k362π π对于轴 x5π k π(k Z ) 对称,所以 B 成立;B.令 2x2k π(k Z) ,知函数 f x312 2π π, 2x π π 2π f x 的最小值为 3 1,C 成立;C.若 x, 3 , , 则函数 3 23 3D.因为当 0x 1 x 2 π时, f x 不但一,所以不可立 .故答案选择 BC.【名师点睛】研究三角函数性质,我们只需切记 y sin x; ycos x; y tan x 的图象及性质,其余都可以经过整体思想进行类比达成.求解时, fxπ 1的性质的研究,我们更多去考虑2sin (2x)3f x A sin( x ) B 的性质,利用整体思想能解决此题.4.下表是某电器销售企业 2018 年度各种电器营业收入占比和净收益占比统计表:空调类冰箱类 小家电类 其余类营业收入占比90.10% 4.98%3.82% 1.10%净收益占比95.80% ﹣ 0.48%3.82%0.86%则以下判断中正确的选项是A .该企业 2018 年度冰箱类电器销售损失B .该企业 2018 年度小家电类电器营业收入和净收益相同C .该企业 2018 年度净收益主要由空调类电器销售供给D .剔除冰箱类电器销售数据后,该企业 2018 年度空调类电器销售净收益占比将会降低【答案】 ACD【分析】依据表中数据知,该企业2018 年度冰箱类电器销售净收益所占比为﹣ 0.48%,是损失的,所以A 正确;小家电类电器营业收入所占比和净收益所占比是相同的,但收入与净收益不必定相同,所以B 错误;该企业2018 年度净收益空调类电器销售所占比为95.80%,是主要收益根源,所以C 正确;剔除冰箱类电器销售数据后,该企业2018 年度空调类电器销售净收益占比将会降低,所以D 正确.应选ACD .【名师点睛】此题考察了数据剖析与统计知识的应用问题,考察了读表与剖析能力,是基础题.求解时,依据题意,剖析表中数据,即可得出正确的选项.5.已知三个数 1, a, 9 成等比数列,则圆锥曲线 x 2 y 2 1 的离心率为a2A .5B .33C . 10D . 32【答案】 BC【分析】由三个数1, a, 9 成等比数列,得 a 2 9 ,即 a3 .当 a3 时,圆锥曲线为 x 2 y 21 331 ,曲线为椭圆,则e;23 3 当 a3 时,曲线为y2x 25 101 ,曲线为双曲线, e2,232则离心率为:3或 10.32应选 BC.【名师点睛】此题考察等比数列的性质,离心率的求解,易错点为漏解a 的取值,属于中档题 .求解时,由等比数列的性质求出a ,再判断曲线种类,从而求出离心率.6.在 △ ABC 中,角 A , B , C 所对的边分别为a ,b ,c ,且 a b : a c : b c9:10:11 ,则下列结论正确的选项是A . sinA :sinB :sinC 4:5:6B . △ABC 是钝角三角形C . △ABC 的最大内角是最小内角的 2倍D .若 c6 ,则 △ ABC 外接圆半径为【答案】 ACD8 77a b 9x【分析】因为a b : a c : b c 9:10:11,所以可设:a c 10x (此中x),解得:b c 11xa4x, b 5x, c6x,所以sinA :sin B :sin C a : b : c4:5:6 ,所以 A 正确;a2b 2c2226x21由上可知: c 边最大,所以三角形中 C 角最大,又 cosC4x5x,2ab24x 5x8所以 C 角为锐角,所以 B 错误;2222226x5x 4x由上可知: a 边最小,所以三角形中A角最小,又cosAcb a 3 ,2 6x 5x2cb4所以cos2 A 2cos 2A11,所以cos2A cosC ,由三角形中 C 角最大且 C 角为锐角可得:82 A0, π ,C0,π,所以 2AC ,所以 C 正确;2c37,所以 2R68 7,所由正弦定理得: 2R ,又sinC1 cos 2C37,解得:RsinC887以D 正确.应选 ACD.【名师点睛】此题主要考察了正弦定理及余弦定理的应用,还考察了二倍角的余弦公式及计算能力,考a b 9x查方程思想及转变能力,属于中档题.求解时,由已知可设a c 10 x ,求得 a 4x,b 5x,c 6x ,b c 11x利用正弦定理可得A 正确;利用余弦定理可得cosC0 ,三角形中的最大C 角为锐角,可得 B 错误;利用余弦定理可得cosA3 ,利用二倍角的余弦公式可得:cos2AcosC ,即可判断C 正确;利用正4弦定理即可判断 D 正确,问题得解 .7.对于 x 的方程 ax 2| x | a 0 有四个不一样的实数解,则实数 a 的值可能是11A .B .23 11C .D .46【答案】 BCD【分析】方程 ax 2x a 0 中, a0 时,只有一个解 x 0 ,所以方程 ax 2x a 0 有四个不一样的解,则 a0 , x 0 ,所以方程可变为1x 21 1axx .x作出函数 y1 的图象和直线 1,如图,xyxa1 2,所以当12 时,直线 y1 与函数 y x1函数 y x的最小值为的图象有四个不一样的交xaax点,即原方程有四个解,知足应选 BCD .1a2 的有 BCD .【名师点睛】此题考察函数的零点与方程根的关系,在解决方程解的个数问题时经常采纳分别参数法,把问题转变为直线与函数的图象的交点问题.求解时,分别参数,把方程变为1 x2 1 x1 ax.利x用勾形函数的性质求解.8.若函数 f (x) 拥有以下性质:①定义域为( 1,1);②对于随意的 x, y ( 1,1),都有 f (x)f ( y)f xy;③当 1 x 0 时, f ( x)0 ,则称函数 f ( x) 为的函数 .若函数 f (x) 为的函数,则以下1 xy结论正确的选项是A . f ( x) 为奇函数B . f (x) 为偶函数C . f ( x) 为单一递减函数D . f (x) 为单一递加函数【答案】 AC【分析】 f ( x) 定义域对于原点对称,令y x 则有: f ( x) f ( x)f (0) ,令 x y 0 ,则有f (0) 0 ,所以 f ( x) f (x) ,故 f ( x) 是奇函数, A 正确, B 错误;令 x x1, y x2,且x1x2,所以f ( x1) f (x2 ) f (x1x 2),1 x1x2又 x1x20 且 1 x1 1, 1x2 1,则 (1x1x2 )( x2 x1) (1 x1)(1 x2 ) 0,即 1x1x20 ,所以 f ( x1 ) f ( x2 ) 0 ,所以 f ( x)是单一减函数,C正确,D错误. 1x1x2应选 AC.【名师点睛】判断抽象函数的单一性和奇偶性,一般采纳令值的方法解决问题.令值的时候注意结构出f ( x) 与f ( x)之间的关系以及 f (x1) f (x2)与0的大小 .求解时,剖析奇偶性:经过令值找到 f (x) 与f ( x) 之间的关系;剖析单一性:经过令值找到 f ( x1 ) f ( x2 ) 与0的大小关系.9.如图 1,点E为正方形ABCD边BC上异于点B, C的动点,将ABE 沿 AE 翻折,获得如图 2 所示的四棱锥 B AECD ,且平面BAE平面AECD,点F为线段BD上异于点B, D的动点,则在四棱锥B AECD 中,以下说法正确的有A.直线BE与直线CF必不在同一平面上B.存在点E使得直线BE平面DCEC.存在点F使得直线CF与平面BAE平行D.存在点E使得直线BE 与直线CD垂直【答案】 AC【分析】 A.假定直线 BE 与直线 CF 在同一平面上,所以 E在平面 BCF上,又 E 在线段 BC 上,BC I平面BCF=C,所以 E 与 C 重合,与 E 异于 C 矛盾,所以直线 BE 与直线 CF 必不在同一平面上, A 正确;B.若存在点E使得直线BE平面 DCE,AE平面AECD,所以BE⊥AE,又 AB BE ,所以△ABE中有两个直角,与三角形内角和为180o矛盾,所以不存在点E使得直线BE平面 DCE,B 不正确;C.取 F 为 BD 的中点,EC 1AD ,再取AB的中点G,则 EC PFG 且EC=FG,四边形ECFQ为平行四边2形,所以 FC P EG ,则直线CF与平面BAE平行,C正确;D.过 B作BO AE 于O,因为平面 BAE平面 AECD,平面BAE I平面AECD =AE,所以BO平面AECD.过 D 作DH AE 于H,因为平面 BAE平面 AECD,平面BAE I平面 AECD =AE,所以 DH平面 BAE,所以DH.若存在点 E 使得直线BE与直线 CD 垂直,DH平面AECD平面BE, DCAECDD ,所以AE⊥平面AECD E与O重合,与三角形ABE是以B为直角的三角,DHI DC,所以形矛盾,所以不存在点 E 使得直线BE与直线 CD 垂直,D不正确.应选 AC.【名师点睛】此题考察空间想象能力,逻辑推理能力,空间直线、平面之间的地点关系,反证法的运用,属于难题 .求解时,分别判断各个选项能否正确,对于A,证明两直线异面考虑用反证法;对于B,C,D 只需能找到某个地点成立,则命题正确,不然利用反证法进行证明.10.已知F1、F2分别是双曲线x2y21 a0, b0的左、右焦点,过点F2与双曲线的一条渐近线平a2b2行的直线交双曲线另一条渐近线于点P ,若点 P 在以线段F1F2为直径的圆外,则双曲线离心率的取值可能为A B. 2. 3C.4D.5【答案】 BCD【分析】不如设过点 F2 (c,0) 与双曲线的一条渐近线平行的直线为y b(x c) ,与双曲线另一条渐近auuur uuur线 y bx 交点为 P(c,bc) ,因为点P在以线段 F1F20 ,即为直径的圆外,所以PF1PF2a22a( 3c , bc )( c,bc) 0,3c2b2c20, 3a2b2 0,3a2c2a20, e2 4 , e 2 ,应选22a22a44a2BCD.【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其要点就是确定一个对于a,b,c 的方程或不等式,再依据a, b, c 的关系消掉b获得a, c的关系式,而成立对于a, b, c 的方程或不等式,要充足利用椭圆和双曲线的几何性质、点的坐标的范围等.求解时,先求点P 坐标,再依据向量数目积列不等式,化简获得对于离心率 e 的不等式,解得离心率取值范围.11.设函数f x x3 , x a.2x, x a①若 a0 ,则 f x的最大值为 ______;②若 f x无最大值,则实数 a 的取值范围是 ______.【答案】 0(,0)【分析】①若 a0 ,则 f x x3 , x0,2x, x0当 x0 时, f ( x)x3,此时函数为增函数,当 x0 时, f ( x)2x ,此时函数为减函数,故当 x0 时, f x的最大值为 f 00;②当 a0 时, f xx3 , x a2 x, x图象如下图:a由图可知存在最大值;x3 , x a当 a0 时,f x图象如下图:2x, x a由图可知此时不存在最大值;由( 1)知当a0 时,函数 f x 有最大值,综上所述,若f x 无最大值,则a0 .故答案为: 0; (,0) .【名师点睛】此题考察的知识点是分段函数的应用,函数的最值,难度中档.求解时,①当 a 0 时,②若 f x 无最大值,则a 0研究其单一性,依据单一性求出最大值;2aa3,解不等式组即可得答案.12.已知数列a n的前n项和公式为S n n2,若 b n2a n,则 a n________;数列b n的前n项和T n__________.【答案】 2n1 2 4n13【分析】当n 1,a1S11n 2,a n S n S n 12n 1 ,知足a1 1 ,故 a n2n1,若 b n2a n,则 b n22n 1,故数列b的前 n 项和T n 2 14n2n1.n1434故答案为: 2n1;24n 1 . 3【名师点睛】此题考察利用前n 项和求通项公式,考察等比数列乞降,是基础题.求解时,由n 2, a n S n S n 1得数列a的通项,利用等比数列乞降得数列b的前 n 项和.n n。

2020高考数学:立体几何专项训练

2020高考数学:立体几何专项训练

2020高考数学:立体几何专项训练
升入高中后,面对新的课程,新的知识,新的学习方法很多学生多会感到无所适从,尤其是在高中立体几何问题上,这简直是同学们的丢分大项,基本上半数以上的同学都很难在几何问题上大获全胜。

追究学生害怕立体几何的原因,其实就是学生缺乏空间想象力,造成思维受阻,再加上平时缺少针对性的练习,导致问题一直无法得到很好的解决,最终在考试中丢分十分严重。

但是立体几何知识在高中数学知识体系中占有十分重要的地位,不仅基础的选择填空上会涉及,压轴大题也常出现,因此几何问题若是得不到很好的解决,那么在数学学科上也自然很难取得一个不错的成绩。

因此这次为了能够帮助同学们解决高中几何知识难点,老师这一次就总结整理了一份高中立体几何的复习资料给大家,这份资料结合历年的真题考点对与立体几何相关的高考试题进行有效的整合与梳理,对其中隐含的思维方式与数学思想进行深入的剖析,相信同学们把这份资料弄明白,高考考试也不会再白白丢分,赶紧打印收藏!。

【2020高考数学】三角形中的最值问题解题指导(一) (含答案)

【2020高考数学】三角形中的最值问题解题指导(一) (含答案)

1 / 26【2020年高考数学】三角形中的最值问题解题指导(一)第一篇 三角函数与解三角形专题06 三角形中的最值问题【典例1】【湖南省益阳市、湘潭市2020届高三9月调研考试】已知锐角三角形ABC 中,内角,,A B C 的对边分别为,,a b c ,且2cos cos a b Bc C-= (1)求角C 的大小.(2)求函数sin sin y A B =+的值域. 【思路引导】 (1)由2cos cos a b Bc C-=利用正弦定理得2sin cos sin cos sin cos A C B C C B -=,根据两角和的正弦公式及诱导公式可得1cos 2C =,可求出C 的值;(2)对函数的关系式进行恒等变换,利用两角和与差的正弦公式及辅助角公式把函数的关系式变形成同一个角正弦型函数,进一步利用定义域求出函数的值域.2 / 26【典例2】【2020届海南省高三第二次联合考试】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且22cos a c b C -=. (1)求sin 2A C B +⎛⎫+⎪⎝⎭的值; (2)若b =c a -的取值范围.【思路引导】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得cos B ,进而求得B 和A C +,代入求得结果;(2)利用正弦定理可将c a -表示为2sin 2sin C A -,利用两角和差正弦公式、辅助角公式将其整理为2sin 3C π⎛⎫- ⎪⎝⎭,根据正弦型函数值域的求解方法,结合C 的范围可求得结果.3 / 26【典例3】【山西省平遥中学2020届高三上学期11月质检】 已知△ABC 的内角A ,B ,C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【思路引导】(1)利用正弦定理将角化为边可得222a b c bc =+-,再由余弦定理即可得A ; (2)由正弦定理2aR sinA=,可得a ,由基本不等式利用余弦定理可得222b c bc bc bc bc +-≥-=,从而由12S bscinA =可得解.4 / 26【典例4】【2020届河北省保定市高三上学期期末】已知ABC ∆的三个内角A ,B ,C 所对的边分别为,,a b c ,设(sin ,1cos )m B B =-,(2,0)n =. (1)若23B π=,求m 与n 的夹角θ; (2)若||1,m b ==,求ABC ∆周长的最大值.【思路引导】 (1)将23B π=代入可求得m .根据平面向量数量积的坐标运算求得m n ⋅,由数量积的定义即可求得cos θ,进而得夹角θ.(2)根据||1m =及向量模的坐标表示,可求得B .再由余弦定理可得22()4a cb +=.结合基本不等式即可求得a c +的最大值,即可求得周长的最大值;或由正弦定理,用角表示出a c +,结合辅助角公式及角的取值范围,即可求得a c +的取值范围,进而求得周长的最大值.5 / 26【典例5】【2020届吉林省长春市东北师大附中等六校高三联合模拟】 如图,在矩形ABCD 中,1AB =,BC =,点E 、F 分别在边BC 、CD 上,3FAE π∠=,06EAB πθθ⎛⎫∠=<< ⎪⎝⎭..(1)求AE ,AF (用θ表示); (2)求EAF ∆的面积S 的最小值. 【思路引导】(1)根据1AB =,BC =,分别在Rt ABE ∆和Rt ADF ∆中,利用锐角三角函数的定义求出AE 和AF即可;(2)由条件知13sin 232sin 23S AE AF ππθ=⋅⋅=⎛⎫+ ⎪⎝⎭,然后根据θ的范围,利用正弦函数的图象和性质求出S 的最小值.6 / 26【典例6】【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin ()(sin sin )a c C a b A B -=+-. (1)求B ; (2)设b =ABC 的面积为S ,求2sin 2S C -的最大值.【思路引导】(1)用正弦定理化角为边后,再用余弦定理可求得角B ;(2)用正弦定理把边用角表示,即2sin a A =,2sin c C =,这样2sin 2sin sin 2S C ac B C-=-2sin 2sin sin 2A C C =⋅,又sin sin()sin()3A B C C π=+=+,2sin 2S C -就表示为C 的三角函数,由三角函数恒等变换化为一个角的一个三角函数形式,结合正弦函数性质可得最大值.7 / 26【典例7】【福建省宁德市2019-2020学年高三上学期第一次质量检查(期末)】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,ccos c C -=⋅,c =(1)求A ;(2)若ABC ∆为锐角三角形,D 为BC 中点,求AD 的取值范围. 【思路引导】(1cos c C -⋅中的边化成角得到cos A =A 的值; (2)由(1)知4A π=,可得C 的范围,再将b 表示成关于tan C 的函数,从而求得b 的取值范围.8 / 261. 【陕西省2019年高三第三次教学质量检测】在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围.2. 【辽宁省葫芦岛市六校协作体2019-2020学年高三上学期11月月考】,,a b c 分别为ABC 的内角,,A B C 的对边.已知()sin 4sin 8sin a A B A +=.(1)若1,6b A π==,求sin B ; (2)已知3C π=,当ABC 的面积取得最大值时,求ABC 的周长.3. 【2019年云南省师范大学附属中学高三上学期第一次月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 4. 【2020届湖南省常德市高三上学期期末】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知cos cos 2cos +=ac B b C A.(1)求A ; (2)若a =b c +的最大值.5. 【2020届江西省吉安市高三上学期期末】在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =-,(1,cos cos )n a C c A =+,且//m n .(1)求角C 的大小;9 / 26(2)若c =ABC ∆的周长的取值范围.6. 【2020届重庆市康德卷高考模拟调研卷理科数学(二)】如图,在四边形ABCD 中,A为锐角,2cos sin()6A A C C π⎛⎫+=-⎪⎝⎭.(1)求A C +;(2)设ABD △、CBD 的外接圆半径分别为1,r 2r ,若1211m r r DB+≤恒成立,求实数m 的最小值. 7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值.8. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】 在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =,求a 的最小值.9. 【吉林省吉林市普通中学2019-2020学年度高三第二次调研测】 已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ; (2)若24a S =,求c bb c+的最大值. 10. 【湖南省长沙市浏阳市第一中学2019-2020学年高三上学期第六次月考】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan (sin 2cos )cos 2222A C A C a b a +=. (1)求角B 的值; (2)若△ABC的面积为D 为边AC 的中点,求线段BD 长的最小值.10 / 2611. ABC ∆中,60,2,B AB ABC ==∆的面积为 (1)求AC ;(2)若D 为BC 的中点,,E F 分别为边,AB AC 上的点(不包括端点),且120EDF ∠=,求DEF ∆面积的最小值.备战2020年高考数学大题精做之解答题题型全覆盖高端精品【参考答案部分】【典例1】【湖南省益阳市、湘潭市2020届高三9月调研考试】已知锐角三角形ABC 中,内角,,A B C 的对边分别为,,a b c ,且2cos cos a b Bc C-=(1)求角C 的大小.(2)求函数sin sin y A B =+的值域. 【思路引导】 (1)由2cos cos a b Bc C-=利用正弦定理得2sin cos sin cos sin cos A C B C C B -=,根据两角和的正弦公式及诱导公式可得1cos 2C =,可求出C 的值;(2)对函数的关系式进行恒等变换,利用两角和与差的正弦公式及辅助角公式把函数的关系式变形成同一个角正弦型函数,进一步利用定义域求出函数的值域. 解:(1)由2cos cos a b Bc C-=, 利用正弦定理可得2sin cos sin cos sin cos A C B C C B -=, 可化为()2sin cos sin A C sin C B A =+=,1sin 0,cos 2A C ≠∴=0,,23C C ππ⎛⎫∈∴= ⎪⎝⎭.(2)sin sin 3y A sinB A sin A ππ⎛⎫=+=+-- ⎪⎝⎭1sin sin 226A A A A π⎛⎫=++=+ ⎪⎝⎭,11 / 262,032A B A ππ+=<<,62A ππ∴<<,2,3636A sin A ππππ⎤⎛⎫∴<+<∴+∈⎥ ⎪⎝⎭⎝⎦,32y ⎛∴∈⎝. 【典例2】【2020届海南省高三第二次联合考试】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且22cos a c b C -=. (1)求sin 2A C B +⎛⎫+⎪⎝⎭的值; (2)若b =c a -的取值范围.【思路引导】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得cos B ,进而求得B 和A C +,代入求得结果;(2)利用正弦定理可将c a -表示为2sin 2sin C A -,利用两角和差正弦公式、辅助角公式将其整理为2sin 3C π⎛⎫- ⎪⎝⎭,根据正弦型函数值域的求解方法,结合C 的范围可求得结果.解:(1)由正弦定理可得:2sin sin 2sin cos A C B C -=A B C π++= ()sin sin A B C ∴=+()2sin sin 2sin cos 2cos sin sin 2sin cos B C C B C B C C B C ∴+-=+-=即2cos sin sin B C C =()0,C π∈ sin 0C ∴≠ 1cos 2B ∴=()0,B π∈ 3B π∴= 23AC π∴+=2sin sin 232A C B π+⎛⎫∴+==⎪⎝⎭(2)由(1)知:sin sin 3B π==2sin sin sin a c bA CB ∴==== 2sin cC ∴=,2sin a A =()2sin 2sin 2sin 2sin 2sin 2sin cos 2cos sin c a C A C B C C B C B C∴-=-=-+=--12 / 262sin sin sin 2sin 3C C C C C C π⎛⎫=-==- ⎪⎝⎭23A C π+=203C π∴<< ,333C πππ⎛⎫∴-∈- ⎪⎝⎭(2sin 3C π⎛⎫∴-∈ ⎪⎝⎭,即c a -的取值范围为(【典例3】【山西省平遥中学2020届高三上学期11月质检】 已知△ABC 的内角A ,B ,C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【思路引导】(1)利用正弦定理将角化为边可得222a b c bc =+-,再由余弦定理即可得A ; (2)由正弦定理2aR sinA=,可得a ,由基本不等式利用余弦定理可得222b c bc bc bc bc +-≥-=,从而由12S bscinA =可得解. 解:(1)设内角A ,B ,C 所对的边分别为a ,b ,c . 根据sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,可得222a b c ba b c bc c a b c-+=⇒=+-+-, 所以2221cos 222b c a bc A bc bc +-===,又因为0A π<<,所以3A π=.(2)22sin 2sin sin 3a R a R A A π=⇒=== 所以2232b c bc bc bc bc =+-≥-=,所以11sin 322S bc A =≤⨯=(b c =时取等号). 【典例4】【2020届河北省保定市高三上学期期末】已知ABC ∆的三个内角A ,B ,C 所对的边分别为,,a b c ,设(sin ,1cos )m B B =-,(2,0)n =.13 / 26(1)若23B π=,求m 与n 的夹角θ; (2)若||1,m b ==,求ABC ∆周长的最大值.【思路引导】 (1)将23B π=代入可求得m .根据平面向量数量积的坐标运算求得m n ⋅,由数量积的定义即可求得cos θ,进而得夹角θ.(2)根据||1m =及向量模的坐标表示,可求得B .再由余弦定理可得22()4a cb +=.结合基本不等式即可求得a c +的最大值,即可求得周长的最大值;或由正弦定理,用角表示出a c +,结合辅助角公式及角的取值范围,即可求得a c +的取值范围,进而求得周长的最大值.解:(1)23B π=,所以33,22m ⎛⎫= ⎪ ⎪⎝⎭,因为(2,0)n =, 202m n ⋅=⨯+=∴ ,又||22m ⎛== ⎝⎭⎭||2n =,31cos 2||||23m n m n θ⋅==⋅∴,3πθ∴=,(2)因为||1m =,即2||sin 1m B ===,所以3B π=,方法1.由余弦定理,得2222cos b a c ac B =+-.2222()()3()324a ca c a c ac a c ++⎛⎫=+-≥+-⋅=⎪⎝⎭,即2()34a c +≥,即a c +≤(当且仅当a c =时取等号) 所以ABC ∆周长的最大值为方法2.由正弦定理可知,2sin sin sin a c bA C B===,14 / 262sin ,2sin a A c C ==∴,23A C π+=,所以22sin 2sin 3sin 36a c A A A A A ππ⎛⎫⎛⎫+=+-==+⎪ ⎪⎝⎭⎝⎭,又203A π<<,5666A πππ<+<,1sin ,162A π⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦,a c +∈∴,所以当3A π=时,a c +取最大值所以ABC ∆周长的最大值为【典例5】【2020届吉林省长春市东北师大附中等六校高三联合模拟】 如图,在矩形ABCD 中,1AB =,BC =,点E 、F 分别在边BC 、CD 上,3FAE π∠=,06EAB πθθ⎛⎫∠=<< ⎪⎝⎭..(1)求AE ,AF (用θ表示); (2)求EAF ∆的面积S 的最小值. 【思路引导】(1)根据1AB =,BC =,分别在Rt ABE ∆和Rt ADF ∆中,利用锐角三角函数的定义求出AE 和AF即可;(2)由条件知13sin 232sin 23S AE AF ππθ=⋅⋅=⎛⎫+ ⎪⎝⎭,然后根据θ的范围,利用正弦函数的图象和性质求出S 的最小值.解:(1)在Rt ABE ∆中,1AB =,所以1cos cos AB AE EAB θ==∠,在Rt ADF ∆中,AD =236DAF EAB πππθ∠=--∠=-,15 / 260cos 6cos 6ADAF DAFπθθ⎫∴==<<⎪∠⎝⎭- ⎪⎝⎭; (2)13sin 234cos cos 6S AE AF ππθθ=⋅==⎛⎫- ⎪⎝⎭⎝⎭32sin 23πθ===⎛⎫++ ⎪⎝⎭,因为06πθ<<,所以22333πππθ<+<2sin 223πθ⎛⎫<+≤ ⎪⎝⎭,当232ππθ+=时,即当12πθ=时,S取最小值(32.【典例6】【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin ()(sin sin )a c C a b A B -=+-. (1)求B ; (2)设b =ABC 的面积为S ,求2sin 2S C -的最大值.【思路引导】(1)用正弦定理化角为边后,再用余弦定理可求得角B ;(2)用正弦定理把边用角表示,即2sin a A =,2sin c C =,这样2sin 2sin sin 2S C ac B C-=-2sin 2sin sin 2A C C=⋅,又sin sin()sin()3A B C C π=+=+,2sin 2S C -就表示为C 的三角函数,由三角函数恒等变换化为一个角的一个三角函数形式,结合正弦函数性质可得最大值. 解:(1)由正弦定理()()()a c c a b a b -=+-,222a c b ac +-=,由余弦定理2221cos 22a c b B ac +-==,3B π=;(2)由正弦定理2sin sin sin a c bA C B====,2sin a A =,2sin c C =, 2sin 2sin sin 2S C ac B C -=-16 / 262sin 2sin sin 2sin sin 2A C C A C C =⋅=-2)sin sin 23sin cos sin 2C B C C C C C C =+-=+-31cos 2sin 2sin 22sin 2222222C C C C C =-+-=-+sin 213C π⎛⎫=-≤ ⎪⎝⎭当且仅当512C π=时等号成立,故最大值为1. 【典例7】【福建省宁德市2019-2020学年高三上学期第一次质量检查(期末)】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,ccos c C -=⋅,c =(1)求A ;(2)若ABC ∆为锐角三角形,D 为BC 中点,求AD 的取值范围. 【思路引导】(1cos c C -⋅中的边化成角得到cos A =A 的值; (2)由(1)知4A π=,可得C 的范围,再将b 表示成关于tan C 的函数,从而求得b 的取值范围.解:(1cos c C -=⋅sin cos B C A C -=,又sin sin[()]sin()B A C A C =π-+=+,cos cos sin )sin cos A C A C C A C +-=sin sin 0A C C -=, 因为0C π<<,所以sin 0C ≠,所以cos A =0A π<<,所以4A π=. (2)由(1)知4A π=,根据题意得0242C C πππ⎧<<⎪⎪⎨⎪+>⎪⎩,,解得42C ππ<<. 在ABC ∆中,由正弦定理得sin sin c b C B=,所以)2sin 2cos 242sin sin tan C C C b CC Cπ++===+,因为()42C ππ∈,,所以tan (1,)C ∈+∞,所以(24)b ∈,.17 / 26因为D 为BC 中点,所以1()2AD AC AB =+, 所以221()4AD AC AB =+21(48)4b b =++21(2)14b =++,因为(24)b ∈,,所以AD的取值范围为.1. 【陕西省2019年高三第三次教学质量检测】在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围. 【思路引导】(1)根据题意,由余弦定理求得1cos 2C =,即可求解C 角的值; (2)由正弦定理和三角恒等变换的公式,化简得到4sin 6a b A π⎛⎫+=+ ⎪⎝⎭,再根据ABC ∆为锐角三角形,求得62A ππ<<,利用三角函数的图象与性质,即可求解.解:(1)由题意知()()3a b c a b c ab +++-=,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵(0,)C π∈,∴3C π=.(2)由正弦定理可知,2sin sin sin 3ab A Bπ===,a Ab B == ∴sin )a b A B +=+2sin sin 3A A π⎤⎛⎫=+-⎪⎥⎝⎭⎦ 2cos A A =+4sin 6A π⎛⎫=+ ⎪⎝⎭,18 / 26又∵ABC ∆为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,即,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上+a b的取值范围为.2. 【辽宁省葫芦岛市六校协作体2019-2020学年高三上学期11月月考】,,a b c 分别为ABC 的内角,,A B C 的对边.已知()sin 4sin 8sin a A B A +=.(1)若1,6b A π==,求sin B ; (2)已知3C π=,当ABC 的面积取得最大值时,求ABC 的周长.【思路引导】(1)根据正弦定理,将()sin 4sin 8sin a A B A +=,化角为边,即可求出a ,再利用正弦定理即可求出sin B ;(2)根据3C π=,选择in 12s S ab C =,所以当ABC 的面积取得最大值时,ab 最大,结合(1)中条件48a b +=,即可求出ab 最大时,对应的,a b 的值,再根据余弦定理求出边c ,进而得到ABC 的周长.解:(1)由()sin 4sin 8sin a A B A +=,得()48a a b a +=, 即48a b +=.因为1b =,所以4a =.由41sin sin6B=π,得1sin 8B =. (2)因为48a b +=≥=, 所以4ab ≤,当且仅当44a b ==时,等号成立. 因为ABC的面积11sin 4sin 223S ab C π=≤⨯⨯= 所以当44a b ==时,ABC 的面积取得最大值, 此时22241241cos 133c π=+-⨯⨯⨯=,则c =, 所以ABC的周长为519 / 263. 【2019年云南省师范大学附属中学高三上学期第一次月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 【思路引导】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=- ⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 解:(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >,则1sin cos sin 62B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin B B =,tan B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由1sin 2ABC S ac B ∆==,又D 为AC 的中点,则2BD BA BC =+, 等式两边平方得22242BD BC BC BA BA =+⋅+, 所以2222423a c BA BC a c ac ac =++⋅=++≥,20 / 26则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆43=4. 【2020届湖南省常德市高三上学期期末】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知cos cos 2cos +=ac B b C A.(1)求A ; (2)若a =b c +的最大值.【思路引导】(1)根据正弦定理即正弦的和角公式,将表达式化为角的表达式.即可求得A .(2)利用正弦定理,表示出b c +,结合三角函数的辅助角公式及角的取值范围,即可求得b c +的最大值. 解:(1)∵cos cos 2cos +=ac B b C A,由正弦定理得sin sin cos sin cos 2cos +=AC B B C A从而有()sin sin sin sin 2cos 2cos +=⇒=A AB C A A A , ∵sin 0A ≠,∴1cos 2A =,∵0A π<<,∴3A π=;(2)由正弦定理得:2sin sin sin a b cA B C===, ∴2sin ,2sin b B c C ==,则()22sin sin 2sin 2sin 3⎛⎫+=+=+-⎪⎝⎭b c B C B B π3sin 6B B B π⎛⎫==+ ⎪⎝⎭,∵203B π<<,∴5666B πππ<+<, ∴当3B π=时,b c +取得最大值5. 【2020届江西省吉安市高三上学期期末】在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =-,(1,cos cos )n a C c A =+,且//m n .(1)求角C 的大小; (2)若c =ABC ∆的周长的取值范围.21 / 26【思路引导】(1)根据向量平行列出方程,再利用正弦定理进行边角转化,然后求出角C 的大小; (2)根据余弦定理求出+a b 的取值范围,再根据三角形边的几何性质求出周长的取值范围. 解:(1)由//m n 得22cos 2cos cos a C c A C b +=-, 由正弦定理sin sin sin a b cA B C==, 得2cos (sin cos sin cos )sin C A C C A B +=-, 即2cos sin()sin C A C B +=-,因为在三角形中sin()sin 0A C B +=≠,则1cos 2C =-,又(0,)C π∠∈,故23C π∠=; (2)在ABC ∆中,因c =23C π∠=,由余弦定理得2223c a b ab =++=, 即22()332a b a b ab +⎛⎫+=+≤+ ⎪⎝⎭,当且仅当a b =时取等号,解得2a b +≤,又由三角形性质得a b c +>=2a b +≤,则2a b c <++≤,即ABC ∆的周长的取值范围为(+. 6. 【2020届重庆市康德卷高考模拟调研卷理科数学(二)】如图,在四边形ABCD 中,A为锐角,2cos sin()6A A C C π⎛⎫+=-⎪⎝⎭.(1)求A C +;(2)设ABD △、CBD 的外接圆半径分别为1,r 2r ,若1211mr r DB+≤恒成立,求实数m 的最小值. 【思路引导】(1)根据三角函数的和差角公式与三角函数值求解即可. (2)根据正弦定理参变分离,再利用A 的取值范围求解 解:(1)由题, 2cos sin()A A C +=22 / 263sin[()]sin[()]sin(2)sin sin 2A A C A A C A C C C C ++--+=++=-,即1sin(2)sin 22A C C C +=-sin(2)sin 3A C C π⎛⎫⇒+=- ⎪⎝⎭,因为23A C C π+>-.故23A C C π+≠-.所以2233A C C A C πππ++-=⇒+=. (2)122sin 2sin BD BD m A C r r ≥+=+22sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭12sin 2cos 2sin 22A A A ⎛⎫=+⨯-⨯- ⎪⎝⎭3sin A A =6A π⎛⎫=+ ⎪⎝⎭,因为0,2A π⎛⎫∈ ⎪⎝⎭,故当62A ππ+=时6A π⎛⎫+ ⎪⎝⎭有最大值所以m ≥即实数m的最小值为7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值. 【思路引导】(1)根据三角函数的基本关系式,可化简得2(sin cos sin cos )sin sin A B B A A B +=+,再根据A B C π++=,即可得到sin sin 2sin A B C +=,利用正弦定理,可作出证明;(2)由(1)2a bc +=,利用余弦定理列出方程,再利用基本不等式,可得cos C 的最小值. 解:(1)由题意知,sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+, 化简得:2(sin cos sin cos )sin sin A B B A A B +=+ 即2sin()sin sin A B A B +=+,因为A B C π++=, 所以sin()sin()sin A B C C π+=-=,从而sin sin 2sin A B C +=,由正弦定理得2a b c +=. (2)由(1)知,2a bc +=,23 / 26所以222222()3112cos ()22842a b a b a b c b a C ab ab a b ++-+-===+-≥, 当且仅当a b =时,等号成立,故cos C 的最小值为12.8. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】 在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =,求a 的最小值. 【思路引导】(Ⅰ)利用正弦定理、诱导公式、两角和差的三角公式求出cosA 的值,可得A 的值.解:(1) ∵ABC 中,cos 2cb a C -=, ∴由正弦定理知,1sin sin cos sin 2B AC C -=,∵πA B C ++=,∴()sin sin sin cos cos sin B A C A C A C =+=+, ∴1sin cos cos sin sin cos sin 2A C A C A C C +-=, ∴1cos sin sin 2A C C =, ∴1cos 2A =,∴π3A =.(2) 由 (1)及·3AB AC =得6bc =,所以222222cos 6266a b c bc A b c bc =+-=+--= 当且仅当b c =时取等号,所以a9. 【吉林省吉林市普通中学2019-2020学年度高三第二次调研测】 已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ; (2)若24a S =,求c bb c+的最大值. 【思路引导】24 / 26(1)由诱导公式和二倍角公式可得sin bc A ,从而得三角形面积;(2)由余弦定理得2222cos 2sin b c bc A a bc A +-==,从而可把22c b b c b c bc++=用角A 表示出来,由三角函数性质求得最大值.解:(1)在ABC ∆中,A B C π++=,∴B C A +=π-∵()sin 220cos 0bc A B C ++=∴2sin cos 20cos 0bc A A A ⋅-= ∵2A π≠,∴cos 0A ≠∴1sin 52S bc A == (2)∵24a S =∴222cos 2sin b c bc A bc A +-= ∴222sin 2cos b c bc A bc A +=+∴222sin 2cos 4c b b c A A A b c bc π+⎛⎫+==+=+ ⎪⎝⎭ ∴当4A π=时,c bb c+取最大值 10. 【湖南省长沙市浏阳市第一中学2019-2020学年高三上学期第六次月考】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan (sin 2cos )cos 2222A C A Ca b a +=. (1)求角B 的值; (2)若△ABC的面积为D 为边AC 的中点,求线段BD 长的最小值.【思路引导】 (1)根据tan(sin 2cos )cos 2222A C A C a b a +=,化简可得cos sin 2A C a b A +=,进一步得到1cos 22B =,然后求出B 的值;(2)由(1)的角B 及三角形面积公式可得ac 的值,因为D 为边AC 的中点,所以1()2BD BA BC =+,利用向量的模和基本不等式可求BD 的取值范围,即可得到BD 的最小值. 解:(1)由tan(sin 2cos )cos 2222A C A C a b a +=,得sin (sin 2cos )cos cos 22222A C A A Ca b a +=,25 / 26即(coscos sin sin )2sin cos 222222A C A C A A a b -=,即cos sin 2A Ca b A +=. 由正弦定理得sin cossin sin 2A C AB A +=,因0,sin 0,sin 02BA A π<<≠≠, 所以cossin 2A C A +=,则sin sin 2sin cos 222B B BB ==, 所以1cos (0)2222B B π=<<, 所以23B π=,即23B π=. (2)由△ABC的面积为1sin 2ac B =12ac =.因为D 为边AC 的中点,所以1()2BD BA BC =+,所以2221(2)4BD BA BC BA BC =++,即222111(2cos )(2)3444BD c a ac B ac ac ac =++≥-==,当且仅当a c ==“=”,所以3BD ≥,即线段BD. 11. ABC ∆中,60,2,B AB ABC ==∆的面积为 (1)求AC(2)若D 为BC 的中点,,E F 分别为边,AB AC 上的点(不包括端点),且120EDF ∠=,求DEF ∆面积的最小值. 【思路引导】 (1)利用1sin 2ABCAB B SBC =⋅⋅⋅求出BC ,再利用余弦定理求AC 即可; (2)设(),0,60BDE θθ︒︒∠=∈,在BDE 中,利用正弦定理表示出DE ,在CDF 中,利用正弦定理表示出DF ,再将DEF的面积表示出来,利用三角函数的性质求其最小值. 解:(1)因为60,2,B AB ==所以11sin 222ABCAB BC B BC B S C =⋅⋅⋅=⨯=, 又ABCS=4BC =,由余弦定理得:2222212cos 24224122ACAB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=, 所以AC =26 / 26(2)设(),0,60BDE θθ︒︒∠=∈,则60CDF θ︒∠=-,在BDE 中,由正弦定理得:sin sin BD DEBED B=∠,即()2sin 60θ︒=+,所以()sin 60DE θ︒=+, 在CDF 中,由正弦定理得:sin sin CD DFCFD C=∠,由(1)可得22260,,30B BC AC AB C ︒=∴=+=,则()21sin 902DFθ︒+=,所以1cos DF θ=,所以()13sin 24sin 60cos DEFSDE DF EDF θθ︒=⋅⋅⋅∠=+⋅==,当15θ︒=时,()()min sin 2601,6DEP S θ︒+===-故DEF 的面积的最小值为6-.。

2020高考理科数学大题专项练习:立体几何综合问题

2020高考理科数学大题专项练习:立体几何综合问题

大题专项:立体几何综合问题一、解答题1.如图,已知四棱台ABCD-A 1B 1C 1D 1的上、下底面分别是边长为3和6的正方形.A 1A=6,且A 1A ⊥底面ABCD.点P ,Q 分别在棱DD 1,BC 上.(1)若P 是DD 1的中点,证明:AB 1⊥PQ ;(2)若PQ ∥平面ABB 1A 1,二面角P-QD-A 的余弦值为37,求四面体ADPQ 的体积.解:由题设知,AA 1,AB ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A (0,0,0),B 1(3,0,6),D (0,6,0),D 1(0,3,6),Q (6,m ,0),其中m=BQ ,0≤m ≤6.(1)证明:若P 是DD 1的中点,则P (0,92,3),PQ ⃗⃗⃗⃗⃗ =(6,m -92,-3).又AB 1⃗⃗⃗⃗⃗⃗⃗ =(3,0,6),于是AB 1⃗⃗⃗⃗⃗⃗⃗ ·PQ ⃗⃗⃗⃗⃗ =18-18=0, 所以AB 1⃗⃗⃗⃗⃗⃗⃗ ⊥PQ ⃗⃗⃗⃗⃗ ,即AB 1⊥PQ.(2)由题设知,DQ ⃗⃗⃗⃗⃗⃗ =(6,m-6,0),DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-3,6)是平面PQD 内的两个不共线向量.设n 1=(x ,y ,z )是平面PQD 的一个法向量,则{n 1·DQ ⃗⃗⃗⃗⃗⃗ =0,n 1·DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =0,即{6x +(m -6)y =0,-3y +6z =0. 取y=6,得n 1=(6-m ,6,3).又平面AQD 的一个法向量是n 2=(0,0,1), 所以cos <n 1,n 2>=n 1·n 2|n 1|·|n 2|=1·√(6-m )+62+32=√(6-m )+45.而二面角P-QD-A 的余弦值为37,因此√(6-m )+45=37,解得m=4或m=8(舍去),此时Q (6,4,0).设DP ⃗⃗⃗⃗⃗ =λDD 1⃗⃗⃗⃗⃗⃗⃗⃗ (0<λ≤1),而DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-3,6),由此得点P (0,6-3λ,6λ),所以PQ ⃗⃗⃗⃗⃗ =(6,3λ-2,-6λ).因为PQ ∥平面ABB 1A 1,且平面ABB 1A 1的一个法向量是n 3=(0,1,0),所以PQ ⃗⃗⃗⃗⃗ ·n 3=0,即3λ-2=0,亦即λ=23,从而P (0,4,4).于是,将四面体ADPQ 视为以△ADQ 为底面的三棱锥P-ADQ ,则其高h=4.故四面体ADPQ 的体积V=13S △ADQ ·h=13×12×6×6×4=24.2.如图,在正三棱柱ABC-A 1B 1C 1中,AB=AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.解:如图,在正三棱柱ABC-A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以{OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O-xyz.因为AB=AA 1=2,所以A (0,-1,0),B (√3,0,0),C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)因为P 为A 1B 1的中点, 所以P (√32,-12,2), 从而BP⃗⃗⃗⃗⃗ =(-√32,-12,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2), 故|cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP⃗⃗⃗⃗⃗ ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√5×2√2=3√1020. 因此,异面直线BP 与AC 1所成角的余弦值为3√1020. (2)因为Q 为BC 的中点,所以Q (√32,12,0),因此AQ ⃗⃗⃗⃗⃗ =(√32,32,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2).设n =(x ,y ,z )为平面AQC 1的一个法向量,则{AQ ⃗⃗⃗⃗⃗ ·n =0,AC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√32x +32y =0,2y +2z =0.不妨取n =(√3,-1,1).设直线CC 1与平面AQC 1所成角为θ,则sin θ=|cos <CC 1⃗⃗⃗⃗⃗⃗⃗ ,n >|=|CC 1⃗⃗⃗⃗⃗⃗⃗⃗·n ||CC1⃗⃗⃗⃗⃗⃗⃗⃗ ||n |=√5×2=√55, 所以直线CC 1与平面AQC 1所成角的正弦值为√55.3.已知四棱锥S-ABCD 的底面ABCD 是菱形,∠ABC=π3,SA ⊥底面ABCD ,E 是SC 上的任意一点.(1)求证:平面EBD ⊥平面SAC ;(2)设SA=AB=2,是否存在点E 使平面BED 与平面SAD 所成的锐二面角的大小为30°?如果存在,求出点E 的位置;如果不存在,请说明理由.答案:(1)证明∵SA ⊥平面ABCD ,BD ⊂平面ABCD ,∴SA ⊥BD. ∵四边形ABCD 是菱形,∴AC ⊥BD. ∵AC ∩AS=A , ∴BD ⊥平面SAC. ∵BD ⊂平面EBD ,∴平面EBD ⊥平面SAC.(2)解设AC 与BD 的交点为O ,以OC ,OD 所在直线分别为x 轴、y 轴, 以过O 垂直平面ABCD 的直线为z 轴建立空间直角坐标系(如图). 则点A (-1,0,0),C (1,0,0),S (-1,0,2),B (0,-√3,0),D (0,√3,0).设点E (x ,0,z ),则SE ⃗⃗⃗⃗⃗ =(x+1,0,z-2),EC⃗⃗⃗⃗⃗ =(1-x ,0,-z ),设SE ⃗⃗⃗⃗⃗ =λEC ⃗⃗⃗⃗⃗ ,∴{x =λ-1λ+1,z =2λ+1.∴E (λ-1λ+1,0,2λ+1). ∴DE ⃗⃗⃗⃗⃗ =(λ-1λ+1,-√3,2λ+1),BD⃗⃗⃗⃗⃗⃗ =(0,2√3,0). 设平面BDE 的法向量n =(x 1,y 1,z 1), 可得{n ⊥DE ⃗⃗⃗⃗⃗ ,n ⊥BD ⃗⃗⃗⃗⃗⃗ .∴{n ·DE ⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0,即{λ-1λ+1x 1-√3y 1+2λ+1z 1=0,2√3y 1=0,令x 1=2,可得z 1=1-λ.故n =(2,0,1-λ)为平面BDE 的一个法向量. 同理可得平面SAD 的一个法向量为m =(√3,-1,0).∵平面BED 与平面SAD 所成的锐二面角的大小为30°,∴cos 30°=|m ·n ||m |·|n |=√3,2√4+(1-λ)=√32,解得λ=1.∴E 为SC 的中点.4.在如图所示的组合体中,ABCD-A 1B 1C 1D 1是一个长方体,P-ABCD 是一个四棱锥.AB=2,BC=3,点P ∈平面CC 1D 1D ,且PD=PC=√2.(1)证明:PD ⊥平面PBC ;(2)求PA 与平面ABCD 所成角的正切值; (3)当AA 1的长为何值时,PC ∥平面AB 1D ? 答案:(1)证明如图,建立空间直角坐标系.设棱长AA 1=a ,则点D (0,0,a ),P (0,1,a+1),B (3,2,a ),C (0,2,a ).于是PD ⃗⃗⃗⃗⃗ =(0,-1,-1),PB ⃗⃗⃗⃗⃗ =(3,1,-1),PC ⃗⃗⃗⃗⃗ =(0,1,-1),所以PD ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =0,PD ⃗⃗⃗⃗⃗ ·PC⃗⃗⃗⃗⃗ =0. 所以PD 垂直于平面PBC 内的两条相交直线PC 和PB ,由线面垂直的判定定理,得PD ⊥平面PBC.(2)解因为点A (3,0,a ),PA⃗⃗⃗⃗⃗ =(3,-1,-1), 而平面ABCD 的一个法向量为n 1=(0,0,1), 所以cos <PA⃗⃗⃗⃗⃗ ,n 1>=√11×1=-√1111.所以PA 与平面ABCD 所成角的正弦值为√1111. 所以PA 与平面ABCD 所成角的正切值为√1010. (3)解因为点D (0,0,a ),B 1(3,2,0),A (3,0,a ), 所以DA ⃗⃗⃗⃗⃗ =(3,0,0),AB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,-a ).设平面AB 1D 的法向量为n 2=(x ,y ,z ),则有{DA ⃗⃗⃗⃗⃗ ·n 2=3x =0,AB 1⃗⃗⃗⃗⃗⃗⃗ ·n 2=2y -az =0,令z=2,可得平面AB 1D 的一个法向量为n 2=(0,a ,2).若要使得PC ∥平面AB 1D ,则要PC ⃗⃗⃗⃗⃗ ⊥n 2, 即PC⃗⃗⃗⃗⃗ ·n 2=a-2=0,解得a=2. 所以当AA 1=2时,PC ∥平面AB 1D.5.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC ⊥AD ;(2)求二面角A-PC-D 的正弦值;(3)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长. 解:如图,以点A 为原点建立空间直角坐标系,依题意得点A (0,0,0),D (2,0,0),C (0,1,0),B (-12,12,0),P (0,0,2).(1)证明:易得PC ⃗⃗⃗⃗⃗ =(0,1,-2),AD ⃗⃗⃗⃗⃗ =(2,0,0).于是PC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,所以PC ⊥AD.(2)PC ⃗⃗⃗⃗⃗ =(0,1,-2),CD ⃗⃗⃗⃗⃗ =(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ). 则{n ·PC⃗⃗⃗⃗⃗ =0,n ·CD ⃗⃗⃗⃗⃗ =0,即{y -2z =0,2x -y =0.不妨令z=1,可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0). 于是cos <m ,n >=m ·n|m |·|n |=√6=√66, 从而sin <m ,n >=√306. 所以二面角A-PC-D 的正弦值为√306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE ⃗⃗⃗⃗⃗ =(12,-12,ℎ).又CD ⃗⃗⃗⃗⃗ =(2,-1,0),故cos <BE ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ >=BE⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ |BE⃗⃗⃗⃗⃗ |·|CD⃗⃗⃗⃗⃗ |=32√12+ℎ2×√5=√10+20ℎ2,所以√10+20ℎ2=cos 30°=√32, 解得h=√1010,即AE=√1010.6.已知四边形ABCD 满足AD ∥BC ,BA=AD=DC=12BC=a ,E 是BC 的中点,将△BAE 沿AE 翻折成△B 1AE ,使平面B 1AE ⊥平面AECD ,F 为B 1D 的中点.(1)求四棱锥B 1-AECD 的体积;(2)证明:B 1E ∥平面ACF ;(3)求平面ADB 1与平面ECB 1所成锐二面角的余弦值.答案:(1)解取AE 的中点M ,连接B 1M.因为BA=AD=DC=12BC=a ,△ABE 为等边三角形,所以B 1M=√32a.又因为平面B 1AE ⊥平面AECD ,所以B 1M ⊥平面AECD ,所以V=13×√32a×a×a×sin π3=a 34.(2)证明连接ED 交AC 于点O ,连接OF ,因为四边形AECD 为菱形,OE=OD ,所以FO ∥B 1E ,所以B 1E ∥平面ACF.(3)解连接MD ,则∠AMD=90°,分别以ME ,MD ,MB 1所在直线为x ,y ,z 轴建立空间直角坐标系,则点E (a2,0,0),C (a ,√32a ,0),A -a2,0,0,D (0,√32a ,0),B 1(0,0,√32a),所以EC⃗⃗⃗⃗⃗ =(a 2,√32a ,0),EB 1⃗⃗⃗⃗⃗⃗⃗ =(-a2,0,√3a2), AD ⃗⃗⃗⃗⃗ =(a 2,√3a 2,0),AB 1⃗⃗⃗⃗⃗⃗⃗ =(a 2,0,√3a2).设平面ECB 1的法向量为u =(x ,y ,z ),则{a2x +√32ay =0,-a2x +√32az =0,令x=1,u =(1,-√33,√33),同理平面ADB 1的法向量为v =(1,-√33,-√33), 所以cos <u ,v >=1+13-13√1+13+13×√1+13+13=35,故平面ADB 1与平面ECB 1所成锐二面角的余弦值为35.。

2020版高考数学 第二部分 专题3 立体几何 增分强化练(二十)理

2020版高考数学 第二部分 专题3 立体几何 增分强化练(二十)理

增分强化练(二十)一、选择题1.已知直线l⊥平面α,直线m∥平面β,若α⊥β,则下列结论正确的是()A.l∥β或l⊂βB.l∥mC.m⊥αD.l⊥m解析:当直线l⊥平面α,α⊥β时,假设l∩β=A,过A在平面β内作a⊥l,根据面面垂直的性质定理可知:a⊥α,这样过一点A有两条直线a,l与平面α垂直,这与过一点有且只有一条直线与已知平面垂直相矛盾,故假设不成立,所以l∥β或l⊂β,故本题选A.答案:A2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若m∥α,m∥β,则α∥βB.若m⊥α,m⊥n,则n⊥αC.若m⊥α,m∥n,则n⊥αD.若α⊥β,m⊥α,则m∥β解析:设m,n是两条不同的直线,α,β是两个不同的平面,则:在A中,若m∥α,m∥β,则α与β相交或平行,故A错误;在B中,若m⊥α,m⊥n,则n∥α或n⊂α,故B错误;在C中,若m⊥α,m∥n,则由线面垂直的判定定理得n⊥α,故C正确;在D中,若α⊥β,m⊥α,则m∥β或m⊂β,故D错误.故选C。

答案:C3.(2019·蚌埠模拟)如图,在长方体ABCD.A1B1C1D1中,AB=BC =2AA1=2,E,F分别在AB,BC上,则下列说法错误的是( )A.直线AD与A1C1所成的角为错误!B.当E为中点时,平面A1D1E⊥平面B1C1EC.当E,F为中点时,EF⊥BD1D.当E,F为中点时,BD1⊥平面B1EF解析:对于A选项,将A1C1平移到AC如图所示,由于四边形ABCD 为正方形,故AD,AC所成角为错误!,也即AD,A1C1所成角为错误!,故A选项正确.对于B选项,由于A1E=B1E=2,A1B1=2,满足勾股定理,故A1E⊥B1E,而A1E⊥B1C1,故A1E⊥平面B1C1E,所以平面A1D1E⊥平面B1C1E,故B选项正确.对于C选项,由于EF∥AC,故EF⊥BD,EF⊥BB1,由此证得EF⊥平面BDD1B1,故EF⊥BD1,故C选项正确.对于D选项,虽然EF⊥BD1,但是BD1与B1E,B1F 不垂直,故D选项说法错误.综上所述,本小题选D.答案:D4.(2019·咸阳模拟)在正方体ABCD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(理数)选择题强化专练——解析几何、立体几何、三角函数与解三角形、函数与导数一、选择题(本大题共20小题,共100.0分)1.若双曲线C:=1(a>0,b>0)的一条渐近线被曲线x2+y2-4x+2=0所截得的弦长为2.则双曲线C的离心率为()A. B. C. D.2.已知抛物线C:y2=4x的焦点为F,直线l过焦点F与抛物线C分别交于A,B两点,且直线l不与x轴垂直,线段AB的垂直平分线与x轴交于点T(5,0),则S△AOB=()A. B. C. D.3.已知椭圆+=1(a>b>0)的左顶点为M,上顶点为N,右焦点为F,若•=0,则椭圆的离心率为()A. B. C. D.4.若直线x-my+m=0与圆(x-1)2+y2=1相交,且两个交点位于坐标平面上不同的象限,则m的取值范围是()A. (0,1)B. (0,2)C. (-1,0)D. (-2,0)5.已知P为双曲线C:(a>0,b>0)上一点,F1,F2为双曲线C的左、右焦点,若|PF1|=|F1F2|,且直线PF2与以C的实轴为直径的圆相切,则C的渐近线方程为()A. B. C. D.6.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是()A. 若m∥α,n∥α,则m∥nB. 若α⊥γ,β⊥γ,则α∥βC. 若m∥α,n∥α,且m⊂β,n⊂β,则α∥βD. 若m⊥α,n⊥β,且α⊥β,则m⊥n7.如图,PA⊥平面ABCD,ABCD为正方形,且PA=AD,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为()A.B.C.D.8.已知正方体的棱长为1,平面α过正方体的一个顶点,且与正方体每条棱所在直线所成的角相等,则该正方体在平面α内的正投影面积是()A. B. C. D.9.如图,在长方体ABCD-A1B1C1D1中,AB=8,AD=6,异面直线BD与AC1所成角的余弦值为,则该长方体外接球的表面积为()A. 98πB. 196πC. 784πD.10.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥现有一如图所示的堑堵,AC⊥BC,若A1A=AB=2,当阳马B-A1ACC1体积最大时,则堑堵ABC-A1B1C1的外接球的体积为()A.B.C.D.11.已知角的顶点与原点重合,始边与轴的非负半轴重合,终边经过点,则的值为()A. B. C. D.12.将函数f(x)=sin(2x+φ)(0<φ<π)的图象向右平移个单位长度后得到函数的图象,则函数f(x)的一个单调减区间为()A. B. C. D.13.△ABC中,内角A,B,C的对边分别是a,b,c,已知a=,b cos A=sin B,则A=()A. B. C. D.14.如图所示,函数f(x)=sin(2x+φ)(|φ|<π)的图象过点,若将f(x)的图象上所有点向右平移个单位长度,然后再向上平移1个单位长度,所得图象对应的函数为g(x),则g(0)=()A. 1B. 1C. 1或1D.15.在△ABC中,AB+AC=8,BC=4,D为BC的中点,当AD长度最小时,△ABC的面积为()A. B. 4 C. D.16.若,则的大小关系为()A. B. C. D.17.已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x∈(0,+∞)时,f(x)=,则函数g(x)=8f2(x)-6f(x)+1的零点个数为()A. 20B. 18C. 16D. 1418.设函数f(x)的定义域为R,满足2f(x+1)=f(x),且当x∈(0,1]时,f(x)=-x(x-1).若对任意x∈[m,+∞),都有,则m的取值范围是()A. B. C. D.19.已知曲线在区间内存在垂直于轴的切线,则的取值范围为()A. B. C. D.20.已知f(x)=(ax+ln x+1)(x+ln x+1)与g(x)=x2的图象至少有三个不同的公共点,则实数a的取值范围是()A. B. C. D.答案和解析1.【答案】B【解析】解:双曲线C:=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆x2+y2-4x+2=0即为(x-2)2+y2=2的圆心(2,0),半径为,双曲线的一条渐近线被圆x2+y2-4x+2=0所截得的弦长为2,可得圆心到直线的距离为:=1=,,解得:e==,故选:B.通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,主要是离心率的求法,考查圆的方程的应用,考查计算能力.2.【答案】A【解析】【分析】如图所示,F(1,0).设直线l的方程为:y=k(x-1),(k≠0),A(x1,y1),B(x2,y2),线段AB的中点E(x0,y0).线段AB的垂直平分线的方程为y=-(x-5).直线l的方程与抛物线方程联立化为:ky2-4y-4k=0,利用根与系数的关系、中点坐标公式、可得E坐标.把E代入线段AB的垂直平分线的方程可得:k.再利用S△OAB==即可得出.本题考查了抛物线的标准方程及其性质、一元二次方程的根与系数的关系、线段垂直平分线的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.【解答】解:如图所示,F(1,0).设直线l的方程为:y=k(x-1),(k≠0),A(x1,y1),B(x2,y2),线段AB的中点E(x0,y0).线段AB的垂直平分线的方程为:y=-(x-5).联立,化为:ky2-4y-4k=0,∴y1+y2=,y1y2=-4,∴y0=(y1+y2)=,x0=+1=+1,把E(,+1)代入线段AB的垂直平分线的方程:y=-(x-5).可得:=-(+1-5),解得:k2=1.S△OAB====2.故选:A.3.【答案】D【解析】【分析】本题考查椭圆的简单性质的应用,向量的垂直,考查转化思想以及计算能力,属于基础题.利用椭圆的性质,通过•=0,推出a、c关系,求解即可.【解答】解:椭圆+=1(a>b>0)的左顶点为M(-a,0),上顶点为N(0,b),右焦点为F(c,0),若•=0,可知NM⊥NF,可得:a2+b2+b2+c2=(a+c)2,又a2=b2+c2,所以a2-c2=ac,即e2+e-1=0,e∈(0,1),解得e=,故选:D.4.【答案】D【解析】解:根据题意,圆(x-1)2+y2=1的圆心为(1,0),半径r=1,与x轴的交点为(0,0),(2,0),设B为(2,0);直线x-my+m=0,即x-m(y-1)=0,恒经过点(0,1),设A(0,1);当直线经过点A、B时,即m=-2,若直线与圆相交,且两个交点位于坐标平面上不同的象限,必有-2<m<0,即m的取值范围为(-2,0);故选:D.根据题意,分析圆的圆心与半径,进而可得圆与x轴的交点坐标为(0,0),(2,0),设交点(2,0)为B,求出同时过点(0,1)与(2,0)时的m值,结合直线与圆的位置关系即可得答案.本题考查直线与圆的位置关系,注意分析直线所过的定点,属于基础题.5.【答案】A【解析】解:设直线PF2与圆x2+y2=a2相切于点M,则|OM|=a,OM⊥PF2,取PF2的中点N,连接NF2,由于|PF1|=|F1F2|=2c,则NF1⊥PF2,|NP|=|NF2|,由|NF1|=2|OM|=2a,则|NP|==2b,即有|PF2|=4b,由双曲线的定义可得|PF2|-|PF1|=2a,即4b-2c=2a,即2b=c+a,4b2-4ab+a2=b2+a2,4(c-a)=c+a,即3b=4a,则=.则C的渐近线方程为:.故选:A.设直线PF2与圆x2+y2=a2相切于点M,取PF2的中点N,连接NF2,由切线的性质和等腰三角形的三线合一,运用中位线定理和勾股定理,可得|PF2|=4b,再由双曲线的定义和a,b,c的关系,计算即可得到渐近线方程.本题考查双曲线的方程和性质,考查渐近线方程的求法.中位线定理和双曲线的定义是解题的关键.6.【答案】D【解析】【分析】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.在A中,m与n相交、平行或异面;在B中,α与β相交或平行;在C中,α与β相交或平行;在D中,由线面垂直、面面垂直的性质定理得m⊥n.【解答】解:由m,n是两条不同的直线,α,β,γ是三个不同的平面,知:在A中,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;在B中,若α⊥γ,β⊥γ,则α与β相交或平行,故B错误;在C中,若m∥α,n∥α,且m⊂β,n⊂β,则α与β相交或平行,故C错误;在D中,若m⊥α,n⊥β,且α⊥β,则线面垂直、面面垂直的性质定理得m⊥n,故D正确.故选D.7.【答案】C【解析】解:如图,取BC的中点G,连结FG,EG,则BD∥FG,通过异面直线所成角的性质可知∠EFG是异面直线EF与BD所成的角,设AD=2,则EF==,同理可得EG=,又FG==,∴在△EFG中,cos∠EFG==,∴异面直线EF与BD所成角的余弦值为.故选:C.取BC的中点G,连结FG,EG,则BD∥FG,∠EFG是异面直线EF与BD所成的角,由此能求出异面直线EF与BD所成角的余弦值.本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.8.【答案】B【解析】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正三角形所在平面或其平行平面为平面α时,满足平面α与正方体每条棱所成的角均相等,并且如图所示的正三角形,为平面α截正方体所形成的三角形截面中,截面面积最大者.因为正三角形的边长为,正方体ABCD-A1B1C1D1的三个面在平面α内的正投影是三个全等的菱形(如图所示),可以看成两个边长为的等边三角形,所以正方体在平面α内的正投影面积是S=2×=.故选:B.利用正方体棱的关系,判断平面α所成的角都相等的位置,正方体ABCD-A1B1C1D1的三个面在平面α内的正投影是三个全等的菱形,可以看成两个边长为的等边三角形,由此求出正方体在平面α内的正投影面积.本题考查直线与平面所成角的大小关系,考查空间想象能力以及计算能力,属于难题.9.【答案】B【解析】解:由题意建立如图所示的空间直角坐标系,DA为x轴,DC为y轴DD1为z轴,D为坐标原点,由题意知A(6,0,0),B(6,8,0),D(0,0,0),设D(0,0,a),则C1(0,8,a),∴=(6,8,0),=(-6,8,a),∴cos===,由题意可得:=,解得:a2=96,由题意长方体的对角线等于外接球的直径,设外接球的半径为R,则(2R)2=82+62+a2=196,所以该长方体的外接球的表面积S=4πR2=196π,故选:B.由题意建立空间直角坐标系,由异面直线的余弦值求出长方体的高,由题意长方体的对角线等于外接球的直径,进而求出外接球的半径,求出外接球的表面积.考查异面直线的夹角即外接球的表面积公式,属于中档题.10.【答案】B【解析】解:设AC=x,BC=y,由题意得x>0,y>0,x2+y2=4,∵当阳马B-A1ACC1体积最大,∴V=×2x×y=xy取最大值,∵xy≤=2,当且仅当x=y=时,取等号,∴当阳马B-A1ACC1体积最大时,AC=BC=,以CA、CB、CC1为棱构造长方体,则这个长方体的外接球就是堑堵ABC-A1B1C1的外接球,∴堑堵ABC-A1B1C1的外接球的半径R==,∴堑堵ABC-A1B1C1的外接球的体积V==.故选:B.设AC=x,BC=y,由阳马B-A1ACC1体积最大,得到AC=BC=,由此能求出堑堵ABC-A1B1C1的外接球的体积.本题考查几何体的外接球的体积的求法,考空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.11.【答案】D【解析】【分析】本题主要考查了根据角终边过点可得出角的正弦和余弦值,再利用二倍角公式计算可得,属于基础题.【解答】解:∵角的终边经过点,∴,∴.故选D.12.【答案】A【解析】【分析】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,考查学生的运算能力和转换能力,属于基础题.利用三角函数的平移变换的应用和正弦型函数的整体思想的应用求出结果.【解答】解:函数f(x)=sin(2x+φ)(0<φ<π)的图象向右平移个单位长度后得到函数的图象,即:把函数的图象,向左平移个单位,即得到f(x)的图象,故:=sin(2x+),∴令:(k∈),解得:(k∈),当k=0时,,故选A.13.【答案】D【解析】解:∵a=,b cos A=sin B,∴b cos A=a sin B,∴由正弦定理可得sin A sin B=sin B cos A,∵B是三角形内角,sin B≠0,∴tan A=,∴由A是三角形内角,可得:A=.故选:D.利用正弦定理化简已知条件,通过三角形内角求解A的大小即可.本题考查正弦定理,同角三角函数基本关系式在解三角形中的应用,考查计算能力和转化思想,属于基础题.14.【答案】A【解析】解:∵函数f(x)=sin(2x+φ)(|φ|<π)的图象过点,且在递减区间内,2×+φ=π+2k,,,∴φ=,f(x)=sin(2x+).若将f(x)的图象上所有点向右平移个单位长度,可得y=sin(2x-+)=sin(2x+)的图象,然后再向上平移1个单位长度,可得y=sin(2x+)+1的图象.故所得图象对应的函数为g(x)=sin(2x+)+1,则g(0)=sin(0+)+1=1+,故选:A.根据函数的图象经过点,求得φ的值,再利用函数y=A sin(ωx+φ)的图象变换规律,求得g(x)的解析式,从而求得g(0)的值.本题主要考查正弦函数的图象和性质,函数y=A sin(ωx+φ)的图象变换规律,属于中档题.15.【答案】D【解析】解:在△ABC中,设AB=x,AC=y,AD=m,∠ADB=θ,则∠ADC=π-θ,在△ABD中,由余弦定理得:m2+4-4m cosθ=x2(1),在△ACD中,由余弦定理得:m2+4-4m cos(π-θ)=y2,即m2+4+4m cosθ=y2(2),由(1)(2)得:2m2+8=x2+y2,又x+y=8,所以2m2+8=(8-y)2+y2=2y2-16y+64,所以m2=y2-8y+28,所以当y=4时,m的最小值为,即AD长度的最小值为,此时AB=AC=BC=4,△ABC是等边三角形,易得其面积为.故选D.另解:由BC=4,AB+AC=8,则点A在以B,C为焦点,焦距2c=4,长轴长2a=8的椭圆上运动,易知当点A运动到短轴端点时,AD最短为,此时AD⊥BC,.故选:D.法一:由已知结合余弦定理及二次函数的性质可求面积的最小值;法二:由已知结合椭圆的定义及椭圆的性质可求面积的最小值.本题主要考查了余弦定理在求解三角形中的应用,要注意解法二中椭圆定义的灵活应用.16.【答案】B【解析】【分析】本题考查对数值的大小比较,考查指数函数、对数函数的性质,是基础题.对a、b、c三个数,利用指数函数、对数函数的性质进行估算,和0、1比较即可.【解答】解:,,,所以.故选B.17.【答案】C【解析】【分析】本题考查函数与方程的关系,分段函数的应用,函数的解析式的应用,考查计算能力.利用分段函数画出函数的图象,利用数形结合转化求解即可.【解答】解:∵x∈(0,2]时,f(x)=(x-1)2,又,∴当x∈(0,+∞)时,即将f(x)在区间(0,2]图象依次向右移2个单位的同时再将纵坐标缩短为原来的倍,得到函数f(x)在(0,+∞)上的图象.关于y轴对称得到(-∞,0)的图象.如图所示:令g(x)=0,得或,即与两条直线截函数y=f(x)图象共16个交点,所以函数g(x)共有16个零点.故选:C.18.【答案】D【解析】解:作出当x∈(0,1]时,f(x)=-x(x-1)的图象,由2f(x+1)=f(x),可得将y=f(x)在(0,1]的图象向左平移1个,2个,3个单位,同时点的纵坐标伸长到原来的2倍,4倍,8倍,将y=f(x)在(0,1]的图象每向右平移1个,2个,3个单位,同时点的纵坐标缩短到原来的倍,倍,倍,作出直线y=,如图所示:对任意x∈[m,+∞),都有,可得只要找直线y=与f(x)(-2<x<-1)的右边的交点,由-4(x+1)(x+2)=,解得x=-(-舍去),则m≥-,故选:D.作出当x∈(0,1]时,f(x)=-x(x-1)的图象,由图象变换,作出y=f(x)的图象,以及直线y=,通过图象观察,解方程可得所求m的最小值.本题考查不等式恒成立问题解法,注意运用数形结合思想和图象变换,考查运算能力和观察能力、推理能力,属于中档题.19.【答案】D【解析】【分析】本题主要考查了导数的几何意义,属于中档题.依题意可得在区间内有解,求出的值域即可得解.【解答】解:依题意,可得,即在区间内有解,设,由题意函数为增函数,且所以,故选D.20.【答案】B【解析】解:方程f(x)=g(x)即为(ax+ln x+1)(x+ln x+1)=x2,则方程至少有三个不相等的实根,令得t2+(a+1)t+a-1=0①,且,∴函数t(x)在(0,1)上单增,在(1,+∞)上单减,故t(x)max=t(1)=1,且t→+∞时,t(x)→0,∴方程①的两个根t1,t2的情况是:(i)若t1,t2∈(0,1),t1≠t2,则f(x)与g(x)的图象有四个不同的公共点,则,此时无解;(ii)若t1∈(0,1)且t2=1或t2=0,则f(x)与g(x)的图象有三个不同的公共点,则a无解;(iii)若t1∈(0,1)且t2<0,则f(x)与g(x)的图象有三个不同的公共点,令h(t)=t2+(a+1)t+a-1,则,解得.故选:B.依题意,方程至少有三个不相等的实根,令,利用导数研究函数t(x)的单调性及最值情况,再分类讨论得解.本题考查函数零点与方程根的关系,考查分类讨论思想,旨在锻炼学生的推理论证能力,属于中档题.。

相关文档
最新文档