2016-2017年山东省日照市五莲县八年级上学期数学期中试卷与答案

合集下载

2016-2017学年山东省日照市莒县八年级(下)期中数学试卷和解析

2016-2017学年山东省日照市莒县八年级(下)期中数学试卷和解析

2016-2017学年山东省日照市莒县八年级(下)期中数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请将正确选项代号填入下表.第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.)1.(3分)用公式法解x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.1,3,1 B.1,3,﹣1 C.﹣1,﹣3,﹣1 D.﹣1,3,12.(3分)某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm 3.(3分)如果一个四边形的两条对角线互相平分且相等,那么它一定是()A.矩形B.菱形C.正方形D.梯形4.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=65.(3分)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0 C.y1<y2D.y1=y26.(3分)已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40 B.47 C.96 D.1907.(3分)甲、乙两人各射靶5次,已知甲所中环数是8,7,9,7,9,乙所中环数的平均数,=8,方差=0.4,那么,对甲、乙的射击成绩的正确判断是()A.甲的射击成绩较稳定B.乙的射击成绩较稳定C.甲、乙的射击成绩同样稳定D.甲、乙的射击成绩无法比较8.(3分)根据如图的程序,计算当输入x=3时,输出的结果y是()A.2 B.4 C.6 D.89.(4分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.10.(4分)等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为()A.8 B.10 C.8或10 D.不能确定11.(4分)如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0 B.0<x<3 C.3<x<6 D.x>612.(4分)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.5cm2D.cm2二、填空题(本大题共4小题;每小题4分,共16分.把答案写在题中横线上)13.(4分)将直线y=2x+1向下平移3个单位长度后所得直线的解析式是.14.(4分)已知关于x的一元二次方程x2﹣2x+1=0的实数根是x1、x2,则代数式x12+x22﹣x1x2.15.(4分)如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则EF长为cm.16.(4分)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)三、解答题(本大题共6小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤)17.(10分)选用合适的方法解下列方程:(1)2x2﹣5x=3;(2)(x+3)2=(1﹣3x)2.18.(8分)某校教导处为了了解本校初二学生一天中做家庭作业所用的大致时间(时间以整数记,单位:分钟),对本校的初二学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示).请结合统计图中提供的信息,回答下列问题:(1)本次所抽取样本的容量是多少?(2)在被调查的学生中,一天做家庭作业所用的大致时间超过120分钟(不包括120分钟)的人数占被调查学生总人数的百分之几?(3)这次调查得到的所有数据的中位数落在了五个时间段中的哪一段内?19.(10分)关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.20.(10分)A校和B校分别库存有电脑12台和6台,现决定支援给C校10台和D校8台.已知从A校调运一台电脑到C校和D校的运费分别为40元和10元;从B校调运一台电脑到C校和D校的运费分别为30元和20元.(1)设A校运往C校的电脑为x台,请仿照下图,求总运费W(元)关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费是多少?21.(12分)如图,直线l1的解析式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请求出点P的坐标.22.(14分)如图1,矩形ABCD中,AB=7cm,AD=4cm,点E为AD上一定点,F为AD延长线上一点,且DF=acm,点P从A点出发,沿AB边向点B以2cm/s 的速度运动,运动到B点停止,连结PE,设点P运动的时间为ts,△PAE的面积为ycm2,当0≤t≤1时,△PAE的面积y(cm2)关于时间t(s)的函数图象如图2所示,连结PF,交CD于点H.(1)t的取值范围为,AE=cm;(2)如图3,将△HDF沿线段DF进行翻折,与CD的延长线交于点M,连结AM,当a为何值时,四边形PAMH为菱形?(3)在(2)的条件下求出点P的运动时间t.2016-2017学年山东省日照市莒县八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请将正确选项代号填入下表.第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.)1.(3分)用公式法解x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.1,3,1 B.1,3,﹣1 C.﹣1,﹣3,﹣1 D.﹣1,3,1【解答】解:方程化为一般式为x2+3x﹣1=0,所以a=1,b=3,c=﹣1.故选:B.2.(3分)某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm 【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选:B.3.(3分)如果一个四边形的两条对角线互相平分且相等,那么它一定是()A.矩形B.菱形C.正方形D.梯形【解答】解:∵一个四边形的两条对角线互相平分,∴这个四边形是平行四边形,∵这个四边形的两条对角线相等,∴这个四边形是矩形.故选:A.4.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.5.(3分)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y 1>y2B.y1>y2>0 C.y1<y2D.y1=y2【解答】解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选:A.6.(3分)已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40 B.47 C.96 D.190【解答】解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,∵菱形的周长为40,∴AB=BC=CD=AD=10,∵一条对角线的长为12,当AC=12,∴AO=CO=6,在Rt△AOB中,BO==8,∴BD=2BO=16,∴菱形的面积=AC•BD=96,故选:C.7.(3分)甲、乙两人各射靶5次,已知甲所中环数是8,7,9,7,9,乙所中环数的平均数,=8,方差=0.4,那么,对甲、乙的射击成绩的正确判断是()A.甲的射击成绩较稳定B.乙的射击成绩较稳定C.甲、乙的射击成绩同样稳定D.甲、乙的射击成绩无法比较【解答】解:∵甲所中环数是8,7,9,7,9,∴甲所中环数的平均数是(8+7+9+7+9)÷5=8,甲所中环数的方差是[(8﹣8)2+(7﹣8)2+(9﹣8)2+(7﹣8)2+(9﹣8)2]=0.8,∵方差=0.4,∴乙的射击成绩较稳定;故选:B.8.(3分)根据如图的程序,计算当输入x=3时,输出的结果y是()A.2 B.4 C.6 D.8【解答】解:∵x=3>1,∴y=﹣3+5=2,故选:A.9.(4分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【解答】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,纵观各选项,只有A选项符合.故选:A.10.(4分)等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为()A.8 B.10 C.8或10 D.不能确定【解答】解:∵方程x2﹣6x+8=0的解是x=2或4,(1)当2为腰,4为底时,2+2=4不能构成三角形;(2)当4为腰,2为底时,4,4,2能构成等腰三角形,周长=4+4+2=10.故选:B.11.(4分)如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0 B.0<x<3 C.3<x<6 D.x>6【解答】解:把点A(3,1)和B(6,0)两点代入y=kx+b中,可得:,解得:,所以解析式为:y=﹣x+2,所以有,解得:3<x<6故选:C.12.(4分)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.5cm2D.cm2【解答】方法一:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===(cm2).故选:B.方法二:⇒q=,a1=10,∴a n=10•,∴a5=10•=.二、填空题(本大题共4小题;每小题4分,共16分.把答案写在题中横线上)13.(4分)将直线y=2x+1向下平移3个单位长度后所得直线的解析式是y=2x ﹣2.【解答】解:根据平移的规则可知:直线y=2x+1向下平移3个单位长度后所得直线的解析式为:y=2x+1﹣3=2x﹣2.故答案为:y=2x﹣2.14.(4分)已知关于x的一元二次方程x2﹣2x+1=0的实数根是x1、x2,则代数式x12+x22﹣x1x2=5.【解答】解:根据题意得x1+x2=2,x1x2=1,所以x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=(2)2﹣3×1=5.故答案为5.15.(4分)如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则EF长为cm.【解答】解:如图所示,连接AC、CF,由折叠可知,EF⊥AC,又∵AF∥CE,∴∠FAO=∠ECO,在△AOF与△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴四边形AECF是平行四边形,又∵EF垂直平分AC,∴AE=AF,∴四边形AECF为菱形,(有一组邻边相等的平行四边形是菱形)设AE=EC=xcm,则BE=(8﹣x)cm,在Rt△ABC中,由勾股定理得:AC=10cm,在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,即62+(8﹣x)2=x2,解得x=,根据菱形计算面积的公式,得EC×BA=×EF×AC,即×6=×EF×10,解得EF=cm.故答案为:.16.(4分)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;④兔子在途中750米处追上乌龟.其中正确的说法是①③④.(把你认为正确说法的序号都填上)【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.三、解答题(本大题共6小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤)17.(10分)选用合适的方法解下列方程:(1)2x2﹣5x=3;(2)(x+3)2=(1﹣3x)2.【解答】解:(1)原方程整理得:2x2﹣5x﹣3=0,∵(x﹣3)(2x+1)=0,∴x﹣3=0或2x+1=0,解得:x=3或x=﹣0.5;(2)∵(x+3)2=(1﹣3x)2,∴x+3=1﹣3x或x+3=﹣1+3x,18.(8分)某校教导处为了了解本校初二学生一天中做家庭作业所用的大致时间(时间以整数记,单位:分钟),对本校的初二学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示).请结合统计图中提供的信息,回答下列问题:(1)本次所抽取样本的容量是多少?(2)在被调查的学生中,一天做家庭作业所用的大致时间超过120分钟(不包括120分钟)的人数占被调查学生总人数的百分之几?(3)这次调查得到的所有数据的中位数落在了五个时间段中的哪一段内?【解答】解:(1)根据题意得:3+6+9+8+4=30(人),则本次所抽取的样本的容量是30;(2)根据题意得:×100%=70%,答:一天做家庭作业所用的大致时间超过120分钟(不包括120分钟)的人数占被调查学生总人数的70%;(3)中位数落在了120∼150分钟这个时间段内.19.(10分)关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.【解答】解:(1)由△=[(k+2)]2﹣4×k•>0,∴k>﹣1∴k的取值范围是k>﹣1,且k≠0;(2)不存在符合条件的实数k理由:设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又∵+==0,∴=0,解得k=﹣2,由(1)知,k=﹣2时,△<0,原方程无实解,∴不存在符合条件的k的值.20.(10分)A校和B校分别库存有电脑12台和6台,现决定支援给C校10台和D校8台.已知从A校调运一台电脑到C校和D校的运费分别为40元和10元;从B校调运一台电脑到C校和D校的运费分别为30元和20元.(1)设A校运往C校的电脑为x台,请仿照下图,求总运费W(元)关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费是多少?【解答】解:(1)∵从A校调往C校x台,∴从A校调往D校(12﹣x)台,从B校调往C校(10﹣x)台,调往D校[6﹣(10﹣x)]=(x﹣4)台,∴W=40x+10(12﹣x)+30(10﹣x)+20(x﹣4)=20x+340,∵机器的台数只能是正整数,∴12﹣x≥0且10﹣x≥0 且x﹣4≥0解得:4≤x≤10,且x为正整数,∴运费W关于x的函数关系式为:W=20x+340 (4≤x≤10);(2)∵W=20x+340(4≤x≤10)是一次函数,∴当x=4时,运费W最低,此时W=420,即总运费最低的调运方案是:从A校调运4台电脑到C校,调运8台电脑到D 校,从B校调运6台电脑到C校,最低费用是420元.21.(12分)如图,直线l1的解析式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请求出点P的坐标.【解答】解:(1)设直线l2的解析表达式为y=kx+b(k≠0),把A(4,0)、B(3,)代入表达式y=kx+b,,解得:,∴直线l2的解析表达式为y=x﹣6.(2)当y=﹣3x+3=0时,x=1,∴D(1,0).联立y=﹣3x+3和y=x﹣6,解得:x=2,y=﹣3,∴C(2,﹣3),∴S=×3×|﹣3|=.△ADC(3)∵△ADP与△ADC底边都是AD,△ADP与△ADC的面积相等,∴两三角形高相等.∵C(2,﹣3),∴点P的纵坐标为3.当y=x﹣6=3时,x=6,∴点P的坐标为(6,3).22.(14分)如图1,矩形ABCD中,AB=7cm,AD=4cm,点E为AD上一定点,F为AD延长线上一点,且DF=acm,点P从A点出发,沿AB边向点B以2cm/s 的速度运动,运动到B点停止,连结PE,设点P运动的时间为ts,△PAE的面积为ycm2,当0≤t≤1时,△PAE的面积y(cm2)关于时间t(s)的函数图象如图2所示,连结PF,交CD于点H.(1)t的取值范围为0≤t≤3.5,AE=1cm;(2)如图3,将△HDF沿线段DF进行翻折,与CD的延长线交于点M,连结AM,当a为何值时,四边形PAMH为菱形?(3)在(2)的条件下求出点P的运动时间t.【解答】解:(1)∵AB=7,而7÷2=3.5,∴0≤t≤3.5,由题意可知,y=×2t×AE,由图2可知,当t=0.5时,y=0.5,∴0.5=×2×0.5×AE,∴AE=1,故答案分别为:0≤t≤3.5,1;(2)如图3,∵四边形AMHP是菱形,∵∠ADM=90°,DM=AM,∴∠MAD=30°,∴∠PFA=MFA=∠MAD=30°,∴MA=MF,∵MD⊥AF,∴AD=DF=4,∴a=4.(3)当a=4cm时,FA=AD+DF=8cm,令PA=x,则PF=2x,根据勾股定理可得,PF2=PA2+AF2,即(2x)2=x2+82,解得x=,(负值已舍去)∴P的运动时间为÷2=秒.。

【苏科版】2016-2017学年八年级数学上期中试题(含答案)

【苏科版】2016-2017学年八年级数学上期中试题(含答案)

2016/2017学年度第一学期期中考试试卷八年级数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是(▲ )A.清华大学 B.北京大学 C.中国人民大学 D.浙江大学2.如图,已知AB=AD,添加下列一个条件后,仍无法判定△ABC≌△ADC的是(▲ )A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°3.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是(▲ )A.SSS B.SAS C.SSA D.ASA4.根据下列已知条件,能唯一画出△ABC的是(▲ )A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6(第2题)(第3题)(第5题)5.等腰三角形的周长为13 cm,其中一边长为3 cm.则该等腰三角形的底长为(▲ )A.3 cm或5 cm B.3 cm或7 cm C.3 cm D.5 cm6.如果a、b、c是一个直角三角形的三边,则a:b:c可以等于(▲ )A.1:2:4 B.2:3:4 C.3:4:7 D.5:12:13 7.如图,在△ABC中,∠ABC=45°,F是高AD和高BE的交点,若FD=4,AF=2.则线段BC的长度为(▲ )A.6 B.8 C.10 D.128.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=3,则CE2+CF2的值为(▲ )A.36 B.9 C.6 D.18(第7题)(第8题)二、填空题(本大题共10小题,每小题3分,共30分)9.如图,△OAD≌△OBC,且OA=2,OC=6,则BD= ▲ .10.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=25°,则∠2的度数为▲ .(第9题)(第10题)(第11题)(第12题)11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=▲ .12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是▲ .(填上一个条件即可)13.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是▲ .14.如图,点D在边BC上,DE⊥AB,DF⊥BC,垂足分别为点E、D,BD=CF,BE=CD.若∠AFD=140°,则∠EDF=▲ .15.如图,∠BAC =100°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ = ▲ .(第13题) (第14题) (第15题) (第16题)16.如图,AB //CD ,O 为∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E ,且OE =1,则AB 与CD之间的距离等于 ▲ .17.一个直角三角形的两边长分别为3、4,则它的第三条边的平方是 ▲ .18.把两个三角板如图甲放置,其中90ACB DEC ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边12AB =,14CD =,把三角板DCE 绕着点C 顺时针旋转15︒得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为 ▲ .乙甲D 1ACB ABE DE 1CO(第18题)三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤) 19.(8分)如图,△ABC 与△C B A '''关于直线l 对称,若∠A =76°,∠C '=48°.求∠B 的度数.20.(8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内再涂黑4个小正方形,使它们成为轴对称图形.21.(8分)如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =36°.求∠BAC ,∠C 的度数.22.(8分)如图,△ABC 中,AB =AC ,两条角平分线BD 、CE 相交于点O .(1)证明:△ABD ≌△ACE ; (2)证明:OB =OC .23.(10分)如图,AD ∥ BC ,∠ A =90°,以点B 为圆心、BC 长为半径作弧,交射线AD 于点E ,连接BE ,过点C 作CF ⊥BE ,垂足为F .求证:AB =FC .FEDCBADEOCBA24.(10分)如图,在△ABC中,∠BAC=90°,AB=20,AC=15,AD⊥BC,垂足为D.求AD,BD的长25.(10分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为14 cm,AC=6 cm,求DC长.26.(10分)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时,△PQB是以BP为底的等腰三角形?27.(12分)如图,△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,BE交AC于F,AD交CE于H,连接FH.(1)求证:△ACD≌△BCE;(2)求证:AH=BF;(3)求证:△CFH为等边三角形.28.(12分)(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在DC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:<Ⅰ>如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.<Ⅱ>如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,<Ⅰ>中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.2016/2017学年度第一学期期中考试试卷八年级数学答题纸二、填空题(共10小题,每题3分,共30分)三、解答题19.(8分)20.(8分)21.(8分)22.(8分)DEOCBA23.(10分)FE DCBA24.(10分)25.(10分)26.(10分)2016/2017学年度第一学期期中考试八年级数学答案一、选择题B C D C C D C A二、填空题9.4 10.70°11.50°12.BE=CE(或∠BAE=∠CAE,或∠ABE=∠ACE)13.914.50°15.20°16.2 17.25或7 18.10 三、解答题19.56°20.略 21.72°;54° 22.略23.略24.12,16 25.35°,4 26.5,6 27.略28.(1)AF=BD.证明如下:∵△ABC是等边三角形(已知),∴BC=AC,∠BCA=60°(等边三角形的性质).同理知,DC=CF,∠DCF=60°.∴∠BCA﹣∠DCA=∠DCF﹣DCA,即∠BCD=∠ACF.在△BCD和△ACF中,∵BC=AC,∠BCD=∠ACF,DC=CF,∴△BCD≌△ACF(SAS).∴BD=AF(全等三角形的对应边相等).(2)AF=BD仍然成立.通过证明△BCD≌△ACF,即可证明AF=BD.(3)<Ⅰ>AF+BF′=AB.证明如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF.同理△BCF′≌△ACD(SAS),则BF′=AD.∴AF+BF′=BD+AD=AB.<Ⅱ> <Ⅰ>中的结论不成立,新的结论是AF=AB+BF′.证明如下:在△BCF′和△ACD中,∵BC=AC,∠BC F′=∠ACD,F′C=DC,∴△BCF′≌△ACD(SAS).∴BF′=AD(全等三角形的对应边相等).又由(2)知,AF=BD,∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.。

2015-2016年山东省日照市五莲县八年级(上)期末数学试卷和解析答案

2015-2016年山东省日照市五莲县八年级(上)期末数学试卷和解析答案

2015-2016学年山东省日照市五莲县八年级(上)期末数学试卷一、选择题:本大题共12小题,其中1-8小题每小题3分,9-12小题每小题3分,共30分.在每小题给出地四个选项中,只有一项是正确地,请将正确选项代号填入表格中.1.(3分)下列图案属于轴对称图形地是()A.B.C.D.2.(3分)下列计算正确地是()A.(x3)3=x6B.a6•a4=a24C.(﹣bc)4÷(﹣bc)2=b2c2D.x6÷x3=x23.(3分)如图,为估计池塘岸边A、B两点地距离,小方在池塘地一侧选取一点O,测得OA=8米,OB=6米,A、B间地距离不可能是()A.12米B.10米C.15米D.8米4.(3分)若分式地值为零,则x地值为()A.±2 B.﹣2 C.2 D.不存在5.(3分)如图所示,一个60°角地三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2地度数为()A.120°B.180°C.240° D.300°6.(3分)若分式中地x和y都扩大2倍,那么分式地值()A.扩大2倍B.不变C.缩小2倍D.扩大4倍7.(3分)点P(a+b,2a﹣b)与点Q(﹣2,﹣3)关于x轴对称,则a=()A.B.C.﹣2 D.28.(3分)九年级学生去距学校10km地博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车地速度是骑车学生速度地2倍,求骑车学生地速度.设骑车学生地速度为xkm/h,则所列方程正确地是()A.=﹣B.=﹣20 C.=+D.=+209.(4分)如果一个多边形地内角和是外角和地5倍,那么这个多边形地边数是()A.10 B.11 C.12 D.1310.(4分)一辆汽车从山南泽当饭店出发开往拉萨布达拉宫.如果汽车每小时行使V1千米,则t小时可以到达,如果汽车每小时行使V2千米,那么可以提前到达布达拉宫地时间是()小时.A.B.C.D.11.(4分)已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确地是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°12.(4分)为了求1+2+22+23+…+22011+22012地值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012地值是()A.52013﹣1 B.52013+1 C.D.二、填空题:本大题共4个小题,每小题4分,共16分,把答案写在题中横线上.13.(4分)分解因式:a4(x﹣y)+(y﹣x)=.14.(4分)代数式4x2+3mx+9是完全平方式,则m=.15.(4分)若关于x地分式方程﹣1=无解,则m地值.16.(4分)如图,四边形ABCD中,∠C=40°,∠B=∠D=90°,E、F分别是BC、DC上地一点,当△AEF地周长最小时,∠EAF地度数为.三、解答题:本大题共6小题,共64分。

2016-2017学年沪科版八年级数学上册期中测试题及答案

2016-2017学年沪科版八年级数学上册期中测试题及答案

2016-2017学年八年级数学上学期期中试题第I 卷(选择题)一、选择题1.下列函数中,当x <0时,函数值y 随x 的增大而增大的有( )①y=x ②y=-x ④24x y = A .1个 B.2个 C.3个 D.4个2.已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为( ) A .1或-2 B .2或-1 C .3 D .43.已知正比例函数x m y )3(-=的图象过第二、四象限,则m 的取值范围是( )A. m ≥3 B .m >3 C .m ≤3 D .m <34..直线y =2x +2沿y 轴向下平移6个单位后与x 轴的交点坐标是( )A .(-4,0)B .(-1,0)C .(0,2)D .(2,0)5.如图,一次函数y 1=x+3与y 2=ax+b 的图象相交于点P (1,4),则关于x 的不等式x+3≤ax+b 的解集是( )A 、x ≥4B 、x ≤4C 、x ≥1D 、x ≤16.一个多边形的内角和等于外角和的一半,那么这个多边形是 ( )A. 三角形B. 四边形C. 五边形D. 六边形7.已知三角形三边长分别为3,1-2a ,8,则a 的取值范围是( )A.5<a <11B. 4<a <10C. -5<a <-2D. -2<a <-58.若a 、b 、c 为△ABC c 的值可以为( )A .5B .6C .7D .89.如图,小亮从A 点出发前进10m ,向右转一角度,再前进10m ,又向右转一相同角度,…,这样一直走下去,他回到出发点A 时,一共走了180m ,则他每次转动的角度是A .15°B .18°C .20°D .不能确定10.小明从家骑车上学,先上坡到达A 地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( ).31+=x y b ax y +=2A.8.6分钟 B.9分钟 C.12分钟 D.16分钟第II 卷(非选择题)二、填空题11的自变量x 的取值范围 . 12.如图,△ABC 的边BC 长是8,BC 边上的高AD 是4,点D 在BC 运动,设BD 长为x ,请写出 △ACD 的面积y 与x 之间的函数关系式 .13.如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点1A ,BC A 1∠ 的平分线与CD A 1∠的平分线交于点2A ,…,BC A n 1-∠的平分线与CD A n 1-∠的平分线交于点n A . 设θ=∠A ,14.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y (米)与挖掘时间x (天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有 .(在横线上填写正确的序号)三、解答题15.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示。

2016-2017年山东省聊城市冠县八年级上学期期中数学试卷和答案

2016-2017年山东省聊城市冠县八年级上学期期中数学试卷和答案

2016-2017学年山东省聊城市冠县八年级(上)期中数学试卷一、选择题(本题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形2.(3分)下列各组数中,互为相反数的是()A.﹣2与B.|﹣|与C.与D.与3.(3分)不等式组的解集在数轴上表示为()A.B.C.D.4.(3分)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为()A.14 B.15 C.16 D.175.(3分)若,则(a+2)2的平方根是()A.16 B.±16 C.2 D.±26.(3分)如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤87.(3分)已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.8 B.6 C.4 D.38.(3分)在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.1+B.2+C.2﹣1 D.2+19.(3分)若关于x的不等式的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤710.(3分)已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里11.(3分)如图,平行四边形ABCD中,对角线AC、BD相交于点O,E、F是AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.∠ADE=∠CBF B.∠ABE=∠CDF C.DE=BF D.OE=OF12.(3分)水果店进了某种水果1吨,进价7元/千克,出售价为11元/千克,销去一半后为尽快销完,准备打折出售,如果要使总利润不低于3450元,那么余下水果可按原定价打()折出售.A.7折 B.8折 C.8.5折D.9折二、填空题(本题共6个小题,每小题4分,共24分,只要求写出最后结果)13.(4分)一个正数x的平方根为2a﹣3和5﹣a,则x=.14.(4分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)15.(4分)已知|x﹣3|+=0,以x,y为两边长的等腰三角形的周长是.16.(4分)在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=.17.(4分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.18.(4分)对于整数a,b,c,d,定义=ac﹣bd,已知1<<3,则b+d 的值为.三、解答题(本题共六个小题,共60分,解答题应写出文字说明、计算过程或推演步骤)19.(12分)(1)解不等式﹣<1(2)解不等式组,并把解集在数轴上表示出来.20.(8分)已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b 的立方根.21.(10分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.22.(10分)如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B 两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.23.(10分)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.24.(10分)如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.(1)求EF的长;(2)求梯形ABCE的面积.2016-2017学年山东省聊城市冠县八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形【解答】解:A、对角线互相平分的四边形是平行四边形,故A选项正确;B、对角线相等的平行四边形才是矩形,故B选项错误;C、对角线互相垂直的矩形是正方形,故C选项正确;D、两条对角线相等的菱形是正方形,故D选项正确;综上所述,B符合题意,故选:B.2.(3分)下列各组数中,互为相反数的是()A.﹣2与B.|﹣|与C.与D.与【解答】解:A、﹣2﹣=﹣,故选项错误;B、|﹣|=,,故选项错误;C、=2,=﹣2.﹣2+2=0,故选项正确;D、=﹣2,=﹣2,﹣2﹣2=﹣4,故选项错误.故选:C.3.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【解答】解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为:1<x≤2,在数轴上表示不等式组的解集为:,故选:A.4.(3分)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为()A.14 B.15 C.16 D.17【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选:C.5.(3分)若,则(a+2)2的平方根是()A.16 B.±16 C.2 D.±2【解答】解:∵,∴a+2=42=16,∴(a+2)2=162,∴(a+2)2的平方根±16.故选:B.6.(3分)如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤8【解答】解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选:B.7.(3分)已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.8 B.6 C.4 D.3【解答】解:连接AC,BD,FH,EG,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴AH=AD,BF=BC,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴AH=BF,AH∥BF,∴四边形AHFB是平行四边形,∴FH=AB=2,同理EG=AD=4,∵四边形ABCD是矩形,∴AC=BD,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴HG∥AC,HG=AC,EF∥AC,EF=AC,EH=BD,∴EH=HG,GH=EF,GH∥EF,∴四边形EFGH是平行四边形,∴平行四边形EFGH是菱形,∴FH⊥EG,∴阴影部分EFGH的面积是×HF×EG=×2×4=4,故选:C.8.(3分)在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.1+B.2+C.2﹣1 D.2+1【解答】解:设点C所对应的实数是x.则有x﹣=﹣(﹣1),解得x=2+1.故选:D.9.(3分)若关于x的不等式的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7【解答】解:由(1)得,x<m,由(2)得,x≥3,故原不等式组的解集为:3≤x<m,∵不等式的正整数解有4个,∴其整数解应为:3、4、5、6,∴m的取值范围是6<m≤7.故选:D.10.(3分)已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里【解答】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32海里,12×2=24海里,根据勾股定理得:=40(海里).故选:D.11.(3分)如图,平行四边形ABCD中,对角线AC、BD相交于点O,E、F是AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.∠ADE=∠CBF B.∠ABE=∠CDF C.DE=BF D.OE=OF【解答】解:A、在平行四边形ABCD中,∵AO=CO,DO=BO,AD∥BC,AD=BC,∴∠DAE=∠BCF,若∠ADE=∠CBF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴AE=CF,∴OE=OF,∴四边形DEBF是平行四边形;B、若∠ABE=∠CDF,在△ABE与△CDF中,,∴△ABE≌△CDF,∴AE=CF,∵AO=CO,∴OE=OF,∵OD=OB,∴四边形DEBF是平行四边形;C、若DE与AC不垂直,则满足AC上一定有一点DM=DE,同理有一点N使BF=BN,则四边形DEBF不一定是平行四边形,则选项错误;D、若OE=OF,∵OD=OB,∴四边形DEBF是平行四边形;故选:C.12.(3分)水果店进了某种水果1吨,进价7元/千克,出售价为11元/千克,销去一半后为尽快销完,准备打折出售,如果要使总利润不低于3450元,那么余下水果可按原定价打()折出售.A.7折 B.8折 C.8.5折D.9折【解答】解:设余下水果可按原定价打x折出售,根据题意可得:500×4+500×(×11﹣7)≥3450,解得:x≥9.故选:D.二、填空题(本题共6个小题,每小题4分,共24分,只要求写出最后结果)13.(4分)一个正数x的平方根为2a﹣3和5﹣a,则x=49.【解答】解:∵一个正数x的平方根为2a﹣3和5﹣a,∴(2a﹣3)+(5﹣a)=0,解得:a=﹣2.∴2a﹣3=﹣7,5﹣a=7,∴x=(±7)2=49.故答案为:49.14.(4分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC,使ABCD成为菱形(只需添加一个即可)【解答】解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.15.(4分)已知|x﹣3|+=0,以x,y为两边长的等腰三角形的周长是15.【解答】解:∵|x﹣3|+=0,而|x﹣3|≥0,≥0,∴x﹣3=0,y﹣6=0∴x=3,y=6当腰是3,底边是6时,不满足三角形的三边关系,两边之和>第三边,因而应该舍去.当底边是3,腰长是6时,能构成三角形,则周长是3+6+6=15.∴等腰三角形的周长是15.16.(4分)在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4= 4.【解答】解:如图,∵图中的四边形为正方形,∴∠ABD=90°,AB=DB,∴∠ABC+∠DBE=90°,∵∠ABC+∠CAB=90°,∴∠CAB=∠DBE,在△ABC和△BDE中,,∴△ABC≌△BDE(AAS),∴AC=BE,∵DE2+BE2=BD2,∴ED2+AC2=BD2,∵S1=AC2,S2=DE2,BD2=1,∴S1+S2=1,同理可得S3+S4=3,∴S 1+S2+S3+S4=1+3=4.故答案为4.17.(4分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.18.(4分)对于整数a,b,c,d,定义=ac﹣bd,已知1<<3,则b+d 的值为3或﹣3.【解答】解:由题意1<4﹣bd<3,∴1<bd<3,∵b、d都是整数,∴或或或,∴b+d=3或﹣3.故答案为3或﹣3.三、解答题(本题共六个小题,共60分,解答题应写出文字说明、计算过程或推演步骤)19.(12分)(1)解不等式﹣<1(2)解不等式组,并把解集在数轴上表示出来.【解答】解:(1)去分母得,2(y+1)﹣3(2y﹣5)<12,去括号得,2y+2﹣6y+15<12,移项得,2y﹣6y<12﹣15﹣2,合并同类项得,﹣4y<﹣5,x的系数化为1得,y>;(2),由①得,x≥1,由②得,x<4,故不等式组的解集为:1≤x<4.在数轴上表示为:.20.(8分)已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b 的立方根.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=(±3)2,解得a=5;∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,把a=5代入得,3×5+b﹣1=16,解得b=2,∴12a+2b=12×5+4=64,∴=4,即12a+2b的立方根是4.21.(10分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.22.(10分)如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B 两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.【解答】解:延长AC到点M,使CM=AC;连接BM交CD于点P,点P就是所选择的位置;在Rt△BMN中,BN=3+1=4,MN=3∴MB==5(千米),∴最短路线AP+BP=MB=5千米,最省的铺设管道的费用为W=5×20000=100000(元),当水厂在C点时,水管长度=AC+AB=1+=1+,∴最省的铺设管道的费用为W=(1+)×20000≈92200(元),∵92200<100000,答:最省的铺设管道的费用是92200元.23.(10分)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.【解答】解:(1)由租用甲种汽车x辆,则租用乙种汽车(8﹣x)辆,由题意得:,解得:5≤x≤6.即共有2种租车方案:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆.(2)解法一:第一种租车方案的费用为5×2000+3×1800=15400(元);第二种租车方案的费用为6×2000+2×1800=15600(元).∴租用甲种汽车5辆,乙种汽车3辆的方案更省费用.解法二:设总的租车费用为y元,y=2000x+1800(8﹣x)=14400+200x,5≤x≤6.∵200>0,∴y随x增大而增大,∴当x=5时,取得最小值,y=5×2000+3×1800=15400(元);∴租用甲种汽车5辆,乙种汽车3辆的方案更省费用.24.(10分)如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.(1)求EF的长;(2)求梯形ABCE的面积.【解答】解:(1)设EF=x依题意知:△CDE≌△CFE,∴DE=EF=x,CF=CD=6.∵在Rt△ACD中,AC==10,∴AF=AC﹣CF=4,AE=AD﹣DE=8﹣x.在Rt△AEF中,有AE2=AF2+EF2即(8﹣x)2=42+x2解得x=3,即:EF=3.(2)由(1)知:AE=8﹣3=5,∴S==(5+8)×6÷2=39.梯形ABCE赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;xyBCAO2.如图,在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则14S S+=.ls4s3s2s13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.B4.如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。

山东省日照地区2024-2025学年八年级上学期期中考试数学试题

山东省日照地区2024-2025学年八年级上学期期中考试数学试题

山东省日照地区2024-2025学年八年级上学期期中考试数学试题一、单选题1.下列交通标志中是轴对称图形的是( )A .B .C .D .2.下列计算正确的是( )A .3412a b a ⋅=B .()325a a =C .()222ab a b =D .()222a b a b +=+3.已知29x kx ++是完全平方式,则k 的值为( )A .3B .3±C .6D .6±4.如图,已知AB AD =,那么添加下列一个条件后,仍然不能判定ABC ADC △≌△的是( )A .CB CD=B .90B D ∠=∠=︒C .BAC DAC ∠=∠D .BCA DCA∠=∠5.在平面直角坐标系中,已知点()2A m ,和点()3B n -,关于x 轴对称,则m n +的值是( )A .1-B .1C .5-D .56.已知93,274m n ==,则233m n +=( )A .1B .6C .7D .127.如图,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .48.如图,△ABC 的面积为10cm 2,AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .3cm 2B .5cm 2C .6cm 2D .8cm 29.如图,在ABC V 中,90BAC ∠=︒,2AB AC =,点D 是线段AB 的中点,将一块锐角为45︒的直角三角板按如图()ADE 放置,使直角三角板斜边的两个端点分别与A 、D 重合,连接BE 、CE ,CE 与AB 交于点.F 下列判断正确的有( )①ACE △≌DBE ;②BE CE ⊥;③DE DF =;④DEF ACFS S =A .①②B .①②③C .①②④D .①②③④10.发现:144=,2416=,3464=,44256=,541024=,644096=,7416384=,8465536=,依据上述规律,通过计算判断()()()()24323414141411⨯+++⋯++的结果的个位数字是( )A .4B .5C .6D .7二、填空题11.若()()24x a x -+的结果中不含x 的一次项,则a 的值为 .12.已知等腰三角形的两条边长分别是2和4,则它的周长是 .13.如图,在Rt ABC △中,90B Ð=°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知5BAC BAE ∠=∠,则C ∠的度数为 .14.已知实数a ,b 满足2223a b +=,4ab =,则44a b +的值为 .15.在ABC V 中,90,30,8ACB ABC BC ∠︒︒=∠==,D 是边BC 上一点,3BD CD =,E ,F 分别是边,AC AB 上的动点,则DE EF +的最小值为 .16.如图所示框架PABQ ,其中21cm AB =,AP ,BQ 足够长,PA AB ⊥于点B ,点M 从B 出发向A 运动,同时点N 从B 出发向Q 运动,点M ,N 运动的速度之比为3:4,当两点运动到某一瞬间同时停止,此时在射线AP 上取点C ,使ACM △与BMN 全等,则线段AC 的长为 .三、解答题17.(1)计算:()232432110.250.526a b a b a b a b ⎛⎫--÷- ⎪⎝⎭.(2)计算:()()2323x y x y -++-.18.先化简,再求值:()()()24442x y x y x y x ⎡⎤+-+-÷⎣⎦,其中=1x -,12y =.19.如图,在平面直角坐标系中,()3,2A -,()4,3B --,()1,1C --.(1)在图中作出ABC V 关于y 轴对称的111A B C △,并直接写出点1B 的坐标_____;(2)在y 轴上画出点P ,使PA PC +的值最小;(3)求111A B C △的面积.20.如图,在ABC V 中,边AB 的垂直平分线分别交AB ,BC 于点M ,D ,边AC 的垂直平分线分别交AC ,BC 于点N ,E ,MD ,NE 的延长线交于点O .(1)若12BC =,求ADE V 的周长;(2)试判断点O 是否在BC 的垂直平分线上,并说明理由;21.如图所示,ABC V 和DBE 中,BA BC =,BD BE =,并且ABC DBE ∠=∠,连接AD ,BE ,相交于点F .求证:(1)=AD CE ;(2)CB 平分ACE ∠;22.先仔细阅读材料,再尝试解决问题:完全平方公式()2222±+=±x xy y x y 及()2±x y 的值恒为非负数的特点在数学学习中有着广泛的应用,求代数式245x x ++的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:()2224544121x x x x x ++=+++=++.()220x +≥ ,∴当2x =-时,()22x +的值最小,最小值是0,()2211x ∴++≥ ∴当()220x +=时,()221x ++的值最小,最小值是1,245x x ∴++的最小值是1.请你根据上述方法,解答下列各题:(1)当x =_____时,代数式2610x x -+有最小值;最小值是________________;又如探求多项式22124+-x x 的最大(小)值时,我们可以这样处理:解:原式()()()()2222262269922311232x x x x x x ⎡⎤=+-=++--=+-=+-⎣⎦,因为无论x 取什么数,都有()23x +的值为非负数,所以()23x +的最小值为0,此时3x =-,进而()23222x +-的最小值是202222⨯-=-,所以当3x =-时,原多项式的最小值是-22.解决问题:请根据上面的解题思路,探求:(2)多项式23618x x -+的最小值是多少,并写出对应的x 的取值.(3)多项式223x x --+的最大值是多少,并写出对应的x 的取值.23.探究题:(1)问题发现:如图1,ACB △和DCE △均为等边三角形,点A 、D 、E 在同一直线上,连接BE .填空:①AEB ∠的度数为 (直接写出结论,不用证明).②线段AD BE 、之间的数量关系是 (直接写出结论,不用证明).(2)拓展探究:如图2,ACB △和DCE △均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE △中DE 边上的高,连接BE .请判断AEB ∠的度数及线段CM AE BE 、、之间的数量关系,并说明理由.(3)解决问题:在(2)问的条件下,若AD x y CM x y =+=-,,试求ABE 的面积(用x ,y 表示).。

山东省日照市2017年中考数学试题(word版,含解析)

2017年山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×1084.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°6.式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>27.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等8.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B. C.5 D.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.13912.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m=.14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.18.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0的最大值和最小值.上的两点,且AB=2,请求出S△ABP22.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S (3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明△QAB理由.2017年山东省日照市中考数学试卷参考答案与试题解析一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【考点】15:绝对值.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:﹣3的绝对值是3.故选:B.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项错误;D、既是中心对称图形,也是轴对称图形,故本选项错误.故选A.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.【解答】解:4640万=4.64×107.故选:C.4.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】根据勾股定理求出BC,根据正弦的概念计算即可.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sinA==,故选:B.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°【考点】JA:平行线的性质.【分析】根据对顶角的性质和平行线的性质即可得到结论.【解答】解:∵∠AEF=∠1=60°,∵AB∥CD,∴∠2=∠AEF=60°,故选D.6.式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2【考点】72:二次根式有意义的条件.【分析】直接利用二次根式的定义结合分式有意义的条件分析得出答案.【解答】解:式子有意义,则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.7.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【考点】MM:正多边形和圆;AA:根的判别式;D1:点的坐标;R2:旋转的性质.【分析】根据正多边形和圆的关系、一元二次方程根的判别式、点的坐标以及旋转变换的性质进行判断即可.【解答】解:如图∠AOB==60°,OA=OB,∴△AOB是等边三角形,∴AB=OA,∴圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选:A.8.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据反比例函数图象可以确定kb的符号,易得k、b的符号,根据图象与系数的关系作出正确选择.【解答】解:∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,A、图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选:D.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B. C.5 D.【考点】MC:切线的性质.【分析】过点D作OD⊥AC于点D,由已知条件和圆的性质易求OD的长,再根据勾股定理即可求出AD的长,进而可求出AC的长.【解答】解:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD=AO=2.5,∴AD==,∴AC=2AD=5,故选A.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据角平分线的性质得到∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,根据直角三角形的性质得到r=t,根据圆的面积公式即可得到结论.【解答】解:∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上,故选D.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【考点】37:规律型:数字的变化类.【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【解答】解:∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75,故选B.12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】①由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b=﹣4a、c=0,即4a+b+c=0,结论②正确;③根据抛物线的对称性结合当x=5时y >0,即可得出a﹣b+c>0,结论③错误;④将x=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当x<2时,yy随x增大而减小,结论⑤错误.综上即可得出结论.【解答】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,结论②正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x<2时,yy随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选C.二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m=2m(m+2)(m﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是182.【考点】W1:算术平均数.【分析】根据平均数的计算公式用所有数据的和除以数据的个数即可计算出这组数据的平均数,从而得出答案.【解答】解:根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是÷5=182.故答案为182.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是6π.【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】证明△ABE是等边三角形,∠B=60°,根据扇形的面积公式计算即可.【解答】解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=6,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,==6π,∴S扇形BAE故答案为:6π.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为1+.【考点】G6:反比例函数图象上点的坐标特征.【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=,OM=AN=,求出B(+,﹣),得出方程(+)•(﹣)=k,解方程即可.【解答】解:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM 交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,,∴△AOM≌△BAN(AAS),∴AM=BN=,OM=AN=,∴OD=+,OD=BD=﹣,∴B(+,﹣),∴双曲线y=(x>0)同时经过点A和B,∴(+)•(﹣)=k,整理得:k2﹣2k﹣4=0,解得:k=1±(负值舍去),∴k=1+;故答案为:1+.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:(1)﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2=﹣2﹣1+(1﹣)×4==;(2)﹣÷====,当a=时,原式=.18.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD为矩形.请加以证明.【考点】LC:矩形的判定;KD:全等三角形的判定与性质.【分析】(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.【解答】(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【考点】X6:列表法与树状图法.【分析】(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.【解答】解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率==.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x 万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【解答】解:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得﹣=4解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥72.答:则至少每年平均增加72万平方米.21.阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为4;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b 相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S △ABP 的最大值和最小值.【考点】FI :一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C 到直线3x +4y +5=0的距离,求出⊙C 上点P 到直线3x +4y +5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P 1(3,4)到直线3x +4y ﹣5=0的距离d==4,故答案为4.(2)∵⊙C 与直线y=﹣x +b 相切,⊙C 的半径为1,∴C (2,1)到直线3x +4y ﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C (2,1)到直线3x +4y +5=0的距离d==3,∴⊙C 上点P 到直线3x +4y +5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.22.如图所示,在平面直角坐标系中,⊙C 经过坐标原点O ,且与x 轴,y 轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S (3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明△QAB理由.【考点】HF:二次函数综合题.【分析】(1)连接OC,由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD的长,在Rt△OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2)可设抛物线的解析式为顶点式,再把N点坐标代入可求得抛物线解析式;=8S△QAB可求得点Q到x (3)由抛物线解析式可求得A、B的坐标,由S四边形OPMN轴的距离,且点Q只能在x轴的下方,则可求得Q点的坐标,再证明△QAB∽△OBN即可.【解答】解:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得CD===,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,=S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,∴S四边形OPMN=1,∴S△QAB设Q点纵坐标为y,则×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).2017年7月2日。

2017-2018学年山东省日照市五莲县八年级(上)期末数学试卷(解析版)


2. (3 分) 下面四个图形分别是节能、 节水、 低碳和绿色食品标志, 是轴对称图形的是 (
A. 3. (3 分)若分式 A.0
B.
C. )
Байду номын сангаас
D.
的值为 0,则 x 的值等于( B.3 ) C.﹣3
D.±3
4. (3 分)下列运算中,正确的是( A.a•a =a
2 3 2 2 6
B. (a ) =a

A. (a﹣b) =a ﹣2ab+b C. (a﹣b) =a ﹣b
2 2 2
2
2
2
B.a(a﹣b)=a ﹣ab D.a ﹣b =(a+b) (a﹣b)
2 2
2
9. (4 分)如图,在△ABC 中,AD 是角平分线,DE⊥AB 于点 E,△ABC 的面积为 28,AB =8,DE=4,则 AC 的长是( )
第 3 页(共 13 页)
(3)求△A1B1C1 的面积.
20. (10 分)老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平 之秋便是天堂. ” (摘自《住的梦》 )金黄色的银杏叶为北京的秋增色不少. 家住北京的小明他家附近新修了一段公路,他想给市政府写信,建议在路的两边种上银 杏树.他先让爸爸开车驶过这段公路,发现速度为 60 千米/小时,走了约 4 分钟,由此 估算这段路长约 千米.
然后小明查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达 8 米.小明计划 从路的起点开始,每 a 米种一棵树,绘制示意图如下:
考虑到投入资金的限制,他设计了另一种方案,将原计划的 a 扩大一倍,则路的每一侧 都减少 200 棵树,请你求出 a 的值. 21. (12 分)探究与发现: 探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形 的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?

2017-2018年山东省日照市莒县八年级上学期数学期中试卷与答案

赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

DBC2017-2018学年山东省日照市莒县八年级(上)期中数学试卷一、选择题(共12题,其中1-8题每题3分,9-12题每题4分)1.(3分)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.2.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点A,点C分别在直线a,b上,且a∥b.若∠1=60°,则∠2的度数为()A.75°B.105°C.135° D.155°3.(3分)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a5D.a5÷a2=a34.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD5.(3分)如果x2+()x+25是完全平方式,横线处填()A.5 B.10 C.±5 D.±106.(3分)长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+27.(3分)下列因式分解不正确的是()A.x2﹣6x+9=(x﹣3)2B.x2﹣y2=(x﹣y)2C.x2﹣5x+6=(x﹣2)(x﹣3)D.6x2+2x=2x(3x+1)8.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a﹣b)29.(4分)已知10m=2,10n=3,则103m+2n=()A.17 B.72 C.12 D.3610.(4分)如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下三个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°.其中结论正确的个数是()A.1 B.2 C.3 D.011.(4分)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A.①②③B.①③C.②③D.①②12.(4分)在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有()个.A.5 B.4 C.3 D.2二、填空题(每小题4分,共16分)13.(4分)因式分解:2a2﹣8=.14.(4分)等腰三角形的周长是25cm,一腰上的中线将周长分为1:2两部分,则此三角形的底边长为.15.(4分)已知a2﹣a﹣1=0,则a2﹣a+2017=.16.(4分)如图,已知∠MON=30°,点A1、A2、A3,…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A2016B2016A2017的边长为.三、解答题(本大题共6小题,满分64分)17.(8分)(1)(﹣2a2)3+2a2•a4;(2)(x+y)2﹣(x+y)(x﹣y)18.(10分)(1)已知x+y=15,x2+y2=113,求x2﹣3xy+y2的值;(2)先化简,再求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),x=﹣.19.(10分)在平面直角坐标系中,A(1,2)、B(3,1)、C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各项点坐标A2,B2,C2;(3)求△ABC的面积.20.(12分)如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D;CE平分∠ACB,交AB于点E,交BD于点F.(1)求证:△BEF是等腰三角形;(2)求证:BD=(BC+BF).21.(10分)下面是某同学对多项式(x2﹣4x﹣3)(x2﹣4x+1)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y﹣3)(y+1)+4(第一步)=y2﹣2y+1 (第二步)=(y﹣1)2(第三步)=(x2﹣4x﹣1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A.提取公因式法B.平方差公式法C.完全平方公式法(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.22.(14分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD 绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.2017-2018学年山东省日照市莒县八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12题,其中1-8题每题3分,9-12题每题4分)1.(3分)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.【解答】解:A、B、D都不是轴对称图形,C关于直线对称.故选:C.2.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点A,点C分别在直线a,b上,且a∥b.若∠1=60°,则∠2的度数为()A.75°B.105°C.135° D.155°【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∴∠3=180°﹣60°﹣45°=75°,∵a∥b,∴∠2=180°﹣∠3=105°,故选:B.3.(3分)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a5D.a5÷a2=a3【解答】解:A、不是同类项不能合并,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.4.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.5.(3分)如果x2+()x+25是完全平方式,横线处填()A.5 B.10 C.±5 D.±10【解答】解:∵x2+()x+25是完全平方式,∴括号里应填±10,故选:D.6.(3分)长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选:D.7.(3分)下列因式分解不正确的是()A.x2﹣6x+9=(x﹣3)2B.x2﹣y2=(x﹣y)2C.x2﹣5x+6=(x﹣2)(x﹣3)D.6x2+2x=2x(3x+1)【解答】解:A、x2﹣6x+9=(x﹣3)2,故本选项不符合题意;B、x2﹣2xy+y2=(x﹣y)2,故本选项符合题意,C、x2﹣5x+6=(x﹣2)(x﹣3),故本选项不符合题意;D、6x2+2x=2x(3x+1),故本选项不符合题意;故选:B.8.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a﹣b)2【解答】解:由题可得:a2﹣b2=(a+b)(a﹣b).故选:A.9.(4分)已知10m=2,10n=3,则103m+2n=()A.17 B.72 C.12 D.36【解答】解:由题意可知:103m+2n=103m×102n=(10m)3×(10n)2=23×32=8×9=72故选:B.10.(4分)如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下三个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°.其中结论正确的个数是()A.1 B.2 C.3 D.0【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;综上所述,正确的结论有3个.故选:C.11.(4分)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A.①②③B.①③C.②③D.①②【解答】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a﹣b)2=(b﹣a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称式,ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab 相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,所以①②是③不是故选:D.12.(4分)在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有()个.A.5 B.4 C.3 D.2【解答】解:分情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.故选:B.二、填空题(每小题4分,共16分)13.(4分)因式分解:2a2﹣8=2(a+2)(a﹣2).【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).14.(4分)等腰三角形的周长是25cm,一腰上的中线将周长分为1:2两部分,则此三角形的底边长为cm.【解答】解:∵等腰三角形的周长是25cm,一腰上的中线将周长分为1:2两部分,∴两部分分别为:cm和cm,∴可知分为两种情况①AB+AD=cm,∴AB=,∴BC=;不能组成三角形;②AB+AD=cm,∴AB=cm.∴BC=cm,故这个三角形的底边长为cm.故答案为:cm.15.(4分)已知a2﹣a﹣1=0,则a2﹣a+2017=2018.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,则原式=1+2017=2018,故答案为:201816.(4分)如图,已知∠MON=30°,点A1、A2、A3,…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A2016B2016A2017的边长为22015.【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2,而∠O=30°,∴∠OB1A1=∠B1A1A2﹣∠O=60°﹣30°=30°,∴A1B1=OA1=1,∴OA2=OA1+A1A2=1+1=2,同理可得A2B2=OA2=2,A3B3=OA3=2+2=22,A4B4=OA4=2(2+2)=23,…∴△A2016B2016A2017的边长=22015.故答案为22015.三、解答题(本大题共6小题,满分64分)17.(8分)(1)(﹣2a2)3+2a2•a4;(2)(x+y)2﹣(x+y)(x﹣y)【解答】解:(1)(﹣2a2)3+2a2•a4=(﹣2)3(a2)3+2a6=﹣8a6+2a6=﹣6 a6;(2)(x+y)2﹣(x+y)(x﹣y)=x2+2xy+y2﹣(x2﹣y2)=x2+2xy+y2﹣x2+y2=2xy+2y2.18.(10分)(1)已知x+y=15,x2+y2=113,求x2﹣3xy+y2的值;(2)先化简,再求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),x=﹣.【解答】解:(1)∵x+y=15,两边平方得x2+2xy+y2=225,由于x2+y2=113,∴2xy=112,所以xy=56.∴x2﹣3xy+y2=(x2+y2)﹣3xy=113﹣3×56=﹣55.(2)原式=4x2﹣4x+1﹣(9x2﹣1)+5x2﹣5x=4x2﹣4x+1﹣9x2+1+5x2﹣5x=﹣9x+2;当x=﹣时,原式=1+2=3.19.(10分)在平面直角坐标系中,A(1,2)、B(3,1)、C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各项点坐标A2(1,﹣2),B2(3,﹣1),C2(﹣2,1);(3)求△ABC的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)A2(1,﹣2),B2(3,﹣1),C2(﹣2,1);故答案为:(1,﹣2),(3,﹣1),(﹣2,1);(3)△ABC的面积为:3×5﹣×3×3﹣×1×2﹣×2×5=.20.(12分)如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D;CE平分∠ACB,交AB于点E,交BD于点F.(1)求证:△BEF是等腰三角形;(2)求证:BD=(BC+BF).【解答】证明:(1)在△ABC中,AB=BC,BD⊥AC于点D,∴∠ABD=∠CBD,AD=CD,∵∠ABC=90°,∴∠ACB=45°,∵CE平分∠ACB,∴∠ECB=∠ACE=22.5°,∴∠BEF=∠CFD=∠BFE=67.5°,∴BE=BF,∴△BEF是等腰三角形;(2)如图,延长AB至M,使得BM=AB,连接CM,∵D是AC的中点,∴BD∥MC,BD=MC,∴∠BFE=∠MCE,由(1)得,∠BEF=∠BFE,BE=BF,∴∠BFE=∠MCE,∴ME=MC,∴BD=MC=ME=(MB+BE)=(BC+BF).21.(10分)下面是某同学对多项式(x2﹣4x﹣3)(x2﹣4x+1)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y﹣3)(y+1)+4(第一步)=y2﹣2y+1 (第二步)=(y﹣1)2(第三步)=(x2﹣4x﹣1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的C.A.提取公因式法B.平方差公式法C.完全平方公式法(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.【解答】解:(1)该同学第二步到第三步运用了因式分解的完全平方公式法,故选:C.(2)设x2+2x=y,原式=y2+2y+1,=(y+1)2,则(x2+2x)(x2+2x+2)+1=(x2+2x+1)2=[(x+1)2]2=(x+1)4.22.(14分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD 绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.。

山东省八年级上学期数学期中考试试卷

山东省八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·恩施) 下列图标是轴对称图形的是()A .B .C .D .2. (2分)下列命题中是假命题的是()A . △ABC中,若∠B=∠C-∠A,则△ABC是直角三角形B . △ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C . △ABC中,若∠A∶∠B∶∠C=3∶4∶5,则△ABC是直角三角形D . △ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形3. (2分) (2016八上·东城期末) 如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F,连接OC,OB,则图中全等的三角形有()A . 1对B . 2对C . 3对D . 4对4. (2分) (2019八上·绍兴月考) 如图(见下页),已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A . ∠A=∠DB . ∠ACB=∠DBCC . AC=DBD . AB=DC5. (2分) (2020八上·温岭期中) 如图,AD是的角平分线,于点E,于点F,连接EF交AD于点G,则下列结论:① ;② ;③ ;④AB:AC=BD:CD.正确的有()个A . 1B . 2C . 3D . 46. (2分)(2021·青山模拟) 如图,是半⊙ 的直径,点是弧的中点,D为弧BC的中点,连接,于点 .则()A . 3B .C .D .7. (2分) (2020八下·相城期中) 如图,矩形OABC的顶点A、C分别在x轴、y轴上,顶点B在第一象限,AB=1.将线段OA绕点O按逆时针方向旋转600得到线段OP,连接AP,反比例函数y= 过P、B两点,则k的值为()A .B .C .D .8. (2分)(2019·江苏模拟) 已知Rt△ACB中,点D为斜边AB的中点,连接CD,将△DCB沿直线DC翻折,使点B落在点E的位置,连接DE、CE、AE,DE交AC于点F,若BC=6,AC=8,则AE的值为()A .B .C .D .9. (2分) (2020八下·和平月考) 如图,等边三角形一边上的高为与之间的距离为的延长线交直线于点,则的长为()A .B .C .D .10. (2分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的任意一点,过点P作平行于y轴的直线PM,交线段BC于M,当△PCM是以PM为腰的等腰三角形时,点P的坐标是()A . (2,-3)或( +1,-2)B . (2,-3)或(,-1-2 )C . (2,-3)或(,1-2 )D . (2,-3)或(3- ,2-4 )二、填空题 (共7题;共17分)11. (1分) (2018九上·深圳开学考) 如图,一个正方形摆放在桌面上,则正方形的边长为.12. (10分)(2019·盘锦) 如图,四边形ABCD是菱形,∠BAD=120°,点E在射线AC上(不包括点A和点C),过点E的直线GH交直线AD于点G,交直线BC于点H,且GH∥DC,点F在BC的延长线上,CF=AG,连接ED,EF,DF.(1)如图1,当点E在线段AC上时,①判断△AEG的形状,并说明理由.②求证:△DEF是等边三角形.(2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.13. (2分) (2021七下·仙居期末) 如图,三角形ABC中,AC⊥BC ,则边AC与边AB的大小关系是,依据是.14. (1分) (2020八上·武进月考) 如图,若B、D、F在AN上,C、E在AM上,且AB=BC=CD=ED=EF,∠A=20°,则∠FEB=15. (1分)(2018·通辽) 如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于 AC 的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD 的面积为.16. (1分) (2019八上·通州期末) 已知△ABC中,∠B=∠C=30°,AP⊥BC,垂足为P,AQ⊥AB交BC边于点Q.若△ABC的面积为4x2+y2 ,△APQ的面积为 xy,则的值为.17. (1分) (2019九上·长春期中) 如图,在△ABC中,∠C=90°,AC=4,BC=2,则△ABC的内切圆的半径是(分母不含根号).三、解答题 (共8题;共71分)18. (5分)(2017·隆回模拟) 已知:如图,已知:D是△ABC的边AB上一点,CN∥AB,DN交AC于M,MA=MC,求证:CD=AN.19. (5分) (2018八上·东台期中) 如图,△ABC是等边三角形,AD为中线,AD=AE,E在AC上,求∠EDC 的度数.20. (10分) (2016八上·桑植期中) 如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.21. (10分) (2020八上·江阴月考)(1)尺规作图:已知∠AOB和C、D两点,请在图中用尺规作图找出一点E,使得点E到OA、OB的距离相等,而且E点到C、D的距离也相等.(不写作法,保留作图痕迹)(2)如图,在长度为1个单位长度的小正方形组成的正方形网格中, ABC的三个顶点A、B、C都在格点上.①在图中画出与 ABC关于直线l成轴对称的 AB1C1;②在直线l上找出一点P,使得PB+PC的长最短.(保留画图痕迹并标上字母P)22. (10分)将面积为4的正方形ABCD与面积为8的正方形AEFG按图①的位置放置,AD、AE在同一条直线上,AB、AG在同一条直线上.(1)试判断DG、BE的数量和位置关系,并说明理由;(2)如图2,将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,求此时BE的长.23. (10分)(2020·长沙模拟) 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F .(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.24. (6分) (2019八下·北京期中) 刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,,,;图②中,,,.图③是刘卫同学所做的一个实验:他将的直角边与的斜边重合在一起,并将沿方向移动.在移动过程中,、两点始终在边上(移动开始时点与点重合).(1)在沿方向移动的过程中,刘卫同学发现:、两点间的距离逐渐.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当移动至什么位置,即的长为多少时,、的连线与平行?问题②:当移动至什么位置,即的长为多少时,以线段、、的长度为三边长的三角形是直角三角形?问题③:在的移动过程中,是否存在某个位置,使得 ?如果存在,求出的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.25. (15分)(2017·大冶模拟) 如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ 的大小,并说明理由.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共7题;共17分)答案:11-1、考点:解析:答案:12-1、答案:12-2、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题 (共8题;共71分)答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共24页) 赠送初中数学几何模型 【模型三】 双垂型:图形特征:

60° 运用举例: 1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC.

(1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长; (2) 当∠APB=90°时,若AB=45,四边形APBC的面积是36,求△ACB的周长.

P

CBA

2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD. 第2页(共24页)

(1)若∠B=90°,AB=6,BC=23,求∠A的值; (2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.

EDABC

3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°, (1)若AB=3,BC+CD=5,求四边形ABCD的面积 (2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

D

BA

C

2016-2017学年山东省日照市五莲县八年级(上)期中数学试卷 第3页(共24页)

一、选择题(本大题共12小题,1-6小题每小题3分,9-12小题每小题3分,共40分,将正确答案填在答题纸的表格内) 1.(3分)下列手机屏幕解锁图案中不是轴对称图形的是( )

A. B. C. D. 2.(3分)以下列各组线段为边,能组成三角形的是( ) A.2cm,3cm,5cm B.3cm,3cm,6cm C.5cm,8cm,2cm D.4cm,5cm,6cm 3.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )

A.SSS B.SAS C.AAS D.ASA 4.(3分)三角形中,到三边距离相等的点是( ) A.三条高线的交点 B.三条中线的交点 C.三条角平分线的交点 D.三边垂直平分线的交点 5.(3分)如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=( )

A.40° B.50° C.45° D.60° 6.(3分)如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=( ) 第4页(共24页)

A.30° B.35° C.40° D.50° 7.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为( ) A.30° B.30°或150° C.60°或150° D.60°或120° 8.(3分)下列图形中有稳定性的是( ) A.正方形 B.长方形 C.直角三角形 D.平行四边形 9.(4分)如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,那么点D到AB的距离是( )

A. B. C. D.2 10.(4分)如图,△EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于( )

A.90° B.75° C.70° D.60° 11.(4分)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为( )

A.7.5 B.8 C.15 D.无法确定 12.(4分)如图,在五边形ABCDE中,∠A+∠D+∠E=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P等于( ) 第5页(共24页)

A.90°+α B. C. D.360°﹣α 二、填空题:本大题共4小题,每小题4分,共16分 13.(4分)如图,线段AB与线段CD关于直线L对称,点P是直线L上一动点,测得:点D与点A之间的距离为8cm,点B与点D之间的距离为5cm,那么PA+PB的最小值是 .

14.(4分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是 .

15.(4分)如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠CFE为 度.

16.(4分)如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为 cm. 第6页(共24页)

三、解答题(本大题共7小题,共64分) 17.(6分)某地区要在区域S内 (即∠COD内部) 建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)

18.(6分)已知点A(2a﹣b,5+a),B(2b﹣1,﹣a+b). (1)若点A、B关于x轴对称,求a、b的值; (2)若A、B关于y轴对称,求(4a+b)2016的值. 19.(8分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F. 求证:AF平分∠BAC.

20.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E. 第7页(共24页)

(1)求证:△ACD≌△AED; (2)若∠B=30°,CD=1,求BD的长.

21.(10分)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F. (1)求证:OE是CD的垂直平分线. (2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.

22.(10分)如图,△ABC中,D为BC的中点. (1)求证:AB+AC>2AD; (2)若AB=5,AC=3,求AD的取值范围.

23.(14分)在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90° (1)如图1,当点A、C、D在同一条直线上时,求证:AF⊥BD; (2)如图2,当点A、C、D不在同一条直线上时,求证:AF⊥BD; (3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,∠AFG是一个固定的值吗?若是,求出∠AFG的度数;若不是,请说明理由. 第8页(共24页) 第9页(共24页)

2016-2017学年山东省日照市五莲县八年级(上)期中数学试卷 参考答案与试题解析

一、选择题(本大题共12小题,1-6小题每小题3分,9-12小题每小题3分,共40分,将正确答案填在答题纸的表格内) 1.(3分)下列手机屏幕解锁图案中不是轴对称图形的是( )

A. B. C. D. 【解答】解:A、不是轴对称图形,故本选项正确; B、是轴对称图形,故本选项错误; C、是轴对称图形,故本选项错误; D、是轴对称图形,故本选项错误. 故选:A.

2.(3分)以下列各组线段为边,能组成三角形的是( ) A.2cm,3cm,5cm B.3cm,3cm,6cm C.5cm,8cm,2cm D.4cm,5cm,6cm 【解答】解:根据三角形的三边关系,知 A、2+3=5,不能组成三角形; B、3+3=6,不能够组成三角形; C、2+5=7<8,不能组成三角形; D、4+5>6,能组成三角形. 故选:D.

3.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是 第10页(共24页)

( ) A.SSS B.SAS C.AAS D.ASA 【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形. 故选:D.

4.(3分)三角形中,到三边距离相等的点是( ) A.三条高线的交点 B.三条中线的交点 C.三条角平分线的交点 D.三边垂直平分线的交点 【解答】解:三角形中,到三边距离相等的点是三条角平分线的交点. 故选:C.

5.(3分)如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=( )

A.40° B.50° C.45° D.60° 【解答】解:∵∠B=∠D=90° 在Rt△ABC和Rt△ADC中 , ∴Rt△ABC≌Rt△ADC(HL) ∴∠2=∠ACB=90°﹣∠1=50°. 故选:B.

6.(3分)如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=( ) 第11页(共24页)

A.30° B.35° C.40° D.50° 【解答】解:∵AD∥BC,∠AEF=110°, ∴BFE=180°﹣∠AEF=180°﹣110°=70°, ∵长方形ABCD沿EF对折后使两部分重合, ∴∠EFG=∠BFE=70°, ∴∠1=180°﹣∠BFE﹣∠EFG=180°﹣70°﹣70°=40°. 故选:C.

7.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为( ) A.30° B.30°或150° C.60°或150° D.60°或120° 【解答】解:如图1, ∵∠ABD=60°,BD是高, ∴∠A=90°﹣∠ABD=30°; 如图2,∵∠ABD=60°,BD是高, ∴∠BAD=90°﹣∠ABD=30°, ∴∠BAC=180°﹣∠BAD=150°; ∴顶角的度数为30°或150°. 故选:B.

相关文档
最新文档