开题报告-函数的凸性及应用

开题报告-函数的凸性及应用
开题报告-函数的凸性及应用

毕业论文开题报告

信息与计算科学

函数的凸性及应用

一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势)

凸函数具有一些非常优良的性质[1], 有着较好的几何和代数性质,在数学各个领域中都有着广泛的应用。1905年丹麦数学家Jensen首次给出了凸函数的定义,开创了凸函数研究的先河,经过近百年努力,凸函数的研究在各个方面正得到长足的发展,其中,凸函数的判据研究已接近完善,在现代学习和生活中的重要性已经不断的凸显出来。凸分析是近年来凹凸函数发展起来的一门应用十分广泛的数学支,尤其是在最优化理论方面的应用更为突出,人们对凸分析的自身理论发展也进行了广泛的深入研究,使得凸函数的性质也得到了较好的发展。在凸规划理论、尤其是非线性最优化中,函数的凸性分析是最基本的,又是最重要的,近年来,研究函数各种凸性的文献越来越多。

凸函数是一类重要的函数。对函数凹凸性的研究,在数学的多个分支都有用处。特别是在函数图形的描绘和不等式的推导方面,凸函数都有着十分重要的作用。同样凸函数是数学分析中的一个重要概念,它涉及了许多数学命题的讨论证明和应用,而且在现代优化学、运筹学、管理学、和工程测绘学等多个学科有着重要的意义。

函数凸性的应用显著地体现在求最值、不等式的证明上。不等式的证明方法很多,技巧性强,函数凸性是函数在区间上变化的整体形态,是研究不等式的重要方法之一,巧妙的构造凸函数,可以简单轻快得证明不等式。凸函数在数学规划中有着广泛的应用背景,一些常见的不等式都可以从函数的凸性中导出。在不等式的研究中,凸函数所发挥的作用是无可替代的。与凸函数有关的不等式是基础数学理论的重要工具,尤其在不等式的证明中发挥的作用是无可替代的,其中Jensen不等式与Hadamard不等式更是起到了重要的作用。Jensen 不等式通常用来证明有限不等式,它是将无穷项求和与积分联系起来的重要桥梁。利用Hadamard不等式可以对两个正数的几何平均数与算数平均数加细。

凸函数是一类非常重要的函数,应用函数的凸性,不仅可以科学、准确的描述函数的图像,而且也有证明不等式的凸函数方法,同时,凸函数也是优化问题中重要的研究对象,它研究的内容非常丰富,研究的结果也在许多领域得到了广泛的应用。

二、研究的基本内容与拟解决的主要问题

本文首先对凸函数定义进行介绍,凸函数的等价性质进行了概述;接下来介绍了凸函数的基本性质,然后由此延伸,进一步提出凸函数的应用,主要集中在下面几方面的应用:凸函数在Hadamard 不等式证明中的应用,凸函数在证明Jensen 不等式时的应用,凸函数在分析不等式中的应用等方面进行了讨论。

2.1凸函数的定义

2.1.1凸函数一些基本定义

通过数学分析[2]的学习,对于函数()2x x f =和()x x f =的图像,我们很容易得出它

们之间的不同点:曲线2x y =上任意两点间的弧段总在这两点连线的下方;而曲线x y =

则相反,在任意两点间的弧段总在这两点连线的上方。通过这两个函数,我们把前一种特性的曲线称为凸的,后一种为凹的。对于凸的我们称其函数为凸函数。

葛丽萍[3]给出了凸函数的基本定义[3]:设f 为定义在区间I 上的函数,若对I 上的任意两点1x ,2x 和任意实数()1,0∈λ总有()()()()()212111x f x f x x f λλλλ-+≤-+,则称f 为I 上的凸函数。

2.1.2严格凸函数的定义

江芹,陈文略[4]给出了严格凸函数的定义并且讨论了区间I 上严格凸函数的判定方法。 定义:凸函数的定义为函数f 满足以下不等式()()()()()212111x f x f x x f λλλλ-+≤-+,f 为区间I 上的函数,1x ,2x 为I 上的任意两点和任意实数()1,0∈λ。当上面的不等式变为()()()()()212111x f x f x x f λλλλ-+<-+时,其余条件不变,该函数称为严格凸函数。

2.1.3凸函数的等价描述

林银河[5]详细论述了凸函数的等价描述,由此得出:若)(x f 在I 上有定义,则以下3个命题等价:

1)(x f 在I 上为凸函数; ○20≥?i

q ,121=+++n q q q Λ,,,,21I x x x n ∈?Λ有)()()()(22112211n n n n x f q x f q x f q x q x q x q f +++≤+++ΛΛ;

○30≥?i q ,且),,1(n i q i

Λ=不全为零,,,,21I x x x n ∈?Λ有 n

n n n n n q q q x f q x f q x f q q q q x q x q x q f ++++++≤++++++ΛΛΛΛ212211212211)()()()(。 其中命题○2就是著名的Jensen 不等式。在Jensen 不等式中令),,2,1(1n i n

q i Λ==就得到如下定义:设)(x f 在区间I 上有定义,)(x f 称为I 上的凸函数,当且仅当,,,21I x x x n ∈?Λ有n

x f x f x f n x x x f n n )()()()(2121+++≤+++ΛΛ。 葛丽萍[3]

介绍了函数f 在区间I 上可导的等价条件:若f 为区间I 上的可导函数,可得出以下等价条件。()1f 为I 上的凸;()2 '

f 为I 上的增函数;()3对I 上的任意两点1x ,2x ,有()()()()'21121()f x f x f x x x ≥+-。

2.2凸函数的一些性质

2.2.1凸函数的连续性

凸函数是数学分析中的一类重要函数,而函数的连续性又是函数性态的一项基本而又重要的特征。由于Jensen 定义中并没有对函数作出连续性及可导性假设,Jensen 意义下凸函数并不一定是连续函数,而连续函数也不一定是凸函数,选取实际问题中大量存在的区间上连续的函数作为讨论对象,从凸函数的定义出发,研究连续函数与凸函数的关系。那么我们就会提出这样的问题:当连续函数)(x f 满足何种条件时,)(x f 是区间I 上的凸函数;当凸函数)(x f 满足何种条件时,)(x f 是区间I 上的连续函数;连续凸函数在区间I 上具有何种性质?宋方[6]提出,如果连续函数)(x f 为凸函数,必定满足以下定义:对任意的I x x ∈21,及[]1,0∈λ,恒有:()()()()()212111x f x f x x f λλλλ-+≤-+。

2.2.2凸函数的微积分性质

刘鸿基,张志宏[8]指出凸函数是一类重要的函数,有着较好的分析性质,而关于凸函数,一般教材大都从几何意义方面引出定义,描述为:凸曲线弧段上任意两点联结而成的弦,总是位于曲线弧段的下方;或者,当曲线各点处存在切线时,凸曲线弧全部位于曲线上各点处切线的下方。前者往往作为定义使用,后者是凸函数的充分必要条件,也可以作为定义作用。刘鸿基,张志宏举证了凸函数的4个等价性定义,并对凸函数的微积分性质予以讨论,得到两个重要的微积分性质:

1. 设)(x f 在区间),(b a 内可导,则)(x f 在),(b a 上是凸函数的充分必要条件是:对

任意点),(0b a x ∈,恒有))(()()(000x x x f x f x f -'+≤。

2. 设)(x f 是[]b a ,上的凸函数,则

)()2()()(2)()(a b b a f d x f a b b f a f b a

-+≤≤-+? 2.3凸函数的一些应用

2.3.1凸函数的应用概述

函数凸性的应用显著地体现在求最值、不等式的证明上[9]。不等式的证明方法很多,技巧性强,函数凸性是函数在区间上变化的整体形态,是研究不等式的重要方法之一,巧妙的构造凸函数,可以简单轻快得证明不等式。一些常见的不等式都可以从函数的凸性中导出。邹自德[10]指出:凸函数具有较好的几何和代数性质,由凸函数可以引导出各种平均值并对这

些平均值进行比较。梁艳[11]指出:凸函数是一类非常重要的函数,在不等式的研究中,凸函

数所发挥的作用是无可替代的,可以根据凸凹函数的特性,结合典型事例,来说明凸函数在处理一些有较大难度不等式证明中的应用。

在不等式的研究中,凸函数所发挥着很重要的作用,在数学规划中有着广泛的应用背景,我们可以根据凸凹函数的特性,来解决一系列拥有较大难度的不等式,以及导出一些较难的不等式,通过凸函数的性质来得到比较直观的证明,可以来导出如几何平均值不大于算数平均值这一类比较难的不等式,说明了凸函数在处理一些有较大难度不等式证明中有着较好的作用。

2.3.2凸函数在证明Jensen 不等式与Hadamard 不等式时的应用

王秋亮[12]讨论了凸函数在证明Jensen 不等式时的应用。不论导出不等式还是证明不等式,利用Jensen 不等式的关键在于选取适当的凸函数,并且根据想要构造或证明的不等式的形式选取恰当的值。并且应用数学归纳法在用凸函数来证明Jensen 不等式时,可以得到较好的效果。郑宁国[13]给出了Hadamard 不等式的两种证明方法。讨论了凸函数在证明Hadamard 不等式时的应用。选取适当的凸函数来证明Hadamard 不等式,并且根据要证明的不等式的形式选取恰当的值。

2.3.3凸函数在分析不等式中的应用

关于凸函数的理论及应用有许多专门的研究,利用凸函数的概念可以来解决不等式的证明有许多方便之处,现实中常常利用凸函数的概念来证明分析中的一些常见的不等式。李艳

梅,李雪梅[14]给出了凸函数在分析不等式证明中的应用,利用凸函数的性质及Jensen不等式,对数学分析中诸多不等式给予证明,从中可举一反三,利用Jensen不等式的一些特殊情况,可以得到一些常用的分析不等式。

运用了凸函数的性质及Jensen不等式[15],可以很简洁的来证得分析不等式。解决不等式的证明有着许多方便之处,凸函数适当的应用,使证明过程更加简洁,会使结论的得出更加的方便。

2.3论文要解决的主要问题

本文在总结前人的研究理论的基础上,拟解决以下问题:

(1)介绍凸函数的定义以及它的性质;

(2)凸函数在Hadamard不等式证明中的应用;

(3)凸函数在Jensen不等式证明中的应用;

(4)凸函数在分析不等式中的应用。

三、研究的方法与技术路线、研究难点,预期达到的目标

1.研究方法及技术路线

本论文主要以查找资料,以现有的知识水平,在前人的研究论述基础上,整理出凸函数的性质和应用。采取了从大量阅读已有的数据资料—然后对这些内容进行总结—最后运用相关的知识经过系统的整理,归纳出凸函数的性质与应用。

2.研究难点

(1)从大量的阅读材料中整理与论文相关的资料是一个难点。

(2)寻找合适的凸函数来求解不等式是一个难点。

(3)不要简单地重复已有的方法和结果,要有自己独立的分析结果是一个难点。

3.预期达到的目标

通过这次论文的撰写,能更深的理解《数学分析》等相关课程的知识,通过对函数的凸性及应用的研究使我从另一个不同的角度审视凸函数,对凸函数的相关知识有了更深刻更全面的理解,对凸函数和数学分析的基本方法和基本技能能有较好的理解和掌握,打好数学的基础,为进一步的学习做铺垫。同时在本文的撰写过程中掌握参考文献资料查找方法和论文写作的基本要求和方法,培养自己利用所学知识分析和解决问题的能力,学会从不同角度看待问题,从而达到对所学知识融会贯通的能力。

四、论文详细工作进度和安排

第一阶段:第七学期第11周至17周

二次函数增减性与对称性(可编辑修改word版)

1 建桥初四 9 月 11 日数学《二次函数对称性增减性练习》课堂学案 【典例】抛物线 y = ax 2 + bx + c 上部分点的横坐标 x ,纵坐标 y 的对应如下,从表可知: x … -2 -1 0 1 2 … y … 4 6 6 4 … 下列说法: ①抛物线与 x 轴的另一个交点为(3,0), ②函数的最大值为 6 ③抛物线 1 的对称轴是直线 x= ,④在对称轴的左侧,y 随 x 的增大而增大,正确的有 2 【跟踪训练】、1、已知二次函数 y = ax 2 + bx + c 的 y 与 x 的部分对应值如下表: x … - 1 0 1 3 … y … -3 1 3 1 … 则下列判断:①抛物线开口向上, ②抛物线与 y 轴交于负半轴, ③当 x =4 时, y > 0 , ④方程 ax 2 + bx + c = 0 的正根在 3 与 4 之间. 其中正确的是 (只填写序号) 2、二次函数 y = ax 2 + bx + c ( a ≠ 0 )中,自变量 x 与函数 y 的对应值如下表: 请你观察表中数据,并从不同角度描述该函数图象的特征是: 、 、 【巩固练习】 1、已知抛物线 y = a (x -1)2 + h (a ≠ 0) 与 x 轴交于 A (x ,0),B (3,0) 两点,则线段 AB 的长 度为( ) 2、抛物线 y = a (x + 1) 2 + 2 的一部分如图所示,该抛物线在 y 轴右侧部分与 x 轴交点的坐标 是( ) 第 2 题图 第 3 题图 第 4 题图 3、抛物线 y = -x 2 + bx + c 的部分图象如图所示,若 y > 0 ,则的取值范围是( ) A . - 4 < x < 1 B . - 3 < x < 1 C . x < -4 或 x > 1 D . x < -3 或 x > 1 4、抛物线y=ax 2+2ax+a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是 x … 0 1 2 3 2 5 2 … y … 1 7 4 7 4 - 1 4 …

函数的凹凸性

函数的凹凸性 一、出示曲线,出示课题 1、请大家看一下屏幕上的四条曲线,如果要给它们分一下类,怎么分?可以按照函数的单调性分。这两个从左往右,逐渐上升,这两个从左往右,逐渐下降。 2、从单调性的角度,这两条曲线是一类,但如果再仔细观察一下,这两条曲线还是不一样,这条曲线是凸的,这条曲线是凹的。同样,这条曲线是凸的,这条曲线是凹的。所以,如果按照曲线的凹或者凸,我们可以把这两条曲线作为一类,因为它们都是凹的,把这两条作为另外一类,因为它们都是凸的。那么,曲线的凹或者凸,反映了函数的什么性质呢?这就是本节课我们要学习的内容:函数的凹凸性。 二、比较位置,给出定义 刚才我们说这两条曲线是凹的,什么是凹的呢?实际上,如果在这条曲线上任取两点,不难发现,连结这两个点的曲线弧始终在连结这两个点的弦的下面,所以我们说它是凹的。而如果在这条曲线上任取两点,连结这两个点的曲线弧始终在弦的上面,所以我们说它是凸的。这里我们是用比较曲线弧和弦的上下位置来区分曲线的凹和凸,那么,如果用数学语言来刻画曲线的凹和凸,怎么来描述呢? (1)现在屏幕上显示的是2y x =,0x ≥的函数图象,可以看出来它是一条凹的曲线。 1、在曲线上任取两点A 、B ,设点A 的横坐标为1x ,点B 的横坐标为2x ,如果在()12,x x 内任取一个x ,过这个点作x 轴的垂线,这条垂线与曲线弧相交,交点是P ,与弦相交,交点是Q ,由于连结A 、B 两点的曲线弧始终在弦AB 的下面,所以不管x 怎么变,点P 的纵坐标始终小于点Q 的纵坐标。 2、刚才x 是在()12,x x 内任取的,这样的话,随着x 的变化,点P 和点Q 的纵坐标也在变化,这样对我们表示点P 和点Q 的纵坐标很不方便。所以,为了表示点P 和点Q 的纵坐标的方便,x 就取()12,x x 的中点122 x x +。 3、好,在这里同学们可能会有这样的疑问:你取区间的中点,那你比的只是区间中点处对应的P 和Q 的纵坐标,不能说明曲线弧和弦上所有点的情况啊?实际上,由于点A 、B 是任取的,所以12,x x 也是任意的,随着12,x x 的变化,中点也在变化,对应的点P 和Q 也在变化,所以中点处对应的P 和Q 实际上就代表了曲线弧和弦上的所有点。 4、点P 的纵坐标是122x x f +?? ??? ,点Q 的纵坐标是()()122f x f x +,则有122x x f +??< ??? ()()122f x f x +。一般地,如果函数()f x 在区间I 上连续,对I 上任意两

(整理)函数凹凸性的应用

函数凹凸性的应用 什么叫函数的凸性呢?我们先以两个具体函数为例,从直观上看一看何谓函数的凸性. 如函数y =所表示的曲线是向上凸的,而 2y x =所表示的曲线是向下凸的,这与我们日常习惯上的称呼是相类似的.或 更准确地说:从几何上看,若y =f(x)的图形在区间I 上是凸的,那么连接曲线上任意两点所得的弦在曲线的上方;若y =f(x)的图形在区间I 上是凹的,那么连接曲线上任意两点所得的弦在曲线的下方. 如何把此直观的想法用数量关系表示出来呢? 设函数 ()f x 在区间I 上是凸的(向下凸),任意 1x , 2x I ∈( 12 x x <). 曲线 ()y f x =上任意两点11(,())A x f x ,11(,())B x f x 之间的图象位于弦AB 的下方,即任意 12(,)x x x ∈,() f x 的值小于或等于弦AB 在x 点的函数值,弦AB 的方程 211121 ()() ()() f x f x y x x f x x x -= -+-. 对任意 12(,) x x x ∈有,整理得 21 122121 ()()()x x x x f x f x f x x x x x --≤ +--. 令 221()x x t x x -= -,则有01t <<,且12(1)x tx t x =+-,易得1 21 1x x t x x -=--,上式可写成 1212[(1)]()(1)() f tx t x tf x t f x +-≤+- 1.1凸凹函数的定义 凸性也是函数变化的重要性质。通常把函数图像向上凸或向下凸的性质,叫做函数的凸性。图像向下

二次函数的对称轴(学练结合)

二次函数的对称轴 二次函数的图像是关于某条直线对称的抛物线,这条直线就叫做对称轴。我们用公式这样表示对称轴,直线x=-b/2a,有图像可知,当二次函数图像上两点的纵坐标相等时,那么这两点必然关于对称轴对称,且对称轴为这两点横坐标之和的一半。形如:点 A(x1,y1)、B(x2,y2)在二次函数的图像上,若y1=y2,那么图像的对称轴为 (x1+x2)/2。抛物线的顶点必然通过对称轴。所以可以根据顶点坐标直接求出对称轴。例如已知二次函数的顶点坐标为(x1,y1),那么二次函数的对称轴为直线x=x1。 在平面直角坐标坐标系中,已知两点坐标便可求其连线的中点坐标,例如:已知点 A(x1,y1)、B(x2,y2),则两点连线的中点为 C((x1+x2)/2,(Y1+Y2)/2),一般情况,出题者会结合一次函数,中垂线,三角形,二次函数进行综合考查。

例题演练 1、已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴() A.只能是x=﹣1 B.可能是y轴 C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧 2、已知二次函数y=a(x﹣h)2+k(a>0)的图象过点A(0,1)、B(8,2),则h的值可以是() A. 3 B. 4 C. 5 D. 6 3、如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b. (1)求二次函数y1的解析式及点B的坐标; (2)由图象写出满足y1<y2的自变量x的取值范围; (3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.

函数的凹凸性在高考中的应用

函数的凹凸性在高考中的应用 崇仁二中廖国华 教学目的: ①了解函数的凹凸性,掌握增量法解决凹凸曲线问题。 ②培养学生探索创新能力,鼓励学生进行研究型学习。 教学重点:掌握增量法解决凹凸曲线问题 教学难点:函数的凹凸性定义及图像特征 教学过程: 一、课题导入 1.展示崇仁县第二中学2008届高三第一次月考试题12得分统计表 2.组织学生现场解答月考试题12并进行得分统计,以引出课题——— 题目:一高为H、满缸水量为V的鱼缸的截面如图1所示,其底部碰了一个小洞,满缸水从洞中流出.若鱼缸水深为h时水的体积为V,则函数V=f(h)的大致图象可能是图2中的().(选自《中学数学教学参考》2001年第1~2合期)的《试题集绵》. 函数凹凸性问题是近几年高考与平时训练中的一种新题型.这种题情景新颖、背景公平,能考查学生的创新能力和潜在的数学素质,体现“高考命题范围遵循教学大纲,又不拘泥于教学大纲”的改革精神.但由于函数曲线的凹凸性在中学教材中既没有明确的定义,又没有作专门的研究,因此,就多数学生而言,对这类凹凸性曲线问题往往束手无策;而教师的“导数”理解又不能被学生所接受.所以,对这类非常规性问题作一探索,并引导学生去得到一般性的解法,无疑对学生数学素质的提高和创新精神的培养以及在迅速准确解答高考中出现此类的试题都是十分重要的。 二、新课讲授 1、凹凸函数定义及几何特征 图1 图2

⑴引出凹凸函数的定义: 如图3根据单调函数的图像特征可知:函数)(1x f 与)(2x f 都是增函数。但是)(1x f 与)(2x f 递增方式不同。不同在哪儿?把形如)(1x f 的增长方式的函数称为凹函数,而形如)(2x f 的增长方式的函数称为凸函数。 ⑵凹凸函数定义(根据同济大学数学教研室主编《高等数学》第201页): 设函数f 为定义在区间I 上的函数,若对(a ,b )上任意两点1x 、2x ,恒有: (1)1212()()()2 2 x x f x f x f ++<,则称f 为(a ,b )上的凹函数; (2)12 12()() ( )2 2 x x f x f x f ++> ,则称f 为(a ,b )上的凸函数。 ⑶凹凸函数的几何特征: 几何特征1(形状特征) 图4(凹函数) 图5(凸函数) 如图,设21,A A 是凹函数y=)(x f 曲线上两点,它们对应的横坐标12x x <,则 111(,())A x f x ,222(,())A x f x ,过点12 2 x x +作ox 轴的垂线交函数于A ,交21A A 于B , 凹函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的下方; 凸函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的上方。 简记为:形状凹下凸上。

函数信号发生器 开题报告

毕业设计(论文)开题报告题目函数信号发生器 专业名称电子信息工程 班级学号118501106 学生姓名蔡伟攀 指导教师邓洪峰 填表日期2015年 3月25日

说明 开题报告应结合自己课题而作,一般包括:课题依据及课题的意义、国内外研究概况及发展趋势(含文献综述)、研究内容及实验方案、目标、主要特色及工作进度、参考文献等内容。以下填写内容各专业可根据具体情况适当修改。但每个专业填写内容应保持一致。

一、选题的依据及意义 1.选题依据 信号发生器(signal generator)又称信号源或振荡器,是输出供给量,产生频率、幅度、波形等主要参数都可调的信号,用于测量的信号发生器指的是能够产生不同频率、不同幅度的规则或不规则的信号源,在电子系统的测量、实验、校准和维护中的得到广泛的应用。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波甚至任意波形,各种波形曲线均可用三角函数方程式表示。如在制作和调试音频功率放大器时,就需要人为的输入一个标准音频信号,才能测量功率放大器的输出,得到功率放大器的相关参数,此时要用到的这个标准音频信号就是由信号发生器提供的,可见信号发生器的应用很广。信号发生器其作用是:测量网络的幅频特性、相频特性;测量网络的瞬态响应;测量接收机;测量元件参数等。 信号源可以分为通用和专用两种,通用信号源包括:正弦信号源、脉冲信号源、函数信号源、高频信号源、噪声信号源;专用信号源包括:电视信号源、编码脉冲信号源。信号发生器根据输出波形可以分为:正弦信号发生器、函数信号发生器、脉冲信号发生器和噪声信号发生器。 (1)正弦信号发生器 主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。按照其不同性能和用途还可以分为低频(20Hz~10MHz)信号发生器、高频(100kHz~300MHz)信号发生器、微波信号发生器、扫频和程控发生信号发生器、频率合成式信号发生器等。 (2)函数(波形)信号发生器 能产生特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可以从几微赫兹到几十兆赫兹。除供通信、仪表和自动控制系统测试外,还广泛用于其他非电测量领域。 (3)脉冲信号发生器 能产生宽度、幅度和重复频率可调的矩形脉冲的发生器,可用以测试线性系统的瞬态响应,或用作模拟信号来测试雷达、多路通信和其他脉冲数字系统的性能。(4)随机信号发生器 通常又分为噪声信号发生器和伪随机信号发生器两种。噪声信号发生器的主要用途为:在待测系统中引入一个随机信号,以模拟实际工作条件中的噪声而测定系统性能;外加一个已知噪声信号与系统内部噪声比较以测定噪声系数;用随机信号代替正

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

超经典二次函数图象的平移和对称变换总结

二次函数图象的几何变换 内容基本要求略高要求较高要求 二次函数 1.能根据实际情境了解 二次函数的意义; 2.会利用描点法画出二 次函数的图像; 1.能通过对实际问题中 的情境分析确定二次函 数的表达式; 2.能从函数图像上认识 函数的性质; 3.会确定图像的顶点、 对称轴和开口方向; 4.会利用二次函数的图 像求出二次方程的近似 解; 1.能用二次 函数解决简 单的实际问 题; 2.能解决二 次函数与其 他知识结合 的有关问 题; 一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 () y a x h k =-+的形式,确定其顶点(,) h k,然后做出二次函数2 y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,) h k.具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”.

二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称 2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称 2 y ax bx c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2 y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变

函数凹凸性判别法与应用讲解

函数凹凸性判别法与应用 作者:祝红丽 指导老师:邢抱花 摘要 函数的凹凸性是函数的重要性质之一.它反映在函数图象上就是曲线的弯曲方向,通过 它可以较好地掌握函数对应曲线的性状.本文基于函数凹凸性概念的分析,着重探讨了函数凹凸 性的判别方法以及在解题中的应用,如在不等式证明中的应用以及在求函数最值时的应用等.并 结合相关例题做了较详细的论述. 关键词 凹凸性 导数 不等式 应用 1 引言 函数的凹凸理论在高等数学中占有重要地位.函数的凹凸性揭示了函数的因变量随自变 量变化而变化的快慢程度,如果结合函数的其它性质,可以使我们对函数的认识更加精确. 以函数()y f x 在某区间I 上单调增加为例说明.我们不难理解,随着自变量x 的稳定增 加,当函数y 的增量越来越大时,函数图形是凹的,当函数y 的增量越来越小时,函数图 形是凸的,当函数y 的增量保持不变时,函数图象是直线,对于减函数我们可以作类似的分 析. 作为研究分析函数的工具和方法,它在许多学科里有着重要的应用.长期以来,很多学 者致力于函数凹凸性的判别法及其应用的研究.近年来,关于函数凹凸性的判定与应用的研 究取得了一些成果,使函数凹凸性的判别法与应用更加的广泛. 本文先从两个具体的函数图象为出发点,直观上观察函数图象的弯曲方向,从而引出函 数凹凸性的概念和拐点的定义.并在此基础上介绍了凹凸函数的几何特征,接着介绍函数凹 凸性的几种判别方法,如:用定义去判别函数的凹凸性,利用二阶导函数判别函数的凹凸性, 及利用函数凹凸性的判定定理判别函数的凹凸性.其中利用函数凹凸性的概念是最基本的判 别方法,利用二阶导函数与函数凹凸性之间的关系是最常用的判别方法.最后举例介绍了函 数凹凸性在证明不等式、求函数最值以及函数作图中的应用.虽然说并不是所有的不等式都 能利用函数的凹凸性证明,但是利用函数的凹凸性去证明某些不等式,是其它方法不可替代 的.利用函数凹凸性证明不等式丰富了不等式的证明方法,开阔了解题思路.利用导数分析函 数的上升、下降,图形的凹凸性和极值.根据对这些的讨论可以帮助我们画出用公式表示的 函数图形,了解函数的凹凸性能够使对函数图形的描绘更加精确化.

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ② 要掌握常见的几种函数式变形求极限。 ③ 函数 f(x)在 x=x 0 处连续的充要条件是在 x=x 0 处左右连续。 ④ 计算函数极限的方法,若在 x=x 0 处连续,则 ⑤ 若函数在 [a,b] 上连续,则它在 [a,b] 上有最大值,最小值。 二、典型例题 例 1 .求下列极限 解:由 可知 x 2+mx+2 含有 x+2 这个因式, ∴ x=-2 是方程 x 2+mx+2=0 的根, ∴ m=3 代入求得 n=-1。 求 m,n 。 ① ④ ④ ③ ③ ② 解析:① 例 2.已知

的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处 函数是连续的, 从而 f(x)在点 x=-1 处不连续。 ∴ f(x) 在 (- ∞,-1),(- 1,+∞) 上连续, x=-1 为函数的不连续点。 , (a,b 为常数 ) 。 试讨论a,b 为何值时,f(x)在 x=0 处连续。 例 3 .讨论函数 例 4 .已知函数 , ∴ f(x)在 x=1 处连续。 解析: ∴ a=1, b=0 。 例 5 .求下列函数极限 ① ② 解析:① ②

要使 存在,只需 ∴ 2k=1 ,故 时, 存在。 例7.求函数 在 x=-1 处左右极限,并说明在 x=-1 处是否有极限? ,∴ f(x)在 x=-1处极限不存在。 三、训练题: 2. 的值是 3. 已知 ,则 = ,2a+b=0,求 a 与 b 的值。 ,求 a 的值。 5.已知 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0 例 6 .设 ,问常数k 为何值时,有 存在? 解析:∵ 4.已知 解析:由 1.已知

二次函数的对称变换

二次函数的对称变换 学习目标:1.掌握二次函数关于x轴、y轴、原点对称的解析式的确定。 2.会研究二次函数关于某条直线,某个点的对称变换。 一、课前练习 1.点(1,-4)关于x轴对称点坐标,关于y轴对称点,关于原点对称。 2.点(x,y)关于x轴对称点坐标,关于y轴对称点,关于原点对称。 二、新课探究 类型一:二次函数关于x轴、y轴、原点的对称变换 问题一:画出y=x2-2x-3的草图方法: 问题二:画出y=x2-2x-3关于x轴对称的图像 方法: 问题三:请确定新抛物线的解析式 方法一:一般式 方法二:顶点式 问题四:观察两个解析式的区别与联系 角度一:一般式 角度二:顶点式

问题五:请用同样的方法研究二次函数y=x2-2x-3关于y轴和原点的对称变换 总结:一般式y=ax2+bx+c (a≠0)关于x轴对称的解析式为: 关于y轴对称的解析式为: 关于原点对称的解析式为: 顶点式:y=a(x-h)2+k(a≠0) 关于x轴对称的解析式为: 关于y轴对称的解析式为: 关于原点对称的解析式为: 练习:1.y=2x2-3x关于y轴对称的解析式为, 2.y=-(x-3)2+3关于原点对称的解析式为, 3已知y=-2x2+x+1与y=ax2+bx+c关于x轴对称,则a= b= c= 类型二:二次函数关于某条直线或某个点的对称变换(给个开口向上的图像) 问题一:选取关于某条直线对称 问题二:选取关于某一点对称

总结:研究对称变换的方法 二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y 轴对称 2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°) 2y a x b x c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n , 对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

概周期函数的定义及其性质[开题报告]

毕业论文开题报告 数学与应用数学 概周期函数的定义及其性质 一、选题的背景、意义 函数在日常生活中扮演越来越重要的角色,而概周期函数正成为函数的一个重要组成部分.概周期函数是在20世纪20年代由丹麦著名数学家H.Bohr首先提出的,它为了解决周期函数对加法运算不封闭而创造的一类新函数.在二、三十年代有了进一步发展,包括概周期函数的调和分析理论以及1933年由S.Bochner所建立的Bannch空间向量值概周期函数的理论.往后的发展更密切的联系着常微分方程、稳定性理论和动力系统,其应用范围不仅限于常微分方程和古典动力系统,也涉及泛函数微分方程、Banach空间微分方程以及一类广泛的偏微分方程. 关于概周期函数,我们可以从两个不同角度去看待:一方面,概周期函数是一类具有独特结构性质的连续函数,是周期函的推广;另一方面,概周期函数可以看成是一致收敛的三角多项式序列的限.从而,概周期函数理论的建立,为我们开辟了一个道路,使我们能够究一类更广泛的三角级数,甚至指数级数.即使在现实生活中,概周期函数也是比周期函数更容易见到的一类函例如,天体力学,机械振动,生态学系统,经济领域以及工程技术中出振荡现象的许许多多的实际问题往往都可以转化为求解常微分方程、泛函分方程、差分方程以及偏微分方程等数学模型的周期解,其中有些问题诸如天体运转,生态环境,以及市场供需规律等)考查概周期解比考查周解更具有现实意义.在概周期函数的基础上,通过增加扰动项得到了渐进周期函数、弱概周期函数和伪概周期函数.同时,若将概周期型函数的函值从复数值推广到向量值,则得到向量值概周期型函数.微分方程是从实际问题中抽象出来的数学模型,它描述了系统变化率与状态之间的关系,研究方程解的性态是微分方程理论中一个重要而又基本问题,系统解的稳定性分析是这个理论体系很重要的方面,由于概周期函是周期函数的一个推广,是具有某种近似周期性的有界连续函数,使得概期系统的解的稳定性分析也受到了越来越多的学者的关注,它在常微分方稳定性理论和动力系统中有着重要的应用.

二次函数对称性的专题复习

二次函数图象对称性的应用 一、几个重要结论: 1、抛物线的对称轴是直线__________。 2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。 3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。 4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。 5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则?ABC是____三角形,且?ABC的外接圆与内切圆的圆心都在抛物线的_______上。 二、在解题中的应用: 例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。 例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足 . (1)求抛物线的解析式; (2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。 例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。 例4已知抛物线的顶点A在直线上。 (1)求抛物线顶点的坐标; (2)抛物线与轴交于B、C两点,求B、C两点的坐标; (3)求?ABC的外接圆的面积。

y O x -1 -2 1 2 - 3 3 -1 1 2 -2 二次函数专题训练——对称性与增减性 一、选择 1、若二次函数 ,当x 取 , ( ≠ )时,函数值相等,则 当x 取+时,函数值为( ) (A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )( 2 1 ,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2 (1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A.1 B.2 C.3 D.4 4、抛物线c bx x y ++-=2 的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-x C. 4-x D.3-x 5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0; 那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m 6、抛物线y=ax 2 +2ax+a 2 +2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0) C .(2,0) D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( ) A .1个 B .2个 C .3个 D .4个 8、若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x + 时,函数值为( ) A.a c + B.a c - C.c - D.c 9、二次函数 c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。 10、已知关于x 的方程32 =++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2 的对称轴直线是x =2,则抛物线的顶点坐标是( ) A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2) 11、已知函数215 322 y x x =- --,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2

二次函数的对称性

(一)、教学内容 1.二次函数得解析式六种形式 ①一般式y=ax2 +bx+c(a≠0) ②顶点式(a≠0已知顶点) ③交点式(a≠0已知二次函数与X轴得交点) ④y=ax2(a≠0)(顶点在原点) ⑤y=ax2+c(a≠0) (顶点在y轴上) ⑥y=ax2 +bx (a≠0) (图象过原点) 2.二次函数图像与性质 对称轴: 顶点坐标: 与y轴交点坐标(0,c) 增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大 ?当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小 ☆二次函数得对称性 二次函数就是轴对称图形,有这样一个结论:当横坐标为x1, x2 其对应得纵坐标相等那么对称轴: 与抛物线y=ax2 +bx+c(a≠0)关于y轴对称得函数解析式:y=ax2-bx+c(a≠0) 与抛物线y=ax2 +bx+c(a≠0)关于x轴对称得函数解析式:y=-ax2–bx-c(a≠0) 当a>0时,离对称轴越近函数值越小,离对称轴越远函数值越大; 当a<0时,离对称轴越远函数值越小,离对称轴越近函数值越大; 【典型例题】 题型 1 求二次函数得对称轴 1、二次函数y=-mx+3得对称轴为直线x=3,则m=________。 2、二次函数得图像上有两点(3,-8)与(-5,-8),则此拋物线得对称轴就是( ) (A) (B) (C) (D) 3、y=2x-4得顶点坐标为___ _____,对称轴为__________。 4、如图就是二次函数y=ax2+bx+c图象得一部分,图象过点A(-3,0),对称轴为x=-1.求 它与x轴得另一个交点得坐标( , ) 5、抛物线得部分图象如图所示,若,则x得取值范围就是( ) A、 B、 C、或 D、或 6、如图,抛物线得对称轴就是直线,且经过点(3,0),则得值为 ( ) A、0 B、-1 C、 1 D、2 题型2 比较二次函数得函数值大小 1、、若二次函数,当x取,(≠)时,函数值相等,则当x取+时,函数值为 ( ) (A)a+c (B)a-c (C)-c (D)c 2、若二次函数得图像开口向上,与x轴得交点为(4,0),(-2,0)知,此抛物 线得对称轴为直线x=1,此时时,对应得y 1 与y 2 得大小关系就是( ) A.y 1 <y 2 B、 y 1 =y 2 C、 y 1 >y 2 D、不确定 点拨:本题可用两种解法y x O –1 1 3 O –1 3 3 1

函数项级数一致收敛的判定开题报告

一、本课题研究现状及可行性分析 目前通用的数学分析教材(如华东师范大学,复旦大学,吉林大学,北京师范大学等)其介绍的主要内容如下:M 判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的收敛性进行了讨论。当前对级数的收敛性的讨论研究已经到达比较高级阶段,分枝也比较细,发展也相对较完善。但在许多实际解题过程中,往往不是特定的级数,用特殊的方法不能解决。故需对特殊级数情况要总结和发展。 函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于()n u x 一致收敛性的判别法,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效地运用函数项级数一致收敛的判别法。而此课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。 二、本课题研究的关键问题及解决问题的思路 关键问题:对函数项级数一致收敛性判别法总结和推广。 基本思路:首先从定义出发,让读者了解函数项级数及一致收敛的定义,对函数项级数一致收敛有一个大致的认识,并对其进行一定的说明,且将收敛与一致收敛做一个比较,使读者对其有一个更深刻的认识。随后给出一些常见的一致收敛的判别法,并附上例题加以说明。当熟悉了一般的判别法后,我将其加以推广,得到一些特殊的判别法,如比式判别法,根式判别法,对数判别法等。

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

函数的凹凸性与拐点

第16 次理论课教学安排

图1 2.4导数的应用----曲线的凹凸与拐点 课题: 曲线的凹凸与拐点 目的要求:理解曲线凹凸性的概念、掌握判断函数图形的凹凸性、求函数图形 的拐点等方法。 重、难点:判断函数图形的凹凸性、求函数图形的拐点 教学方法:讲练结合 教学时数:1课时 教学进程: 函数的单调性可用函数的一阶到函数来判定,对于同样的递增函数有着不同的增法,如向上凸的增或凹的增,那么对于这两种不同的增法我们如何刻画那? 一、曲线的凹凸与拐点 1.曲线的凹凸定义和判定法 从图1可以看出曲线弧ABC 在区间()c a ,内是向下凹入的,此时曲线弧ABC 位于该弧上任一点切线的上方;曲线弧CDE 在区间()b c ,内是向上凸起的,此时曲线弧CDE 位于该弧上任一点切线的下方.关于曲线的弯曲方向,我们给出下面的定义: 定义1 如果在某区间内的曲线弧位于其任一点切线的上方,那么此曲线弧叫做在该区间内是凹的;如果在某区间内的曲线弧位于其任一点切线的下方,那么此曲线弧叫做在该区间内是凸的. 例如,图1中曲线弧ABC 在区间()c a ,内是凹的,曲线弧CDE 在区间()b c ,内是凸的. 由图1还可以看出,对于凹的曲线弧,切线的斜率随x 的增大而增大;对于凸 x y o () y f x =A B x y o () y f x =A B

的曲线弧,切线的斜率随x 的增大而减小.由于切线的斜率就是函数()x f y =的导数,因此凹的曲线弧,导数是单调增加的,而凸的曲线弧,导数是单调减少的.由此可见,曲线()x f y =的凹凸性可以用导数()x f '的单调性来判定.而()x f '的单调性又可以用它的导数,即()x f y =的二阶导数()x f ''的符号来判定,故曲线 ()x f y =的凹凸性与()x f ''的符号有关.由此提出了函数曲线的凹凸性判定定理: 定理1 设函数()x f y =在()b a ,内具有二阶导数. (1)如果在()b a ,内,()x f ''>0,那么曲线在()b a ,内是凹的; (2)如果在()b a ,内,()x f ''<0,那么曲线在()b a ,内是凸的. 例1 判定曲线3 x y =的凹凸性. 2.拐点的定义和求法 定义2 连续曲线上凹的曲线弧和凸的曲线弧的分界点叫做曲线的拐点. 定理2(拐点存在的必要条件) 若函数()x f 在0x 处的二阶导数存在,且点 ()()00,x f x 为曲线()x f y =的拐点,则().00=''x f 我们知道由()x f ''的符号可以判定曲线的凹凸.如果()x f ''连续,那么当()x f ''的符号由正变负或由负变正时,必定有一点0x 使()0x f ''=0.这样,点()()00,x f x 就是曲线的一个拐点.因此,如果()x f y =在区间()b a ,内具有二阶导数,我们就可以按下面的步骤来判定曲线()x f y =的拐点: (1) 确定函数()x f y =的定义域; (2) 求()x f y ''='';令()x f ''=0,解出这个方程在区间()b a ,内的实根; (3) 对解出的每一个实根0x ,考察()x f ''在0x 的左右两侧邻近的符号.如果()x f ''在0x 的左右两侧邻近的符号相反,那么点()()00,x f x 就是一个拐点,如果()x f ''在0x 的左右两侧邻近的符号相同,那么点()()00,x f x 就不是拐点. 例2 求曲线2 3 3x x y -=的凹凸区间和拐点. 解 (1)函数的定义域为()+∞∞-,; (2)()1666,632 -=-=''-='x x y x x y ;令0=''y ,得1=x ; (3)列表考察y ''的符号(表中“”表示曲线是凹的,“” 表示曲线 是凸的): x ()1,∞- 1 ()+∞,1 y '' - 0 + 曲线y 拐点 ()2,1-

三角函数研究性学习开题报告

研究性学习 开题报告 哈五中荀辉数学研究性学习小组2005年4月

一、课题名称:三角函数的应用 二、课题提出的背景: 高一的数学重点是三角函数。他在生活中应用非常广泛,与物理,地理等学科也有密切的关系。为使学生更好的了解数学与生活的联系,以此为研究的课题: 三、课题研究的目的与意义: 1、研究性学习的原因: 高中教育要进一步提高学生的思想品德、文化科学、劳动技能、审美情趣和身体心理素质,培养学生创新精神、实践能力、终身学习的能力和适应社会的能力,促进学生个性的健康发展。在高中开展研究性学习,是全面培养学生综合运用所学知识的能力、收集和处理信息的能力、分析和解决问题的能力、语言文字表达能力以及团结协作能力的重要环节。这项活动还有利于培养学生独立思考的习惯,激发学生的创新意识。 2、研究目的意义: ⑴以三角函数史为开端,了解三角函数的生活应用,

丰富学生对自然科学的认识和提高学生研究生活中的数学知识的兴趣。 ⑵通过研究活动,丰富学生的研究体验,发展学生发现问题、提出问题、分析问题和解决问题的创新精神和研究能力,通过实地调查研究、查阅资料、完成本组的研究任务,培养学生积极参加研究活动的意识、积极与他人协作,善于听取、采纳他人的建议以及正确对待不同意见等协作学习的能力。 四、研究内容: 1、三角函数的历史 2、三角函数的物理应用 3、三角函数的生活应用 4、实际测量旗杆的高度。 五、研究方法: “培养学生通过阅读、实验、大众传媒、调查访问等多种途径,培养学生收集、鉴别、处理信息的能力、获取新知识的能力” 1、查询法:通过调查访问方式了解与数学研究性学习有关的 信息与内容。 2、经验筛选法:利用计算机网络进行研究资料的查找、分

相关文档
最新文档