十年高考真题分类汇编(2010-2019) 数学 专题10 立体几何 解析版
十年高考真题分类汇编(2010-2019) 数学 专题01 集合 解析版

十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。
2010—2019“十年高考”数学真题分类汇总 平面向量专题解析版 (可下载)

2010—2019“十年高考”数学真题分类汇总平面向量专题(附详细答案解析)一、选择题。
1.(2019全国Ⅰ文8)已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6 B .π3 C .2π3 D .5π6【答案】B .【解析】因为()-⊥a b b ,所以()22cos ,0-⋅⋅-=⋅<>-=a b b =a b b a b a b b ,所以22cos ,2<>===⋅bba b a bb又因为0,]π[<>∈,a b ,所以π,3<>=a b .故选B . 2.(2019全国Ⅱ文3)已知向量a =(2,3),b =(3,2),则|a –b |= AB .2C .D .50 【答案】A .【解析】因为(2,3)=a ,(3,2)=b ,所以-(1,1)=-a b ,所以-==a b A.3.(2018全国卷Ⅰ)在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 【答案】A.【解析】法一、通解 如图所示,CB AD DB ED EB 2121+=+= ()()AC AB AC AB -++⨯=212121 3144=-AB AC .故选A .CB法二、优解111()222=-=-=-⨯+EB AB AE AB AD AB AB AC 3144=-AB AC .故选A . 4.(2018全国卷Ⅱ)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .0【答案】B.【解析】2(2)22(1)3⋅-=-⋅=--=a a b a a b ,故选B .5.(2018天津)在如图的平面图形中,已知1OM =,2ON =,120MON ∠=,2BM MA =, 2CN NA =,则·BC OM 的值为 A .15- B .9- C .6- D .0【答案】C.【解析】由2BM MA =,可知||2||BM MA =,∴||3||BA MA =. 由2CN NA =,可知||2||CN NA =,∴||3||CA NA =,故||||3||||BA CA MA NA ==,连接MN ,则BC MN ∥,且||3||BA MN =, ∴33()BC MN ON OM ==-,∴23()3()BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-23(||||cos120||)6ON OM OM =-=-.故选C .6.(2018浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430-⋅+=b e b ,则||-a b 的最小值是A 1B 1C .2D .2 【答案】A.【解析】解法一 设O 为坐标原点,OA =a ,(,)OB x y ==b ,=(1,0)e ,由2430-⋅+=b e b 得22430x y x +-+=,即22(2)1x y -+=,所以点B 的轨迹是以(2,0)C 为圆心,l 为半径的圆.NMOCBA因为a 与e 的夹角为3π,所以不妨令点A在射线y =(0x >)上,如图,数形结合可知min ||||||31CA CB -=-=-a b .故选A .解法二 由2430-⋅+=b e b 得2243()(3)0-⋅+=-⋅-=b e b e b e b e .设OB =b ,OE =e ,3OF =e ,所以EB -=b e ,3FB -b e =,所以0EB FB ⋅=,取EF 的中点为C .则B 在以C 为圆心,EF 为直径的圆上,如图.设OA =a ,作射线OA ,使得3AOE π∠=,所以|||(2)(2)|-=-+-≥a b a e e b|(2)||(2)|||||31CA BC ---=-≥a e e b .故选A .7.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A.【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>=m n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.8.(2017浙江)如图,已知平面四边形ABCD ,AB BC ⊥,2AB BC AD ===,3CD =, AC 与BD 交于点O ,记1I OA OB =⋅,2·I OB OC =,3·I OC OD =,则 OABCDA .1I <2I <3IB .1I <3I <2IC .3I < 1I <2ID .2I <1I <3I【答案】C 。
(2010-2019)高考数学真题分类汇编 专题09 立体几何 文(含解析)

专题立体几何1.【2018年新课标1文科05】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R,则该圆柱的表面积为: 12π.故选:B.2.【2018年新课标1文科09】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1文科10】在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6C.8D.8【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC12.可得BB12.所以该长方体的体积为:28.故选:C.4.【2017年新课标1文科06】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.5.【2016年新课标1文科07】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1文科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1文科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴ 1.62≈22,故选:B.8.【2015年新课标1文科11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:4πr2πr22r×2πr+2r×2rπr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.9.【2014年新课标1文科08】如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【解答】解:根据网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,可知几何体如图:几何体是三棱柱.故选:B.10.【2013年新课标1文科11】某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积22×π×4=8π所以这个几何体的体积是16+8π;故选:A.11.【2012年新课标1文科07】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V6×3×3=9.故选:B.12.【2012年新课标1文科08】平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:.所以球的体积为:4π.故选:B.13.【2011年新课标1文科08】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选:D.14.【2010年新课标1文科07】设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选:B.15.【2019年新课标1文科16】已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC 的距离均为,那么P到平面ABC的距离为.【解答】解:∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,过点P作PD⊥AC,交AC于D,作PE⊥BC,交BC于E,过P作PO⊥平面ABC,交平面ABC于O,连结OD,OC,则PD=PE,∴CD=CE=OD=OE1,∴PO.∴P到平面ABC的距离为.故答案为:.16.【2017年新课标1文科16】已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA =AC,SB=BC,三棱锥S﹣ABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得,解得r=3.球O的表面积为:4πr2=36π.故答案为:36π.17.【2013年新课标1文科15】已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.【解答】解:设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为R,∵α截球O所得截面的面积为π,∴d R时,r=1,故由R2=r2+d2得R2=12+(R)2,∴R2∴球的表面积S=4πR2.故答案为:.18.【2011年新课标1文科16】已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:2;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为:4﹣2=2,同理可得圆锥体积较大者的高为:4+2=6;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:.故答案为:19.【2010年新课标1文科15】一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤20.【2019年新课标1文科19】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【解答】解法一:证明:(1)连结B1C,ME,∵M,E分别是BB1,BC的中点,∴ME∥B1C,又N为A1D的中点,∴ND A1D,由题设知A1B1DC,∴B1C A1D,∴ME ND,∴四边形MNDE是平行四边形,MN∥ED,又MN⊄平面C1DE,∴MN∥平面C1DE.解:(2)过C作C1E的垂线,垂足为H,由已知可得DE⊥BC,DE⊥C1C,∴DE⊥平面C1CE,故DE⊥CH,∴CH⊥平面C1DE,故CH的长即为C到时平面C1DE的距离,由已知可得CE=1,CC1=4,∴C1E,故CH,∴点C到平面C1DE的距离为.解法二:证明:(1)∵直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.∴DD1⊥平面ABCD,DE⊥AD,以D为原点,DA为x轴,DE为y轴,DD1为z轴,建立空间直角坐标系,M(1,,2),N(1,0,2),D(0,0,0),E(0,,0),C1(﹣1,,4),(0,,0),(﹣1,),(0,),设平面C1DE的法向量(x,y,z),则,取z=1,得(4,0,1),∵•0,MN⊄平面C1DE,∴MN∥平面C1DE.解:(2)C(﹣1,,0),(﹣1,,0),平面C1DE的法向量(4,0,1),∴点C到平面C1DE的距离:d.21.【2018年新课标1文科18】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ DA,求三棱锥Q﹣ABP的体积.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∵AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V1.22.【2017年新课标1文科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD,PO,∵四棱锥P﹣ABCD的体积为,由AB⊥平面PAD,得AB⊥AD,∴V P﹣ABCD,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO,∴PB=PC2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=6+2.23.【2016年新课标1文科18】如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE PG,DE PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V DE×S△PEF22×2.24.【2015年新课标1文科18】如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.【解答】证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC⊂平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC x,GB=GD,∵BE⊥平面ABCD,∴BE⊥BG,则△EBG为直角三角形,∴EG AC=AG x,则BE x,∵三棱锥E﹣ACD的体积V,解得x=2,即AB=2,∵∠ABC=120°,∴AC2=AB2+BC2﹣2AB•BC cos ABC=4+4﹣212,即AC,在三个直角三角形EBA,EBD,EBC中,斜边AE=EC=ED,∵AE⊥EC,∴△EAC为等腰三角形,则AE2+EC2=AC2=12,即2AE2=12,∴AE2=6,则AE,∴从而得AE=EC=ED,∴△EAC的面积S3,在等腰三角形EAD中,过E作EF⊥AD于F,则AE,AF,则EF,∴△EAD的面积和△ECD的面积均为S,故该三棱锥的侧面积为3+2.25.【2014年新课标1文科19】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO ⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.【解答】(1)证明:连接BC1,则O为B1C与BC1的交点,∵侧面BB1C1C为菱形,∴BC1⊥B1C,∵AO⊥平面BB1C1C,∴AO⊥B1C,∵AO∩BC1=O,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB;(2)解:作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,∵BC⊥AO,BC⊥OD,AO∩OD=O,∴BC⊥平面AOD,∴OH⊥BC,∵OH⊥AD,BC∩AD=D,∴OH⊥平面ABC,∵∠CBB1=60°,∴△CBB1为等边三角形,∵BC=1,∴OD,∵AC⊥AB1,∴OA B1C,由OH•AD=OD•OA,可得AD,∴OH,∵O为B1C的中点,∴B1到平面ABC的距离为,∴三棱柱ABC﹣A1B1C1的高.26.【2013年新课标1文科19】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C,求三棱柱ABC﹣A1B1C1的体积.【解答】(Ⅰ)证明:如图,取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以.又,则,故OA1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC﹣A1B1C1的高.又△ABC的面积,故三棱柱ABC﹣A1B1C1的体积.27.【2012年新课标1文科19】如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【解答】证明:(1)由题意知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1⊂平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V11×1,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.28.【2011年新课标1文科18】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.【解答】解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD.(II)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(I)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD,PB=2.根据DE•PB=PD•BD,得DE,即棱锥D﹣PBC的高为.29.【2010年新课标1文科18】如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB.所以HA=HB.因为∠APB=∠ADB=60°所以PA=PB,HD=HC=1.可得PH.等腰梯形ABCD的面积为S ACxBD=2所以四棱锥的体积为V(2).考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质等.预测明年本考点题目会比较稳定,备考方向以知识点三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质等为重点较佳.最新高考模拟试题AD与BD所成的角为()1.在正方体中, 1A.45?B.90C.60D.120【答案】C【解析】如图,连结BC1、BD和DC1,在正方体ABCD-A1B1C1D1中,由AB=D1C1,AB∥D1C1,可知AD1∥BC1,所以∠DBC1就是异面直线AD1与BD所成角,在正方体ABCD-A1B1C1D1中,BC1、BD和DC1是其三个面上的对角线,它们相等.所以△DBC1是正三角形,∠DBC1=60°故异面直线AD1与BD所成角的大小为60°.故选:C.2.在正方体中,用空间中与该正方体所有棱成角都相等的平面α去截正方体,在截面边数最多时的所有多边形中,多边形截面的面积为S,周长为l,则( )A.S为定值,l不为定值B.S不为定值,l为定值C.S与l均为定值D.S与l均不为定值【答案】C【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:与面1A BD平行的面且截面是六边形时满足条件,不失一般性设正方体边长为1,即六边形EFGHMN ,其中分别为其所在棱的中点, 由正方体的性质可得2EF =, ∴六边形的周长l 为定值32.∴六边形的面积为,由正方体的对称性可得其余位置时也为正六边形,周长与面积不变,故S 与l 均为定值,故选C.3.在四面体P ABC -中,ABC ∆为等边三角形,边长为3,3PA =,4PB =,5PC =,则四面体P ABC -的体积为( )A .3B .23C .11D .10 【答案】C【解析】如图,延长CA 至D ,使得3AD =,连接,DB PD ,因为,故ADB ∆为等腰三角形, 又,故, 所以即,故CB DB ⊥, 因为,所以,所以CB PB ⊥, 因,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD ,所以,因A 为DC 的中点,所以, 因为,故PDC ∆为直角三角形, 所以, 又,而4PB =,故即PBD ∆为直角三角形,所以,所以,故选C.4.若,a b 是不同的直线,,αβ是不同的平面,则下列命题中正确的是( )A .若,则αβ⊥ B .若,则αβ‖ C .若,则αβ‖ D .若,则αβ‖ 【答案】C【解析】 A 中,若,平面,αβ可能垂直也可能平行或斜交,不正确; B 中,若,平面,αβ可能平行也可能相交,不正确;C 中,若,a b αβ⊥⊥,则,a b 分别是平面,αβ的法线,a b ‖必有αβ‖,正确; D 中,若,平面,αβ可能平行也可能相交,不正确.故选C.5.某几何体的三视图如图所示,则该几何体的外接球的体积是( )A .2πB .3π C .3πD .43π【答案】B【解析】解:根据几何体的三视图,该几何体是由一个正方体切去一个正方体的一角得到的.故:该几何体的外接球为正方体的外接球,所以:球的半径,则:. 故选:B .6.如图,正方体中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .【答案】A【解析】解:正方体中,过点1,,A E C 的平面截去该正方体的上半部分后,剩余部分的直观图如图:则该几何体的正视图为图中粗线部分.故选:A .7.下列说法错误的是( )A .垂直于同一个平面的两条直线平行B .若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直C .一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行D .一条直线与一个平面内的无数条直线垂直,则这条直线和这个平面垂直【答案】D【解析】由线面垂直的性质定理知,垂直于同一个平面的两条直线平行,A 正确; 由面面垂直的性质定理知,若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直,B 正确;由面面平行的判定定理知,一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行,C 正确; 当一条直线与平面内无数条相互平行的直线垂直时,该直线与平面不一定垂直,D 错误,故选D.8.《九章算术》中,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,且PD CD =,点E ,F 分别为PC ,PD 的中点,则图中的鳖臑有( )A .2个B .3个C .4个D .5个【答案】C【解析】 由题意,因为PD ⊥底面ABCD ,所以PD DC ,PD BC ⊥,又四边形ABCD 为正方形,所以BC CD ⊥,所以BC ⊥平面PCD ,BC PC ⊥,所以四面体PDBC 是一个鳖臑,因为DE ⊂平面PCD ,所以BC DE ⊥,因为PD CD =,点E 是PC 的中点,所以DE PC ⊥,因为,所以DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,同理可得,四面体PABD 和FABD 都是鳖臑,故选C.9.在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______.【答案】48π【解析】如图,在等边三角形ABC中,取AB的中点F,设其中心为O,由6AB=,得,PAB∆是以AB为斜边的等腰角三角形,PF AB∴⊥, 又因为平面PAB⊥平面ABC,PF∴⊥平面ABC,PF OF∴⊥,,则O为棱锥P ABC-的外接球球心,外接球半径,∴该三棱锥外接球的表面积为,故答案为48π.10.若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为3,圆心角为23π的扇形,则该圆锥的体积为_______.【答案】22π【解析】因为展开图是半径为3,圆心角为23π的扇形,所以圆锥的母线3l=,圆锥的底面的周长为,因此底面的半径1r=,根据勾股定理,可知圆锥的高,所以圆锥的体积为.11.设m,n是两条不同的直线,α,β是两个不同的平面,下列正确命题序号是_____.(1)若m α,n α∥,则m n ∥(2)若m α⊥,m n ⊥则n α∥(3)若m α⊥,n β⊥且m n ⊥,则αβ⊥;(4)若m β⊂,αβ,则m α【答案】(3)(4)【解析】若,则m 与n 可能平行,相交或异面,故(1)错误; 若则n α∥或n α⊂,故(2)错误; 若且m n ⊥,则αβ⊥,故(3)正确; 若,由面面平行的性质可得m α,故(4)正确; 故答案为:(3)(4)12.长方体的底面ABCD 是边长为1的正方形,若在侧棱1AA 上存在点E ,使得,则侧棱1AA 的长的最小值为_______.【答案】2【解析】设侧棱AA 1的长为x ,A 1E =t ,则AE =x ﹣t ,∵长方体ABCD ﹣A 1B 1C 1D 1的底面是边长为1的正方形,∠C 1EB =90°,∴,∴2+t 2+1+(x ﹣t )2=1+x 2,整理,得:t 2﹣xt+1=0,∵在侧棱AA 1上至少存在一点E ,使得∠C 1EB =90°,∴△=(﹣x )2﹣4≥0,解得x≥2.∴侧棱AA 1的长的最小值为2.故答案为2.13.如图,在Rt ABC ∆中,1AB BC ==,D 和E 分别是边BC 和AC 上一点,DE BC ⊥,将CDE ∆沿DE 折起到点P 位置,则该四棱锥P ABDE -体积的最大值为_______.【答案】327 【解析】 在Rt ABC ∆中,由已知,1AB BC ==,DE BC ⊥,所以设,四边形ABDE 的面积为,当CDE ∆⊥平面ABDE 时,四棱锥P ABDE -体积最大,此时,且,故四棱锥P ABDE -体积为,, 30,3x ⎛⎫∈ ⎪ ⎪⎝⎭ 时,0V '> ;时,0V '<, 所以,当33x =时,max 327V =. 故答案为32714.三棱锥P ABC -的4个顶点在半径为2的球面上,PA ⊥平面ABC ,ABC 是边长为3的正三角形,则点A 到平面PBC 的距离为______.【答案】65【解析】△ABC 是边长为3的正三角形,可得外接圆的半径2r a sin60==︒2,即r =1. ∵PA ⊥平面ABC ,PA =h ,球心到底面的距离d 等于三棱锥的高PA 的一半即h 2, 那么球的半径R 2,解得h=2,又由知,得'65d = 故点A 到平面PBC 的距离为65故答案为65. 15.如图,该几何体由底面半径相同的圆柱与圆锥两部分组成,且圆柱的高与底面半径相等.若圆柱与圆锥的侧面积相等,则圆锥与圆柱的高之比为_______.【答案】3【解析】设圆柱和圆锥的底面半径为R ,则圆柱的高1h =R ,圆锥的母线长为L ,因为圆柱与圆锥的侧面积相等, 所以,,解得:L =2R ,得圆锥的高为2h =3R , 所以,圆锥与圆柱的高之比为33R =. 故答案为:316.直三棱柱中,,设其外接球的球心为O ,已知三棱锥O ABC -的体积为1,则球O 表面积的最小值为__________.【答案】16π.【解析】如图,在Rt ABC ∆中,设,则.分别取11,AC A C 的中点12,O O ,则12,O O 分别为111Rt A B C ∆和Rt ABC ∆外接圆的圆心,连12,O O ,取12O O 的中点O ,则O 为三棱柱外接球的球心.连OA ,则OA 为外接球的半径,设半径为R .∵三棱锥O ABC -的体积为1,即,∴6ac =.在2Rt OO C ∆中,可得,∴,当且仅当a c =时等号成立,∴O 球表面积的最小值为16π.故答案为:16π. 17.在三棱锥P ABC -中,ABC ∆是边长为4的等边三角形,,25PC =.(1)求证:平面PAB ⊥平面ABC ;(2)若点M ,N 分别为棱BC ,PC 的中点,求三棱锥N AMC -的体积V .【答案】(1)见证明;(2) 26=V 【解析】(1)取AB 中点H ,连结PH ,HC .∵,4AB =,∴PH AB ⊥,22PH =.∵等边ABC ∆的边长为4∴23HC =,又25PC =∴∴90PHC ∠=,即PH HC ⊥又∵,AB 平面ABC ,CH ⊂平面ABC∴PH ⊥平面ABC ,又PH ⊂平面PAB∴平面PAB ⊥平面ABC(2)∵点M ,N 分别为棱BC ,PC 的中点∴点N 到平面ABC 的距离为1=22PH 且 ∴三棱锥N AMC -的体积 18.如图所示,三棱柱中,90BCA ∠=°,1AC ⊥平面1A BC .(1)证明:平面ABC ⊥平面11ACC A ;(2)若,11A A A C =,求点1B 到平面1A BC 的距离.【答案】(1)见解析;(2)3【解析】(1)证明:1AC ⊥平面1A BC ,., ,BC ∴⊥平面11ACC A .又BC ⊂平面ABC ,∴平面ABC ⊥平面11ACC A .(2)解:取AC 的中点D ,连接1A D .,.又平面ABC ⊥平面11ACC A ,且交线为AC ,则1A D ⊥平面ABC .1AC ⊥平面1A BC ,,∴四边形11ACC A 为菱形,.又11A A A C =,1A AC ∴是边长为2正三角形,13A D ∴= . 面11BB C C ,1BB ⊂面11BB C C1AA ∴面11BB C C设点1B 到平面1A BC 的距离为h .则.,,3h ∴=.所以点1B 到平面1A BC 的距离为3.19.在边长为3的正方形ABCD 中,点E ,F 分别在边AB ,BC 上(如左图),且=BE BF ,将AED ,DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A (如右图).(1)求证:A D EF '⊥;(2)当13BF BC =时,求点A 到平面DEF 的距离. 【答案】(1)见解析;(2)37 【解析】(1)由ABCD 是正方形及折叠方式,得:A E A D '⊥',A F A D '⊥',,A D ∴'⊥平面A EF ',平面A EF ',.(2),,,52DEF S ∴= 设点A 到平面DEF 的距离为d ,, ,解得37d =. ∴点A 到平面DEF 的距离为37. 20.如图,四棱锥S ABCD -中,SD ⊥平面ABCD ,//AB CD ,AD CD ⊥,SD CD =,AB AD =,2CD AD =,M 是BC 中点,N 是SA 上的点.(1)求证://MN 平面SDC ;(2)求A 点到平面MDN 的距离.【答案】(1)见证明;(2)127d = 【解析】 (1)取AD 中点为E ,连结ME ,NE ,则//ME DC ,因为ME ⊄平面SDC ,所以//ME 平面SDC ,同理//NE 平面SDC . 所以平面//MNE 平面SDC ,从而因此//MN 平面SDC .(2)因为CD AD ⊥,所以ME AD ⊥.因为SD ⊥平面ABCD ,所以SD CD ⊥,ME SD ⊥.所以ME ⊥平面SAD . 设2DA =,则3ME =,2NE =,,10MD =,5ND =.在MDN ∆中,由余弦定理,从而,所以MDN ∆面积为72. 又ADM ∆面积为12332⨯⨯=. 设A 点到平面MDN 的距离为d ,由得732d NE =, 因为2NE =,所以A 点到平面MDN 的距离127d =. 21.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,3PA =, //AB CD ,AB AD ⊥,,2AB =,E 为侧棱PA 上一点.(Ⅰ)若13PE PA =,求证:PC //平面EBD ; (Ⅱ)求证:平面EBC ⊥平面PAC ;(Ⅲ)在侧棱PD 上是否存在点F ,使得AF ⊥平面PCD ?若存在,求出线段PF 的长;若不存在,请说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)存在,线段PF 长32. 【解析】 (Ⅰ)设,连结EG ,由已知AB//CD ,DC 1=,AB 2=,得.由1PE PA 3=,得AE 2EP=. 在ΔPAC 中,由AE AG EP GC =,得EG //PC . 因为EG ⊂平面EBD ,PC ⊄平面EBD ,所以PC //平面EBD .(Ⅱ)因为PA ⊥平面ABCD ,BC ⊂平面ABCD , 所以BC PA ⊥.由已知得AC 2=,BC 2=,AB 2=,所以. 所以BC AC ⊥.又,所以BC ⊥平面PAC .因为BC ⊂平面EBC ,所以平面EBC ⊥平面PAC .(Ⅲ)在平面PAD 内作AF PD ⊥于点F ,由DC PA ⊥,DC AD ⊥,,得DC ⊥平面PAD .因为AF ⊂平面PAD ,所以CD AF ⊥.又,所以AF ⊥平面PCD . 由PA 3=,AD 1=,PA AD ⊥,得3PF 2=. 22.已知三棱柱的底面ABC 是等边三角形,侧面AA C C ''⊥底面ABC ,D 是棱BB '的中点.(1)求证:平面DA C '⊥平面ACC A '';(2)求平面DA C '将该三棱柱分成上下两部分的体积比.【答案】(1)见证明;(2)1:1【解析】(1)取,AC A C ''的中点,O F ,连接OF 与C A '交于点E , 连接DE ,,OB B F ',则E 为OF 的中点,, 且,所以BB FO '是平行四边形.又D 是棱BB '的中点,所以DE OB .侧面AA C C ''⊥底面ABC ,且OB AC ⊥ ,所以OB ⊥平面ACC A '' . 所以DE ⊥平面ACC A '',又DE 平面DA C ',所以平面DA C '⊥平面ACC A ''.(2)连接A B ', 设三棱柱的体积为V .故四棱锥的体积 又D 是棱BB '的中点,BCD ∆的面积是BCC B ''面积的14 , 故四棱锥的体积故平面DA C '将该三棱柱分成上下两部分的体积比为1:1.。
(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题07立体几何(2)文(含解析)

专题7 立体几何(2)立体几何大题:10年10考,每年1题.第1小题多为证明垂直问题,第2小题多为体积计算问题(2014年是求高).1.(2019年)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【解析】(1)连结B1C,ME,∵M,E分别是BB1,BC的中点,∴ME∥B1C,又N为A1D的中点,∴ND=12A1D,由题设知A1B1//DC,∴B1C//A1D,∴ME//ND,∴四边形MNDE是平行四边形,∴MN∥ED,又MN⊄平面C1DE,∴MN∥平面C1DE.(2)过C作C1E的垂线,垂足为H,由已知可得DE⊥BC,DE⊥C1C,∴DE⊥平面C1CE,故DE⊥CH,∴CH⊥平面C1DE,故CH的长即为C到时平面C1DE的距离,由已知可得CE=1,CC1=4,∴C1E,故CH,∴点C 到平面C 1DE . 2.(2018年)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA . (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ﹣ABP 的体积.【解析】(1)∵在平行四边形ABCM 中,∠ACM =90°,∴AB ⊥AC , 又AB ⊥DA .且AD ∩AC =A , ∴AB ⊥面ADC ,∵AB ⊂面ABC , ∴平面ACD ⊥平面ABC ;(2)∵AB =AC =3,∠ACM =90°,∴AD =AM =∴BP =DQ =23DA = 由(1)得DC ⊥AB ,又DC ⊥CA ,∴DC ⊥面ABC ,∴三棱锥Q ﹣ABP 的体积V =11DC 33S ∆ABP ⨯ =C 121DC 333S ∆AB ⨯⨯=12113333323⨯⨯⨯⨯⨯⨯=1. 3.(2017年)如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P ﹣ABCD 的体积为83,求该四棱锥的侧面积.【解析】(1)∵在四棱锥P ﹣ABCD 中,∠BAP =∠CDP =90°, ∴AB ⊥PA ,CD ⊥PD , 又AB ∥CD ,∴AB ⊥PD , ∵PA ∩PD =P ,∴AB ⊥平面PAD , ∵AB ⊂平面PAB ,∴平面PAB ⊥平面PAD .(2)设PA =PD =AB =DC =a ,取AD 中点O ,连结PO , ∵PA =PD =AB =DC ,∠APD =90°,平面PAB ⊥平面PAD ,∴PO ⊥底面ABCD ,且AD ,PO =2a , ∵四棱锥P ﹣ABCD 的体积为83, 由AB ⊥平面PAD ,得AB ⊥AD ,∴V P ﹣ABCD =CD 13S AB ⨯⨯PO 四边形=1D 3⨯AB⨯A ⨯PO =132a a ⨯⨯=313a =83, 解得a =2,∴PA =PD =AB =DC =2,AD =BC =PO ,∴PB =PC∴该四棱锥的侧面积:S 侧=S △PAD +S △PAB +S △PDC +S △PBC=1D 2⨯PA⨯P +12⨯PA⨯AB +1D DC 2⨯P ⨯+1C 2⨯B=11112222222222⨯⨯+⨯⨯+⨯⨯+⨯=6+4.(2016年)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【解析】(1)∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(2)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG . 由题设可得PC ⊥平面PAB ,DE ⊥平面PAB ,所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且PA =6,可得DE =2,PG =PE = 在等腰直角三角形EFP 中,可得EF =PF =2. 所以四面体PDEF 的体积V =13×DE ×S △PEF =13×2×12×2×2=43.5.(2015年)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ﹣ACD【解析】(1)∵四边形ABCD 为菱形, ∴AC ⊥BD , ∵BE ⊥平面ABCD , ∴AC ⊥BE , 则AC ⊥平面BED , ∵AC ⊂平面AEC , ∴平面AEC ⊥平面BED ;(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,得AG =GC ,GB =GD =2x,∵BE ⊥平面ABCD ,∴BE ⊥BG ,则△EBG 为直角三角形,∴EG =12AC =AG =2x ,则BE x ,∵三棱锥E ﹣ACD 的体积V =11C GD 32⨯A ⨯⨯BE 3x 解得x =2,即AB =2, ∵∠ABC =120°,∴AC 2=AB 2+BC 2﹣2AB •BC cos ABC =4+4﹣2×1222⎛⎫⨯⨯-⎪⎝⎭=12,即AC =在三个直角三角形EBA ,EBD ,EBC 中,斜边AE =EC =ED , ∵AE ⊥EC ,∴△EAC 为等腰三角形, 则AE 2+EC 2=AC 2=12, 即2AE 2=12, ∴AE 2=6,则AE ,∴从而得AE =EC =ED ,∴△EAC 的面积S =11C 22⨯EA⨯E =3, 在等腰三角形EAD 中,过E 作EF ⊥AD 于F ,则AE ,AF =1D 2A =1212⨯=,则EF =∴△EAD 的面积和△ECD 的面积均为S =122⨯故该三棱锥的侧面积为3+6.(2014年)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.【解析】(1)连接BC1,则O为B1C与BC1的交点,∵侧面BB1C1C为菱形,∴BC1⊥B1C,∵AO⊥平面BB1C1C,∴AO⊥B1C,∵AO∩BC1=O,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB;(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,∵BC⊥AO,BC⊥OD,AO∩OD=O,∴BC⊥平面AOD,∴OH⊥BC,∵OH⊥AD,BC∩AD=D,∴OH⊥平面ABC,∵∠CBB1=60°,∴△CBB1为等边三角形,∵BC=1,∴OD∵AC ⊥AB 1,∴OA =12B 1C =12,由OH •AD =OD •OA ,可得AD ,∴OH =14,∵O 为B 1C 的中点,∴B 1到平面ABC ,∴三棱柱ABC ﹣A 1B 1C 1的高7.7.(2013年)如图,三棱柱ABC ﹣A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60° (1)证明:AB ⊥A 1C ; (2)若AB =CB =2,A 1C =,求三棱柱ABC ﹣A 1B 1C 1的体积.【解析】(1)如图,取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,160∠BAA =,故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C ;(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以1C O =OA =.又1C A =,则22211C C A =O +OA ,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC ﹣A 1B 1C 1的高.又△ABC 的面积C S ∆AB故三棱柱ABC ﹣A 1B 1C 1的体积C 1V 3S ∆AB =⨯OA ==.8.(2012年)如图,三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【解析】(1)由题意知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C , ∴BC ⊥平面ACC 1A 1,又DC 1⊂平面ACC 1A 1, ∴DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,∴∠CDC 1=90°,即DC 1⊥DC ,又DC ∩BC =C , ∴DC 1⊥平面BDC ,又DC 1⊂平面BDC 1, ∴平面BDC 1⊥平面BDC ;(2)设棱锥B ﹣DACC 1的体积为V 1,AC =1,由题意得V 1=1121132+⨯⨯⨯=12,又三棱柱ABC ﹣A 1B 1C 1的体积V =1, ∴(V ﹣V 1):V 1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.9.(2011年)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD=1,求棱锥D﹣PBC的高.【解析】(1)因为∠DAB=60°,AB=2AD,由余弦定理得BD D,从而BD2+AD2=AB2,故BD⊥AD,又PD⊥底面ABCD,可得BD⊥PD,所以BD⊥平面PAD.故PA⊥BD.(2)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(1)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD,PB=2.根据DE•PB=PD•BD,得DE即棱锥D﹣PBC10.(2010年)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(1)证明:平面PAC⊥平面PBD;(2)若AB,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.。
十年真题(2010-2019)高考数学(理)分类汇编专题12 平面解析几何解答题(新课标Ⅰ卷)(解析版)

专题12平面解析几何解答题历年考题细目表题型年份考点试题位置解答题2019 抛物线2019年新课标1理科19解答题2018 椭圆2018年新课标1理科19解答题2017 椭圆2017年新课标1理科20解答题2016 圆的方程2016年新课标1理科20解答题2015 抛物线2015年新课标1理科20解答题2014 椭圆2014年新课标1理科20解答题2013 圆的方程2013年新课标1理科20解答题2012 抛物线2012年新课标1理科20解答题2011 抛物线2011年新课标1理科20解答题2011 圆的方程2011年新课标1理科22解答题2010 椭圆2010年新课标1理科20历年高考真题汇编1.【2019年新课标1理科19】已知抛物线C:y2=3的焦点为F,斜率为的直线l与C的交点为A,B,与轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若3,求|AB|.【解答】解:(1)设直线l的方程为y(﹣t),将其代入抛物线y2=3得:2﹣(t+3)t2=0,设A(1,y1),B(2,y2),则1+22t,①,12=t2②,由抛物线的定义可得:|AF|+|BF|=1+2+p=2t4,解得t,直线l的方程为y.(2)若3,则y1=﹣3y2,∴(1﹣t)=﹣3(2﹣t),化简得1=﹣32+4t,③由①②③解得t=1,1=3,2,∴|AB|.2.【2018年新课标1理科19】设椭圆C:y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.【解答】解:(1)c1,∴F(1,0),∵l与轴垂直,∴=1,由,解得或,∴A(1.),或(1,),∴直线AM的方程为y,y,证明:(2)当l与轴重合时,∠OMA=∠OMB=0°,当l与轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,当l与轴不重合也不垂直时,设l的方程为y=(﹣1),≠0,A(1,y1),B(2,y2),则1,2,直线MA,MB的斜率之和为MA,MB之和为MA+MB,由y1=1﹣,y2=2﹣得MA+MB,将y=(﹣1)代入y2=1可得(22+1)2﹣42+22﹣2=0,∴1+2,12,∴212﹣3(1+2)+4(43﹣4﹣123+83+4)=0从而MA+MB=0,故MA,MB的倾斜角互补,∴∠OMA=∠OMB,综上∠OMA=∠OMB.3.【2017年新课标1理科20】已知椭圆C:1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l 过定点.【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为1.证明:(2)①当斜率不存在时,设l:=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=+t,(t≠1),A(1,y1),B(2,y2),联立,整理,得(1+42)2+8t+4t2﹣4=0,,12,则1,又t≠1,∴t=﹣2﹣1,此时△=﹣64,存在,使得△>0成立,∴直线l的方程为y=﹣2﹣1,当=2时,y=﹣1,∴l过定点(2,﹣1).4.【2016年新课标1理科20】设圆2+y2+2﹣15=0的圆心为A,直线l过点B(1,0)且与轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【解答】解:(Ⅰ)证明:圆2+y2+2﹣15=0即为(+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b,则点E的轨迹方程为1(y≠0);(Ⅱ)椭圆C1:1,设直线l:=my+1,由PQ⊥l,设PQ:y=﹣m(﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(1,y1),N(2,y2),可得y1+y2,y1y2,则|MN|•|y1﹣y2|••12•,A到PQ的距离为d,|PQ|=22,则四边形MPNQ面积为S|PQ|•|MN|••12•=24•24,当m=0时,S取得最小值12,又0,可得S<24•8,即有四边形MPNQ面积的取值范围是[12,8).5.【2015年新课标1理科20】在直角坐标系Oy中,曲线C:y与直线l:y=+a(a>0)交于M,N两点.(Ⅰ)当=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当变动时,总有∠OPM=∠OPN?(说明理由)【解答】解:(I)联立,不妨取M,N,由曲线C:y可得:y′,∴曲线C在M点处的切线斜率为,其切线方程为:y﹣a,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(1,y1),N(2,y2),直线PM,PN的斜率分别为:1,2.联立,化为2﹣4﹣4a=0,∴1+2=4,12=﹣4a.∴1+2.当b=﹣a时,1+2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.6.【2014年新课标1理科20】已知点A(0,﹣2),椭圆E:1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(Ⅱ)依题意当l⊥轴不合题意,故设直线l:y=﹣2,设P(1,y1),Q(2,y2)将y=﹣2代入,得(1+42)2﹣16+12=0,当△=16(42﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积,设,则t>0,,当且仅当t=2,=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y﹣2或y﹣2.…7.【2013年新课标1理科20】已知圆M:(+1)2+y2=1,圆N:(﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【解答】解:(I)由圆M:(+1)2+y2=1,可知圆心M(﹣1,0);圆N:(﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(≠﹣2).(II)设曲线C上任意一点P(,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与轴不平行,设l与轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=(+4),由l于M相切可得:,解得.当时,联立,得到72+8﹣8=0.∴,.∴|AB|由于对称性可知:当时,也有|AB|.综上可知:|AB|或.8.【2012年新课标1理科20】设抛物线C:2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,F A为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD,∴,解得p=2,所以F坐标为(0,1),∴圆F的方程为2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.9.【2011年新课标1理科20】在平面直角坐标系Oy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.【解答】解:(Ⅰ)设M(,y),由已知得B(,﹣3),A(0,﹣1).所(﹣,﹣1﹣y),(0,﹣3﹣y),(,﹣2).再由题意可知()•0,即(﹣,﹣4﹣2y)•(,﹣2)=0.所以曲线C的方程式为y2.(Ⅱ)设P(0,y0)为曲线C:y2上一点,因为y′,所以l的斜率为0,因此直线l的方程为y﹣y00(﹣0),即0﹣2y+2y0﹣02=0.则o点到l的距离d.又y02,所以d2,所以02=0时取等号,所以O点到l距离的最小值为2.10.【2011年新课标1理科22】如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于的方程2﹣14+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程2﹣14+mn=0的两根为1=2,2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF(12﹣2)=5.故C,B,D,E四点所在圆的半径为511.【2010年新课标1理科20】设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|P A|=|PB|,求E的方程.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=+c,其中.设A(1,y1),B(2,y2),则A、B两点坐标满足方程组化简的(a2+b2)2+2a2c+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB||1﹣2|,得,故a2=2b2所以E的离心率(II)设AB的中点为N(0,y0),由(I)知,.由|P A|=|PB|,得PN=﹣1,即得c=3,从而故椭圆E的方程为.考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以解答题题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知椭圆22122:1(0)x y C a b a b +=>>,椭圆22222:1(0)33x y C a b a b +=>>经过点22⎛⎫⎪ ⎪⎝⎭. (1)求椭圆1C 的标准方程;(2)设点M 是椭圆1C 上的任意一点,射线MO 与椭圆2C 交于点N ,过点M 的直线l 与椭圆1C 有且只有一个公共点,直线l 与椭圆2C 交于,A B 两个相异点,证明:NAB △面积为定值.【答案】(1)22113y x +=; (2)见解析. 【解析】(1)解:因为1C, 所以22619b a=-,解得223a b =.①将点22⎛ ⎝⎭代入2222133x y a b +=,整理得2211144a b +=.② 联立①②,得21a =,213b =, 故椭圆1C 的标准方程为22113y x +=. (2)证明:①当直线l 的斜率不存在时,点M 为()1,0或()1,0-,由对称性不妨取()1,0M ,由(1)知椭圆2C 的方程为2213x y +=,所以有()N .将1x =代入椭圆2C的方程得y =,所以11122NAB S MN AB ∆=⋅==. ②当直线l 的斜率存在时,设其方程为y kx m =+, 将y kx m =+代入椭圆1C 的方程 得()222136310kxkmx m +++-=,由题意得()()()2226413310km k m∆=-+-=,整理得22313m k =+.将y kx m =+代入椭圆2C 的方程, 得()222136330kxkmx m +++-=.设()11,A x y ,()22,B x y ,则122613km x x k +=-+,21223313m x x k -=+,所以AB =2313k m==+. 设()00,M x y ,()33,N x y ,ON MO λ=u u u v u u u u v,则可得30x x λ=-,30y y λ=-.因为220022333113x y x y ⎧+=⎪⎨+=⎪⎩,所以2200222003113x y x y λ⎧+=⎪⎛⎫⎨+= ⎪⎪⎝⎭⎩,解得λ=λ=, 所以ON =u u u vu u u v,从而)1NM OM =. 又因为点O 到直线l的距离为d =所以点N到直线l 的距离为)11m d ⋅=所以()()221126131312231NABmk S d AB m k∆+=+⋅=+⋅⋅+ 62=+,综上,NAB ∆的面积为定值62+. 2.如图,在平面直角坐标系Oy 中,椭圆C :22221x y a b+=(a >b >0)经过点(0,3-),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1)求椭圆C 的标准方程;(2)当MF =2FN 时,求直线l 的方程;(3)若直线l 上存在点P 满足PM·PN=PF 2,且点P 在椭圆外,证明:点P 在定直线上.【答案】(1)22143x y +=;(25250x y ±=;(3)见解析. 【解析】(1)设椭圆的截距为2c ,由题意,b 3,由点F 到左顶点的距离和到右准线的距离相等,得a+c =2a c c-,又a 2=b 2+c 2,联立解得a =2,c =1.∴椭圆C 的标准方程为22143x y +=;(2)当直线l 与轴重合时,M (﹣2,0),N (2,0),此时MF =3NF ,不合题意; 当直线l 与轴不重合时,设直线l 的方程为=my+1,M (1,y 1),N (2,y 2),联立22my 1x y 143x =+⎧⎪⎨+=⎪⎩,得(3m 2+4)y 2+6my ﹣9=0.△=36m 2+36(m 2+4)>0.122634m y y m +=-+ ①,1229y y 3m 4=-+②,由MF =2FN ,得y 1=﹣2y 2③, 联立①③得,1222126,3434m my y m m =-=++,代入②得,()22227293434m m m-=-++,解得m 5=±20y ±-=; (3)当直线l 的斜率为0时,则M (2,0),N (﹣2,0),设P (0,y 0), 则PM•PN=|(0﹣2)(0+2)|,∵点P 在椭圆外,∴0﹣2,0+2同号, 又()()()()2220000PF x 1,x 2x 2x 1=-∴-+=-,解得052x =. 当直线l 的斜率不为0时,由(2)知,1212226m 9y y ,y y 3m 43m 4+=-=-++,10200PM y ,PN y ,PF =-=-=.∵点P 在椭圆外,∴y 1﹣y 0,y 2﹣y 0同号,∴PM•PN=(1+m 2)(y 1﹣y 0)(y 2﹣y 0)=()()221201201my yy y y y ⎡⎤+-++⎣⎦()()2222002269113434m m y m y m m ⎛⎫=++-=+ ⎪++⎝⎭, 整理得032y m =,代入直线方程得052x =.∴点P 在定直线52x =上. 3.已知抛物线C :24y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点. (1)若直线l 过点F 且8AB =,求直线l 的方程;(2)已知点(2,0)E -,若直线l 不与坐标轴垂直,且AEO BEO ∠=∠,证明:直线l 过定点. 【答案】(1)1y x =-或1y x =-+;(2)(2,0). 【解析】解:(1)法一:焦点(1,0)F ,当直线l 斜率不存在时,方程为1x =,与抛物线的交点坐标分别为(1,2),(1,2)-, 此时4AB =,不符合题意,故直线的斜率存在.设直线l 方程为(1)=-y k x 与24y x =联立得()2222220k x k x k -+-=,当0k =时,方程只有一根,不符合题意,故0k ≠.()212222k x x k++=,抛物线的准线方程为1x =-,由抛物线的定义得()()12||||||11AB AF BF x x =+=+++()222228k k+=+=,解得1k =±,所以l 方程为1y x =-或1y x =-+.法二:焦点(1,0)F ,显然直线l 不垂直于x 轴,设直线l 方程为1x my =+,与24y x =联立得2440y my --=,设11(,)A x y ,22(,)B x y ,124y y m +=,124y y =.||AB ==()241m ==+,由8AB =,解得1m =±, 所以l 方程为1y x =-或1y x =-+. (2)设11(,)A x y ,22(,)B x y ,设直线l 方程为(0)x my b m =+≠与24y x =联立得:2440y my b --=,可得124y y m +=,124y y b =-. 由AEO BEO ∠=∠得EA EB k k =,即121222y yx x =-++. 整理得121122220y x y x y y +++=,即121122()2()20y my b y my b y y +++++=, 整理得12122(2)()0my y b y y +++=, 即84(2)0bm b m -++=,即2b =. 故直线l 方程为2x my =+过定点(2,0).4.已知椭圆22221(0)x y a b a b +=>>,()2,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,点C 在第一象限,且0AC BC ⋅=u u u r u u u r,||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r .(1)求椭圆的标准方程;(2)设P 、Q 为椭圆上不重合的两点且异于A 、B ,若PCQ ∠的平分线总是垂直于x 轴,问是否存在实数λ,使得PQ AB =λu u u r u u u r?若不存在,请说明理由;若存在,求λ取得最大值时的PQ 的长.【答案】(1) 223144x y += (2)【解析】(1)∵0AC BC ⋅=u u u r u u u r,∴90ACB ∠=︒,∵||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r.即||2||BC AC =u u u r u u u r ,∴AOC △是等腰直角三角形, ∵()2,0A ,∴()1,1C , 而点C 在椭圆上,∴22111a b +=,2a =,∴243b =, ∴所求椭圆方程为223144x y +=.(2)对于椭圆上两点P ,Q , ∵PCQ ∠的平分线总是垂直于x 轴, ∴PC 与CQ 所在直线关于1x =对称,PC k k =,则CQ k k =-,∵()1,1C ,∴PC 的直线方程为()11y k x =-+,①QC 的直线方程为()11y k x =--+,②将①代入223144x y +=,得()()22213613610k x k k x k k +--+--=,③∵()1,1C 在椭圆上,∴1x =是方程③的一个根,∴2236113P k k x k--=+, 以k -替换k ,得到2236131Q k k x k +-=+. ∴()213P Q PQ P Qk x x kk x x +-==-, ∵90ACB ∠=o ,()2,0A ,()1,1C ,弦BC 过椭圆的中心O ,∴()2,0A ,()1,1B --,∴13AB k =, ∴PQ AB k k =,∴PQ AB ∥,∴存在实数λ,使得PQ AB =λu u u r u u u r,||PQ =u u ur =≤ 当2219k k =时,即3k =±时取等号,max ||PQ =u u u r又||AB =u u u rmaxλ==,∴λ取得最大值时的PQ5.已知抛物线216y x =,过抛物线焦点F 的直线l 分别交抛物线与圆22(4)16x y -+=于,,,A C D B (自上而下顺次)四点.(1)求证:||||AC BD ⋅为定值; (2)求||||AB AF ⋅的最小值. 【答案】(1)见证明;(2)108 【解析】(1)有题意可知,(4,0)F可设直线l 的方程为4x my =+,1122(,),(,)A x y B x y联立直线和抛物线方程2164y x x my ⎧=⎨=+⎩,消x 可得216640y my --=,所以1216y y m +=,1264y y =-, 由抛物线的定义可知,112||4,||42pAF x x BF x =+=+=+, 又||||4,||||4AC AF BD BF =-=-,所以2221212264||||(||4)(||4)16161616y y AC BD AF BF x x ⋅=--==⋅==,所以||||AC BD ⋅为定值16.(2)由(1)可知,12||||||8AB AF BF x x =+=++,1||4AF x =+,212111212||||(8)(4)12432AB AF x x x x x x x x ⋅=+++=++++,由1216x x =,可得2116x x =, 所以211164||||1248AB AF x x x ⋅=+++(其中1>0x ), 令264()1248f x x x x =+++,222642(2)(4)()212x x f x x x x-+'=+-=, 当(0,2)x ∈时,()0f x '<,函数单调递减,当(2,)x ∈+∞时,()0f x '>,函数单调递增, 所以()(2)108f x f ≥=. 所以||||AB AF ⋅的最小值为108.6.已知O 为坐标原点,点()()2,02,0A B -,,()01AC AD CB CD λλ===<<u u u r u u u r,过点B 作AC的平行线交AD 于点E .设点E 的轨迹为τ. (Ⅰ)求曲线τ的方程;(Ⅱ)已知直线l 与圆22:1O x y +=相切于点M ,且与曲线τ相交于P ,Q 两点,PQ 的中点为N ,求三角形MON 面积的最大值.【答案】(Ⅰ)()22105x y y +=≠;. 【解析】(Ⅰ)因为,AD AC EB AC =∥, 故EBD ACD ADC ∠=∠=∠, 所以EB ED =,故EA EB EA ED AD +=+==由题设得()()2,02,04A B AB -=,,,由椭圆定义可得点E 的轨迹方程为:()22105x y y +=≠.(Ⅱ)由题意,直线l 的斜率存在且不为0, 设直线l 的方程为y kx m =+, 因为直线l 与圆O 相切,1=,∴221m k =+,由221,5,x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()2221510550k x kmx m +++-=. 设()()1122,,,P x y Q x y ,由韦达定理知:()1212122210221515km mx x y y k x x m k k +=-+=++=++,. 所以PQ 中点N 的坐标为225,1515kmm k k ⎛⎫-⎪++⎝⎭,所以弦PQ 的垂直平分线方程为22151515m km y x k k k ⎛⎫-=-+ ⎪++⎝⎭,即 24015kmx ky k ++=+.所以MN =将m =MN =得2441155||||k MN k k k ====++…k =,即m =取等号).所以三角形MON的面积为11122S OM MN =⨯⨯⨯≤,综上所述,三角形MON. 7.已知椭圆2222:1(0)x y C a b a b +=>>F 是椭圆C 的一个焦点.点(02)M ,,直线MF 的斜率为3. (1)求椭圆C 的方程;(2)若过点M 的直线l 与椭圆C 交于A B ,两点,线段AB 的中点为N ,且AB MN =.求l 的方程.【答案】(1)22182x y +=;(2)22y x =±+【解析】(1)由题意,可得223cac⎧=⎪⎪⎨⎪=⎪⎩,解得a c ⎧=⎪⎨=⎪⎩,则222=2b a c =-, 故椭圆C 的方程为22182x y +=.(2)当l 的斜率不存在时,=2AB MN AB MN ≠=,,,不合题意,故l 的斜率存在. 设l 的方程为2y kx =+,联立221822x y y kx ⎧+=⎪⎨⎪=+⎩,得22(14)1680k x kx +++=, 设1122(()A x y B x y ,),,,则12122216k 8,14k 14kx x x x +=-=++, ()222(16)3214128320k k k ∆=-+=->即214k >,设00()N x y ,,则12028214x x kx k+==-+,120||||,0AB MN x =-=-Q0x =,即28||14k k =+整理得21124k =>.故k =,l 的方程为22y x =±+.8.已知椭圆2222:1(0)x y C a b a b+=>>过点(,右焦点F 是抛物线28y x =的焦点.(1)求椭圆C 的方程;(2)已知动直线l 过右焦点F ,且与椭圆C 分别交于M ,N 两点.试问x 轴上是否存在定点Q ,使得13516QM QN ⋅=-u u u u r u u u r 恒成立?若存在求出点Q 的坐标若不存在,说明理由.【答案】(1) 2211612x y += (2)见解析【解析】(1)因为椭圆C 过点,所以221231a b+=, 又抛物线的焦点为()2,0,所以2c =. 所以2212314a a +=-,解得23a =(舍去)或216a =. 所以椭圆C 的方程为2211612x y +=.(2)假设在x 轴上存在定点(,0)Q m ,使得13516QM QN ⋅=-u u u u r u u u r. ①当直线l 的斜率不存在时,则(2,3)M ,(2,3)N -,(2,3)QM m =-u u u u r ,(2,3)QN m =--u u u r,由2135(2)916QM QN m ⋅=--=-u u u u r u u u r ,解得54m =或114m =;②当直线l 的斜率为0时,则(4,0)M -,(4,0)N ,(4,0)QM m =--u u u u r,(4,0)QN m =-u u u r,由21351616QM QN m ⋅=-=-u u u u r u u u r ,解得114m =-或114m =.由①②可得114m =,即点Q 的坐标为11,04⎛⎫⎪⎝⎭. 下面证明当114m =时,13516QM QN ⋅=-u u u u r u u u r 恒成立.当直线l 的斜率不存在或斜率为0时,由①②知结论成立.当直线l 的斜率存在且不为0时,设其方程为(2)(0)y k x k =-≠,()11,M x y ,()22,N x y .直线与椭圆联立得()()222234161630kxk x k +-+-=,直线经过椭圆内一点,一定与椭圆有两个交点,且21221643k x x k +=+,()212216343k x x k -=+. ()()()222121212122224y y k x k x k x x k x x k =-•-=-++,所以()1122121212111111121,,44416QM QN x y x y x x x x y y ⎛⎫⎛⎫•=-•-=-+++ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r ()()()()222222221212221631112111161211241244164344316k k k x x k x x k k k k k k -⎛⎫⎛⎫=+-++++=+-+++= ⎪ ⎪++⎝⎭⎝⎭13516-恒成立 综上所述,在x 轴上存在点11,04Q ⎛⎫⎪⎝⎭,使得13516QM QN ⋅=-u u u u r u u u r 恒成立. 9.关于椭圆的切线由下列结论:若11(,)P x y 是椭圆22221(0)x y a b a b+=>>上的一点,则过点P 的椭圆的切线方程为11221x x y y a b +=.已知椭圆22:143x y C +=.(1)利用上述结论,求过椭圆C 上的点(1,)(0)P n n >的切线方程;(2)若M 是直线4x =上任一点,过点M 作椭圆C 的两条切线MA ,MB (A ,B 为切点),设椭圆的右焦点为F ,求证:MF AB ⊥.【答案】(1)240x y +-=(2)见证明 【解析】(1)由题意,将1x =代入椭圆方程22:143x y C +=,得32y =,所以3(1,)2P , 所以过椭圆C 上的点3(1,)2P 的切线方程为32143yx +=,即240x y +-=.(2)设(4,)M t ,11(,)A x y ,22(,)B x y ,则过A ,B 两点的椭圆C 的切线MA ,MB 的方程分别为11143x x y y +=,22143x x y y+=, 因为(4,)M t 在两条切线上,114143x y t ⨯∴+=,224143x y t⨯+=, 所以A ,B 两点均在直线4143x yt +=上,即直线AB 的方程为13tyx +=,当0t ≠时,3AB k t=-, 又(1,0)F ,0413MFt t k -==-,313AB MF t k k t ⋅=-⨯=-,所以MF AB ⊥, 若0t =,点(4,0)M 在x 轴上,A ,B 两点关于x 轴对称,显然MF AB ⊥.10.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F ,,离心率为12,P 为椭圆上一动点(异于左右顶点),若12AF F △(1)求椭圆C 的方程;(2)若直线l 过点1F 交椭圆C 于,A B 两点,问在x 轴上是否存在一点Q ,使得QA QB ⋅u u u r u u u r为定值?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)见解析【解析】(1)由题意,当P 在上或下顶点时,12PF F ∆的面积取值最大值,即最大值为bc = 又12c a =,且222a c b =+,解得24a =,23b =, 故椭圆C 的方程为22143x y +=.(2)易知()11,0F -,设直线l 的方程为1x my =-,()()()11220,,,,,0A x y B x y Q x , 联立方程组221431x y x my ⎧+=⎪⎨⎪=-⎩,整理得22(34)690m y my +--=, 则122634my y m +=+,122934y y m =-+, ()()()()10120200212,,y QA QB x x y x x y x x x x y y ⋅=-⋅-=--+u u u r u u u r()212001212x x x x x x y y =+-++,∵111x my =-,221x my =-,∴()()()2212121212215111134m x x my my m y y m y y m =--=+-+=-+,()()()212122226112234m x x my my m y y m +=-+-=+-=-+, ∴222000222156912343434m m QA QB x x x m m m ⋅=-+-+-+++u u u r u u u r 2202281253434m x x m m +=+-++()222000231248534x m x x m -++-=+, 要使QA QB ⋅u u u r u u u r 为定值,则2200031248534x x x -+-=,解得0118x =-, 所以在x 轴上存在点11,08Q ⎛⎫-⎪⎝⎭,使得QA QB ⋅u u u r u u u r 为定值. 11.已知点()1,0F ,直线:1l x =-,P 为平面上的动点,过点P 作直线的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅u u u r u u u r u u u r u u u r.(1)求动点P 的轨迹C 的方程;(2)设直线y kx b =+与轨迹C 交于两点,()11,A x y 、()22,B x y ,且12y y a -= (0a >,且a 为常数),过弦AB 的中点M 作平行于x 轴的直线交轨迹C 于点D ,连接AD 、BD .试判断ABD ∆的面积是否为定值,若是,求出该定值,若不是,请说明理由 【答案】(1) 24y x = (2)见解析 【解析】(1)设(,)P x y ,则(1,)Q y -,QP QF FP FQ •=•u u u r u u u r u u u r u u u r Q ,(1,0)(2,)(1,)(2,)x y x y y ∴+•-=-•-,即22(1)2(1)x x y +=--+,即24y x =, 所以动点P 的轨迹的方程24y x =.(2)联立方程组2,4,y kx b y x =+⎧⎨=⎩消去x ,得2440ky y b -+=,依题意,0k ≠,且124y y k+=,124b y y k =,由12y y a -=得()2212124y y y y a +-=, 即221616b a k k-=, 整理得:221616kb a k -=,所以2216(1)a k kb =-,① 因为AB 的中点222,bk M k k -⎛⎫⎪⎝⎭,所以点212,D k k ⎛⎫⎪⎝⎭,依题意, 122111||22BD bkS DM y y a k ∆∆-=-=, 由方程2440ky y b -+=中的判别式16160kb ∆=->,得10kb ->,所以2112ABD bkS a k∆-=••, 由①知22116a k kb -=,所以23121632MBDa a S a ∆=••=,又a 为常数,故ABD S ∆的面积为定值. 12.已知点P 在抛物线()220C x py p =:>上,且点P 的横坐标为2,以P 为圆心,PO 为半径的圆(O 为原点),与抛物线C 的准线交于M ,N 两点,且2MN =. (1)求抛物线C 的方程;(2)若抛物线的准线与y 轴的交点为H .过抛物线焦点F 的直线l 与抛物线C 交于A ,B ,且AB HB ⊥,求AF BF -的值. 【答案】(1) 24x y = (2)4 【解析】(1)将点P 横坐标2P x =代入22x py =中,求得2P y p=, ∴P (2,2p),2244OP p =+,点P 到准线的距离为22p d p =+,∴222||||2MN OP d ⎛⎫=+ ⎪⎝⎭,∴22222212p p p ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,解得24p =,∴2p =,∴抛物线C 的方程为:24x y =;(2)抛物线24x y =的焦点为F (0,1),准线方程为1y =-,()01H -,; 设()()1122A x y B x y ,,,, 直线AB 的方程为1y kx =+,代入抛物线方程可得2440x kx --=,∴121244x x k x x +==-,,…① 由AB HB ⊥,可得1AB HB k k ⋅=-, 又111AB AF y k k x -==,221HB y k x +=, ∴1212111y y x x -+⋅=-, ∴()()1212110y y x x -++=,即2212121111044x x x x ⎛⎫⎛⎫-++= ⎪⎪⎝⎭⎝⎭, ∴()22221212121110164x x x x x x +--+=,…② 把①代入②得,221216x x -=,则()22121211||||1116444AF BF y y x x -=+--=-=⨯=. 13.已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义()PFd P FQ=. (1)当8(1)3P --,时,求()d P ;(2)证明存在常数a ,使得2()d P PF a =+.(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断13()()d P d P +与22()d P 的关系. 【答案】(1)83;(2)证明见解析;(3)()()()1322d P d P d P +>. 【解析】 (1)因为8443(1)233PFk y x ==⇒=-. 联立方程24(1)1344Q y x x y x ⎧=-⎪⇒=⎨⎪=⎩, 则1083()534PF d P QF ⎧=⎪⎪⇒=⎨⎪=⎪⎩. (2)当()1,0P -,易得2()2a d P PF =-=, 不妨设()1,P P y -,0P y >, 直线:1PF x my =+,则2P my =-,联立214x my y x=+⎧⎨=⎩,2440y my --=,2Q y m ==+2()||2P P Q y d P PF y m -==2=-+=.(3)设()()()1122331,,1,,1,P y P y P y ---,则()()()13224d P d P d P +-⎡⎤⎣⎦1322PF P F P F =+-2221324424y y y =+++222131344242y y y y +⎛⎫=+++ ⎪⎝⎭()22213134416y y y y =++++因为(()222213134416y y y y ⎡⎤++-++⎣⎦22131224428y y y y =++-,又因()()()()2222213131313444480yy y y y y y y ++-+=+->,所以()()()1322d P d P d P +>.14.已知抛物线2:2(0)C x py p =>的焦点F 到准线距离为2. (1)若点(1,1)E ,且点P 在抛物线C 上,求||||PE PF +的最小值;(2)若过点(0,)N b 的直线l 与圆22:(2)4M x y +-=相切,且与抛物线C 有两个不同交点,A B ,求AOB ∆的面积.【答案】(1)2(2) 2ABC S b ∆=【解析】解:(1)根据题意可知2p =所以抛物线方程为24x y =则抛物线C 焦点为(0,1)F ,准线为1y =-; 记点,P E 到抛物线C 准线的距离分别为12,d d ,故12||||||2PE PF PE d d +=+≥=,等号成立当且仅当PE 垂直于准线, 故||||PE PF +的最小值为2 (2)设()11,A x y ,()22,B x y由题意知,直线l 斜率存在,设直线l 的方程为:y kx b =+ 将y kx b =+与24x y =联立得2440x kx b --=, 由韦达定理得12124,4x x k x x b +==-, 由()0,2M 到直线l的距离为12d ==得:2244b b k -=,又||AB ==点O 到直线l 的距离为2d =所以2|ABC S b b ∆=== 15.已知曲线C 上的任意一点到直线l :=12的距离与到点F (102,)的距离相等. (1)求曲线C 的方程;(2)若过P (1,0)的直线与曲线C 相交于A ,B 两点,Q (1,0)为定点,设直线AQ 的斜率为1,直线BQ 的斜率为2,直线AB 的斜率为,证明:22212112k k k +-为定值. 【答案】(1)y 2=2;(2)见解析 【解析】(1)由条件可知,此曲线是焦点为F 的抛物线,p 122=,p=1. ∴抛物线的方程为y 2=2;(2)根据已知,设直线AB 的方程为y=(1)(≠0), 由()2y k x 1y 2x ⎧=-⎨=⎩,可得y 22y2=0.设A (211y y 2,),B (222y y 2,),则122y y k +=,y 1y 2=2. ∵1112211y 2y k y y 212==++,2222222y 2y k y y 212==++. ∴22221222221212(y 2)(y 2)11k k 4y 4y +++=+=22222212212212(y 2)y (y 2)y 4y y +++ =()42422222122112122212y y y y 8y y 4y y 4y y ++++=()2221212128y y 32(y y )2y y 4162+++-+= =22482k 42k+=+.∴222121124k k k +-=.。
2010-2019高考数学(理科)真题分类汇编-专题十 计数原理第三十讲 排列与组合

有 A13 种方法,其他数位上的数可以从剩下的 4 个数字中任选,进行全排列,有 A44 种方
法,所以其中奇数的个数为 A13A44 = 72 ,故选 D.
6.B【解析】据题意,万位上只能排 4、5.若万位上排 4,则有 2 A43 个;若万位上排 5,
则有 3 A43 个.所以共有 2 A43 +3 A43 = 5 24 = 120 个,选 B.
2 1,3,4,5,6,7,8,9
可知 (1, 2) 与 (2,1) 是不同,所以抽到的 2 张卡片上的数奇偶性不同有 2C15C14 =40,所求 概率为 40 = 5 .
72 8 4.B【解析】由题意可知 E → F 有 6 种走法, F → G 有 3 种走法,由乘法计数原理知,共
有 6 3 = 18 种走法,故选 B. 5.D【解析】由题意,要组成没有重复的五位奇数,则个位数应该为 1、3、5 中任选一个,
则不同的取法共有
A.60 种
B.63 种
C.65 种
D.66 种
14.(2012 山东)现有 16 张不同的卡片,其中红色、黄色、蓝色、绿色卡片各 4 张,从中
任取 3 张,要求这 3 张卡片不能是同一种颜色,并且红色卡片至多 1 张,不同取法的种
数是
A.232
B.252
C.472
D.484
15.(2010 天津)如图,用四种不同颜色给图中的 A,B,C,D,E,F 六个点涂色,要求每个点涂
的概率是________.
28.(2013 北京)将序号分别为 1,2,3,4,5 的 5 张参观券全部分给 4 人,每人至少一张,
如果分给同一人的两张参观券连号,那么不同的分法种数是
.
29.(2012 湖北)回文数是指从左到右读与从右到左读都一样的正整数.如 22,121,3443,
(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)

(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)1.(2019·全国2·文T3)已知向量a=(2,3),b=(3,2),则|a-b|=( ) A.√2 B.2 C.5√2 D.50【答案】A【解析】由题意,得a-b=(-1,1),则|a-b|=√(-1)2+12=√2,故选A.2.(2019·全国·1理T7文T8)已知非零向量a ,b 满足|a|=2|b|,且(a-b)⊥b ,则a 与b 的夹角为( ) A.π6 B.π3C.2π3D.5π6【答案】B【解析】因为(a-b)⊥b , 所以(a-b )·b=a ·b-b 2=0, 所以a ·b=b 2.所以cos<a ,b>=a ·b|a |·|b |=|b |22|b |2=12,所以a 与b 的夹角为π3,故选B.3.(2018·全国1·理T6文T7)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ⃗⃗⃗⃗⃗ =( ) A.34AB ⃗⃗⃗⃗⃗ −14AC ⃗⃗⃗⃗⃗ B.14AB ⃗⃗⃗⃗⃗ −34AC⃗⃗⃗⃗⃗ C.34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ D.14AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ 【答案】A【解析】如图,EB ⃗⃗⃗⃗⃗ =-BE⃗⃗⃗⃗⃗ =-12(BA ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −14BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ −14(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=3 4AB⃗⃗⃗⃗⃗ −14AC⃗⃗⃗⃗⃗ .4.(2018·全国2·T4)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=( )A.4B.3C.2D.0【答案】B【解析】a·(2a-b)=2a2-a·b=2-(-1)=3.5.(2018·北京·理T6)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2.∵a,b均为单位向量,∴1-6a·b+9=9+6a·b+1.∴a·b=0,故a⊥b,反之也成立.故选C.6.(2018·浙江·T9)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为π3,向量b满足b2-4e·b+3=0,则|a-b|的最小值是( )A.√3-1B.√3+1C.2D.2-√3【答案】A【解析】∵b2-4e·b+3=0,∴(b-2e)2=1,∴|b-2e|=1.如图所示,平移a,b,e,使它们有相同的起点O,以O为原点,向量e所在直线为x轴建立平面直角坐标系,则b的终点在以点(2,0)为圆心,半径为1的圆上,|a-b|就是线段AB的长度.要求|AB|的最小值,就是求圆上动点到定直线的距离的最小值,也就是圆心M到直线OA的距离减去圆的半径长,因此|a-b|的最小值为-1.7.(2018·天津·理T8)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD=120°,AB=AD=1.若点E 为边CD 上的动点,则 A.2116 B.32C.2516D.3【答案】A【解析】如图,以D 为坐标原点建立直角坐标系.连接AC ,由题意知∠CAD=∠CAB =60°,∠ACD=∠ACB =30°,则D(0,0),A(1,0),B (32,√32),C(0,√3).设E(0,y)(0≤y≤√3),则AE⃗⃗⃗⃗⃗ =(-1,y),BE ⃗⃗⃗⃗⃗ =(-32,y-√32),∴AE ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =32+y 2-√32y=(y-√34)2+2116,∴当y=√34时,AE ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ 有最小值2116.8.(2018·天津·文T8)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,BM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗⃗ ,则BC ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的值为( ) A.-15 B.-9 C.-6D.0【答案】C【解析】连接MN ,∵BM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗⃗ ,∴AC ⃗⃗⃗⃗⃗ =3AN ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =3AM⃗⃗⃗⃗⃗⃗ .∴MN ∥BC ,且MN BC =13,∴BC ⃗⃗⃗⃗⃗ =3MN ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ ),∴BC ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ )·OM ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ -|OM ⃗⃗⃗⃗⃗⃗ |2)=3[2×1×(-12)-1]=-6.9.(2017·全国2·理T12)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )的最小值是( ) A.-2 B.-32 C.-43 D.-1【答案】B【解析】以BC 所在的直线为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立平面直角坐标系,如图.可知A(0,√3),B(-1,0),C(1,0).设P(x ,y),则PA ⃗⃗⃗⃗ =(-x ,√3-y),PB ⃗⃗⃗⃗⃗ =(-1-x ,-y),PC ⃗⃗⃗⃗ =(1-x ,-y).所以PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ =(-2x ,-2y).所以PA ⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )=2x 2-2y(√3-y)=2x 2+2(y -√32)2−32≥-32. 当点P 的坐标为(0,√32)时,PA ⃗⃗⃗⃗ ·(PB⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )取得最小值为-32,故选10.(2017·全国3·理T12)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为( ) A.3 B.2√2C.√5D.2【答案】A【解析】建立如图所示的平面直角坐标系, 则A(0,1),B(0,0),D(2,1).设P(x ,y),由|BC|·|CD|=|BD|·r ,得r=|BC |·|CD ||BD |=5=2√55,即圆的方程是(x-2)2+y 2=45. 易知AP ⃗⃗⃗⃗⃗ =(x ,y-1),AB ⃗⃗⃗⃗⃗ =(0,-1),AD ⃗⃗⃗⃗⃗ =(2,0).由AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ , 得{x =2μ,y -1=-λ,所以μ=x2,λ=1-y ,所以λ+μ=12x-y+1. 设z=12x-y+1,即12x-y+1-z=0. 因为点P(x ,y)在圆(x-2)2+y 2=45上, 所以圆心C 到直线12x-y+1-z=0的距离d≤r,即√14+1≤2√55,解得1≤z≤3,11.(2017·全国2·文T4)设非零向量a ,b 满足|a+b|=|a-b|,则( ) A.a ⊥b B.|a|=|b| C.a ∥b D.|a|>|b| 【答案】A【解析】由|a+b|=|a-b|,平方得a 2+2a ·b+b 2=a 2-2a ·b+b 2,即a ·b=0.又a ,b 为非零向量,故a ⊥b ,故选A.12.(2016·四川·文T9)已知正三角形ABC 的边长为2√3,平面ABC 内的动点P ,M 满足|AP ⃗⃗⃗⃗⃗ |=1,PM ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ ,则|BM ⃗⃗⃗⃗⃗⃗ |2的最大值是( ) A.434 B.494 C.37+6√34 D.37+2√334【答案】B【解析】设△ABC 的外心为D ,则|DA ⃗⃗⃗⃗⃗ |=|DB ⃗⃗⃗⃗⃗ |=|DC ⃗⃗⃗⃗⃗ |=2. 以D 为原点,直线DA 为x 轴,过D 点的DA 的垂线 为y 轴,建立平面直角坐标系, 则A(2,0),B(-1,-√3),C(-1,√3). 设P(x ,y),由已知|AP⃗⃗⃗⃗⃗ |=1,得(x-2)2+y 2=1,∵PM ⃗⃗⃗⃗⃗⃗ =MC⃗⃗⃗⃗⃗⃗ ,∴M (x -12,y+√32). ∴BM ⃗⃗⃗⃗⃗⃗ =(x+12,y+3√32). ∴BM ⃗⃗⃗⃗⃗⃗ 2=(x+1)2+(y+3√3)24,它表示圆(x-2)2+y 2=1上点(x ,y)与点(-1,-3√3)距离平方的14,∴(|BM⃗⃗⃗⃗⃗⃗ |2)max =14[√32+(0+3√3)22=494, 故选B.13.(2016·天津·文T7)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE=2EF ,则AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为 ( ) A.-58 B.18C.14D.118【答案】B【解析】方法1(基向量法):如图所示,选取AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,则AF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗ +12DE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ )+12×12AC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +34AC⃗⃗⃗⃗⃗ ,AB⃗⃗⃗⃗⃗ . 故AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =(12AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =34AC ⃗⃗⃗⃗⃗ 2−14AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ −12AB⃗⃗⃗⃗⃗ 2 =34−14×1×1×12−12=18.14.(2016·全国2·理T3)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b ,则m=( ) A.-8B.-6C.6D.8【答案】D【解析】由题意可知,向量a+b=(4,m-2).由(a+b)⊥b ,得4×3+(m-2)×(-2)=0,解得m=8.故选D.15.(2015·全国2·文T4)向量a=(1,-1),b=(-1,2),则(2a+b )·a=( ) A.-1B.0C.1D.2【答案】C【解析】由已知2a+b=(1,0), 所以(2a+b )·a=1×1+0×(-1)=1.故选C.16.(2015·福建·文T7)设a=(1,2),b=(1,1),c=a+kb.若b ⊥c ,则实数k 的值等于( )A.-32 B.-53C.53D.32【答案】A【解析】∵a=(1,2),b=(1,1),∴c=(1+k ,2+k). ∵b ⊥c ,∴b ·c=1+k+2+k=0.∴k=-3217.(2015·广东·文T9)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB ⃗⃗⃗⃗⃗ =(1,-2),AD ⃗⃗⃗⃗⃗ =(2,1),则AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =( ) A.5 B.4 C.3 D.2 【答案】A【解析】AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(3,-1),所以AD⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(2,1)·(3,-1)=2×3+1×(-1)=5. 18.(2015·山东·理T4)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =( ) A.-32a 2 B.-34a 2 C.34a 2 D.32a 2【答案】D【解析】如图,设BA ⃗⃗⃗⃗⃗ =a ,BC⃗⃗⃗⃗⃗ =b. 则BD ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·BA⃗⃗⃗⃗⃗ =(a+b)·a=a 2+a ·b=a 2+a ·a ·c os 60°=a 2+12a 2=32a 2.19.(2015·四川·理T7)设四边形ABCD 为平行四边形,|AB ⃗⃗⃗⃗⃗ |=6,|AD ⃗⃗⃗⃗⃗ |=4.若点M ,N 满足BM ⃗⃗⃗⃗⃗⃗ =3MC ⃗⃗⃗⃗⃗⃗ ,DN ⃗⃗⃗⃗⃗ =2NC ⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗ =( ) A.20B.15C.9D.6【答案】C【解析】如图所示,AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗ ,NM ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −14AD ⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗ =(AB⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗ )·(13AB ⃗⃗⃗⃗⃗ −14AD ⃗⃗⃗⃗⃗ ) =13|AB ⃗⃗⃗⃗⃗ |2-316|AD ⃗⃗⃗⃗⃗ |2+14AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ −14AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗=13×36-316×16=9.20.(2015·福建·理T9)已知AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,|AB ⃗⃗⃗⃗⃗ |=1t ,|AC⃗⃗⃗⃗⃗ |=t.若点P 是△ABC 所在平面内的一点,且AP ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |,则PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值等于( )A.13B.15C.19D.21【答案】A【解析】以点A 为原点,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 所在直线分别为x 轴、y 轴建立平面直角坐标系,如图. 则A(0,0),B (1t ,0),C(0,t), ∴AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |=(1,0),AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |=(0,1). ∴AP⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |=(1,0)+4(0,1)=(1,4). ∴点P 的坐标为(1,4),PB⃗⃗⃗⃗⃗ =(1t-1,-4),PC ⃗⃗⃗⃗ =(-1,t-4). ∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =1-1t -4t+16=-(1t +4t)+17≤-4+17=13,当且仅当1t =4t ,即t=12时取“=”. ∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为13.21.(2015·全国1·文T2)已知点A(0,1),B(3,2),向量AC ⃗⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4) 【答案】A【解析】∵AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3,1),AC ⃗⃗⃗⃗⃗ =(-4,-3), ∴BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4). 22.(2015·重庆·理T6)若非零向量a ,b 满足|a|=2√23|b|,且(a-b)⊥(3a+2b),则a 与b 的夹角为 ( )A.π4B.π2C.3π4D .π【答案】A【解析】由(a-b)⊥(3a+2b)知(a-b)·(3a+2b)=0,即3|a|2-a ·b-2|b|2=0.设a 与b 的夹角为θ,则3|a|2-|a||b|cos θ-2|b|2=0,即3·(2√23|b |)2−2√23|b|2cos θ-2|b|2=0,整理,得cos θ=√22.故θ=π4.23.(2015·重庆·文T7)已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a+b),则a 与b 的夹角为( ) A.π3 B.π2C.2π3D.5π6【答案】C【解析】因为a ⊥(2a+b),所以a ·(2a+b)=0, 即2|a|2+a ·b=0.设a 与b 的夹角为θ,则有2|a|2+|a||b|cos θ=0. 又|b|=4|a|,所以2|a|2+4|a|2cos θ=0, 则cos θ=-12,从而θ=2π3.24.(2015·全国1·理T7)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC⃗⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −43AC⃗⃗⃗⃗⃗ C.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ +13AC⃗⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ −13AC⃗⃗⃗⃗⃗ 【答案】A 【解析】如图,∵AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ , ∴AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ . 25.(2014·全国1·文T6)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗⃗B.12AD ⃗⃗⃗⃗⃗C.BC ⃗⃗⃗⃗⃗D.12BC⃗⃗⃗⃗⃗ 【答案】A【解析】EB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =-12(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )-12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )=-12(BA ⃗⃗⃗⃗⃗ +CA⃗⃗⃗⃗⃗ )=12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=12×2AD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ ,故选A.26.(2014·山东·文T7)已知向量a=(1,√3),b=(3,m),若向量a ,b 的夹角为π6,则实数m=( ) A.2√3 B.√3 C.0 D.-√3【答案】B【解析】∵cos<a ,b>=a ·b|a ||b |, ∴cos π6=√3m 2×√32+m 2,解得m=√3.27.(2014·北京·文T3)已知向量a=(2,4),b=(-1,1),则2a-b=( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9) 【答案】A【解析】2a-b=(4-(-1),8-1)=(5,7).故选A.28.(2014·广东·文T3)已知向量a=(1,2),b=(3,1),则b-a=( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 【答案】B【解析】由题意得b-a=(3,1)-(1,2)=(2,-1),故选B.29.(2014·福建·理T8)在下列向量组中,可以把向量a=(3,2)表示出来的是( ) A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 【答案】B【解析】对于A ,C ,D ,都有e 1∥e 2,故选B.30.(2014·全国2·理T3文T4)设向量a ,b 满足|a+b|=√10,|a-b|=√6,则a ·b=( ) A.1 B.2 C.3 D.5 【答案】A【解析】∵|a+b|=√10,∴(a+b)2=10.∴|a|2+|b|2+2a·b=10,①∵|a-b|=√6,∴(a-b)2=6,∴|a|2+|b|2-2a·b=6,②由①-②得a·b=1,故选A.31.(2014·大纲全国·文T6)已知a,b为单位向量,其夹角为60°,则(2a-b)·b=( )A.-1B.0C.1D.2【答案】B【解析】由已知得|a|=|b|=1,<a,b>=60°,∴(2a-b)·b=2a·b-b2=2|a||b|cos<a,b>-|b|2=2×1×1×c os 60°-12=0,故选B.32.(2014·大纲全国·理T4)若向量a,b满足:|a|=1,(a+b)⊥a,(2a+b)⊥b,则|b|=( )A.2B.√2C.1D.√22【答案】B【解析】∵(a+b)⊥a,|a|=1,∴(a+b)·a=0.∴|a|2+a·b=0.∴a·b=-1.又(2a+b)⊥b,∴(2a+b)·b=0.∴2a·b+|b|2=0.∴|b|2=2.∴|b|=√2.故选B.33.(2014·重庆·理T4)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=( )A.-92B.0 C.3 D.152【答案】C【解析】由已知(2a-3b)⊥c,可得(2a-3b)·c=0,即(2k-3,-6)·(2,1)=0,展开化简,得4k-12=0,所以k=3.故选C.34.(2012·陕西·文T7)设向量a=(1,cos θ)与b=(-1,2cos θ)垂直,则cos 2θ等于( )A.√22B.12C.0D.-1【答案】C【解析】∵a ⊥b ,∴a ·b=0, ∴-1+2cos 2θ=0,即cos 2θ=0.35.(2012·重庆·理T6)设x ,y ∈R ,向量a=(x ,1),b=(1,y),c=(2,-4),且a ⊥c ,b ∥c ,则|a+b|= ( ) A.√5 B.√10 C.2√5 D.10【答案】B【解析】由a ⊥c ,得a ·c=2x-4=0,解得x=2.由b ∥c 得12=y-4,解得y=-2,所以a=(2,1),b=(1,-2),a+b=(3,-1),|a+b|=√10.故选B.36.(2010·全国·文T2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于( ) A.865 B.-865C.1665D.-1665【答案】C【解析】b=(2a+b)-2a=(3,18)-(8,6)=(-5,12), 因此cos<a ,b>=a ·b |a ||b |=165×13=1665.37.(2019·全国3·文T13)已知向量a=(2,2),b=(-8,6),则cos<a ,b>= . 【答案】−√210【解析】cos<a ,b>=a ·b|a ||b |=√22+22×√(-8)+62=2√2×10=-√210. 38.(2019·北京·文T9)已知向量a=(-4,3),b=(6,m),且a ⊥b ,则m= . 【答案】8【解析】∵a=(-4,3),b=(6,m),a ⊥b , ∴a ·b=0,即-4×6+3m=0,即m=8.39.(2019·天津·T14)在四边形ABCD 中,AD ∥BC ,AB=2√3,AD=5,∠A=30°,点E 在线段CB 的延长线上,且AE=BE ,则BD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ = . 【答案】-1【解析】∵AD ∥BC ,且∠DAB=30°,∴∠ABE=30°. ∵EA=EB ,∴∠EAB=30°.∠AEB=120°.在△AEB 中,EA=EB=2, BD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(AB ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ ) =-BA ⃗⃗⃗⃗⃗ 2+BA ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ =-12+2√3×2×c os 30°+5×2√3×c os 30°+5×2×c os 180°=-22+6+15=-1.40.(2019·全国3·理T13)已知a ,b 为单位向量,且a ·b=0,若c=2a-√5b ,则cos<a ,c>= . 【答案】23【解析】∵a ,b 为单位向量, ∴|a|=|b|=1.又a ·b=0,c=2a-√5b ,∴|c|2=4|a|2+5|b|2-4√5a ·b=9,∴|c|=3. 又a ·c=2|a|2-√5a ·b=2, ∴cos<a ,c>=a ·c|a |·|c |=21×3=23.41.(2019·浙江·T17)已知正方形ABCD 的边长为1.当每个λi (i=1,2,3,4,5,6)取遍±1时,|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小值是 ,最大值是 . 【答案】0 2√5 【解析】(基向量处理)λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =(λ1-λ3+λ5-λ6)AB ⃗⃗⃗⃗⃗ +(λ2-λ4+λ5+λ6)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小,只需要|λ1-λ3+λ5-λ6|=|λ2-λ4+λ5+λ6|=0,此时只需要取λ1=1,λ2=-1,λ3=1,λ4=1,λ5=1,λ6=1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |min =0,由于λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =±2AB ⃗⃗⃗⃗⃗ 或±2AD ⃗⃗⃗⃗⃗ ,取其中的一种λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =2AB⃗⃗⃗⃗⃗ 讨论(其他三种类同),此时λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =(λ1-λ3+2)AB ⃗⃗⃗⃗⃗ +(λ2-λ4)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最大,只需要使|λ1-λ3+2|,|λ2-λ4|最大,取λ1=1,λ2=1,λ3=-1,λ4=-1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |=|4AB ⃗⃗⃗⃗⃗ +2AD ⃗⃗⃗⃗⃗ |=2√5,综合几种情况可得|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD⃗⃗⃗⃗⃗ |max =2√42.(2019·江苏·T12)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE=2EA ,AD 与CE 交于点O.若AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ ,则ABAC 的值是 .【答案】√3【解析】如图,过点D 作DF ∥CE ,交AB 于点F , 由BE=2EA ,D 为BC 中点,知BF=FE=EA ,AO=OD.又AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗ ·(AC ⃗⃗⃗⃗⃗ −AE⃗⃗⃗⃗⃗ ) =32(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ -13AB⃗⃗⃗⃗⃗ ) =32(AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2−13AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ ) =32(23AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+AC⃗⃗⃗⃗⃗ 2) =AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ 2+32AC⃗⃗⃗⃗⃗ 2, 得12AB ⃗⃗⃗⃗⃗ 2=32AC ⃗⃗⃗⃗⃗ 2,即|AB⃗⃗⃗⃗⃗ |=√3|AC ⃗⃗⃗⃗⃗ |,故AB AC=√3. 43.(2018·北京·文T9)设向量a=(1,0),b=(-1,m).若a ⊥(ma-b),则m= . 【答案】-1【解析】由题意,得ma-b=(m+1,-m). ∵a ⊥(ma-b),∴a ·(ma-b)=0,即m+1=0, ∴m=-1.44.(2018·上海·T8)在平面直角坐标系中,已知点A(-1,0),B(2,0),E ,F 是y 轴上的两个动点,且|EF ⃗⃗⃗⃗ |=2,则AE ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ 的最小值为 . 【答案】-3【解析】依题意,设E(0,a),F(0,b),不妨设a>b ,则 a-b=2,AE ⃗⃗⃗⃗⃗ =(1,a),BF ⃗⃗⃗⃗ =(-2,b),a=b+2,所以AE ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,a)·(-2,b)=-2+ab=-2+(b+2)b=b 2+2b-2=(b+1)2-3, 故所求最小值为-3.45.(2018·江苏·T2)在平面直角坐标系xOy 中,A 为直线l:y=2x 上在第一象限内的点,B(5,0),以AB 为直径的圆C 与直线l 交于另一点D.若AB ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0,则点A 的横坐标为 . 【答案】3【解析】设A(a ,2a)(a>0),则由圆心C 为AB 的中点得C (a+52,a),☉C:(x-5)(x-a)+y(y-2a)=0.将其与y=2x 联立解得x D =1,D(1,2).因为AB ⃗⃗⃗⃗⃗ =(5-a ,-2a),CD ⃗⃗⃗⃗⃗ =(1-a+52,2-a),AB ⃗⃗⃗⃗⃗ ·CD⃗⃗⃗⃗⃗ =0,所以(5-a)·(1-a+52)+(-2a)(2-a)=0,即a 2-2a-3=0,解得a=3或a=-1.因为a>0,所以a=3.46.(2018·全国3·T13)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c ∥(2a+b),则λ= . 【答案】12【解析】2a+b=(4,2),c=(1,λ), 由c ∥(2a+b),得4λ-2=0,得λ=12.47.(2017·全国1·文T13)已知向量a=(-1,2),b=(m ,1),若向量a+b 与a 垂直,则m= . 【答案】7【解析】因为a=(-1,2),b=(m ,1), 所以a+b=(m-1,3).因为a+b 与a 垂直,所以(a+b )·a=0,即-(m-1)+2×3=0,解得m=7.48.(2017·山东·文T11)已知向量a=(2,6),b=(-1,λ).若a ∥b ,则λ= . 【答案】-3【解析】∵a ∥b ,∴2λ-6×(-1)=0,∴λ=-3.49.(2017·全国1·理T13)已知向量a ,b 的夹角为60°,|a|=2,|b|=1,则|a+2b|= . 【答案】2【解析】因为|a+2b|2=(a+2b)2=|a|2+4·|a|·|b|·c os 60°+4|b|2=22+4×2×1×12+4×1=12, 所以|a+2b|=√12=2√3.50.(2017·天津,理13文14)在△ABC 中,∠A =60°,AB=3,AC=2.若BD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ (λ∈R),且AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =-4,则λ的值为 . 【答案】311【解析】由题意,知|AB ⃗⃗⃗⃗⃗ |=3,|AC ⃗⃗⃗⃗⃗ |=2, AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =3×2×c os 60°=3, AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=13AB ⃗⃗⃗⃗⃗ +23AC⃗⃗⃗⃗⃗ , 所以AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ )·(λAC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =λ-23AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+2λ3AC ⃗⃗⃗⃗⃗ 2 =λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.51.(2017·江苏·T12)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的模分别为1,1,√2,OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°.若OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R),则m+n= . 【答案】3【解析】由tan α=7可得cos α=5√2,sin α=5√2,则5√2=OA⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗⃗ |OA⃗⃗⃗⃗⃗⃗ |·|OC ⃗⃗⃗⃗⃗⃗ |=⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ √2,由cos ∠BOC=√22可得√22=OB ⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗⃗ |OB ⃗⃗⃗⃗⃗⃗ |·|OC⃗⃗⃗⃗⃗⃗ |=⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ √2,因为cos ∠AOB=cos (α+45°)=cos αc os 45°-sin αsin45°=5√2×√22−5√2×√22=-35,所以OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =-35,所以m-35n=15,-35m+n=1, 所以25m+25n=65,所以m+n=3.52.(2017·山东·理T12)已知e 1,e 2是互相垂直的单位向量,若√3 e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是 . 【答案】√33【解析】∵e 1,e 2是互相垂直的单位向量, ∴可设a=√3e 1-e 2=(√3,-1),b=e 1+λe 2=(1,λ). 则<a ,b >=60°.∴cos<a ,b>=c os 60°=a ·b|a ||b |=√3-2=12,即√3-λ=2+1,解得λ=√33.53.(2017·江苏·理T13)在平面直角坐标系xOy 中,A(-12,0),B(0,6),点P 在圆O:x 2+y 2=50上.若PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ≤20,则点P 的横坐标的取值范围是 . 【答案】[-5√2,1]【解析】设P(x ,y),由PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ≤20,易得x 2+y 2+12x-6y≤20.把x 2+y 2=50代入x 2+y 2+12x-6y≤20得2x-y+5≤0. 由{2x -y +5=0,x 2+y 2=50,可得{x =-5,y =-5或{x =1,y =7.由2x-y+5≤0表示的平面区域及P 点在圆上,可得点P 在圆弧EPF 上,所以点P 横坐标的取值范围为[-5√2,1].54.(2017·北京·文T12)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ 的最大值为 .【答案】6【解析】方法1:设P(cos α,sin α),α∈R ,则AO ⃗⃗⃗⃗⃗ =(2,0),AP ⃗⃗⃗⃗⃗ =(cos α+2,sin α),AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =2cos α+4.当α=2k π,k ∈Z 时,2cos α+4取得最大值,最大值为6. 故AO ⃗⃗⃗⃗⃗ ·AP⃗⃗⃗⃗⃗ 的最大值为6. 方法2:设P(x ,y),x 2+y 2=1,-1≤x≤1,AO ⃗⃗⃗⃗⃗ =(2,0),AP ⃗⃗⃗⃗⃗ =(x+2,y),AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =2x+4,故AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ 的最大值为6.55.(2016·北京·文T9)已知向量a=(1,√3),b=(√3,1),则a 与b 夹角的大小为 . 【答案】π6【解析】设a 与b 的夹角为θ,则cos θ=a ·b|a ||b |=2√32×2=√32,且两个向量夹角范围是[0,π],∴所求的夹角为π6.56.(2016·全国1·文T13)设向量a=(x ,x+1),b=(1,2),且a ⊥b ,则x= . 【答案】−23【解析】∵a ⊥b ,∴a ·b=x+2(x+1)=0, 解得x=-23.57.(2016·山东·文T13)已知向量a=(1,-1),b=(6,-4).若a ⊥(ta+b),则实数t 的值为 . 【答案】-5【解析】由a ⊥(ta+b)可得a ·(ta+b)=0, 所以ta 2+a ·b=0,而a 2=12+(-1)2=2,a ·b=1×6+(-1)×(-4)=10,所以有t×2+10=0,解得t=-5. 58.(2016·全国2·文T13)已知向量a=(m ,4),b=(3,-2),且a ∥b ,则m= . 【答案】-6【解析】因为a ∥b ,所以-2m-4×3=0,解得m=-6.59.(2016·全国1·理T13)设向量a=(m ,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= . 【答案】-2【解析】∵|a+b|2=|a|2+|b|2, ∴(m+1)2+32=m 2+1+5,解得m=-2.60.(2015·浙江·文T13)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b|= . 【答案】2√33【解析】因为b ·e 1=b ·e 2=1,|e 1|=|e 2|=1,由数量积的几何意义,知b 在e 1,e 2方向上的投影相等,且都为1,所以b 与e 1,e 2所成的角相等.由e 1·e 2=12知e 1与e 2的夹角为60°,所以b 与e 1,e 2所成的角均为30°,即|b|c os 30°=1,所以|b|=1cos30°=2√33. 61.(2015·全国2·理T13)设向量a ,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 【答案】12【解析】由题意知存在实数t ∈R ,使λa+b=t(a+2b),得{λ=t ,1=2t ,解得λ=12.62.(2015·北京·理T13)在△ABC 中,点M ,N 满足AM ⃗⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗ =NC ⃗⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,则x= ,y= . 【答案】12−16【解析】如图,∵MN ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12BC⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −16AC⃗⃗⃗⃗⃗ , ∴x=12,y=-16.63.(2014·湖北·理T11)设向量a=(3,3),b=(1,-1).若(a +λb)⊥(a-λb),则实数λ= . 【答案】±3【解析】由题意得(a+λb)·(a-λb)=0,即a 2-λ2b 2=0,则a 2=λ2b 2, λ2=a 2b 2=(√32+32)2[√12+(-1)]=182=9.故λ=±3.64.(2014·陕西·理T3)设0<θ<π2,向量a=(sin 2θ,cos θ),b=(cos θ,1),若a ∥b ,则tan θ= .【答案】12【解析】由a ∥b ,得sin 2θ=cos 2θ,即2sin θcos θ=cos 2θ, 因为0<θ<π2,所以cos θ≠0,所以2sin θ=cos θ. 所以tan θ=12.65.(2014·重庆·文T12)已知向量a 与b 的夹角为60°,且a=(-2,-6),|b|=√10,则a ·b= . 【答案】10【解析】由题意得|a|=2√10,所以a ·b=|a||b|cos<a ,b>=2√10×√10×12=10.66.(2014·全国1·理T15)已知A ,B ,C 为圆O 上的三点,若AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),则AB ⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为 . 【答案】90°【解析】由AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°.故AB⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为90°. 67.(2014·湖北·文T12)若向量OA ⃗⃗⃗⃗⃗ =(1,-3),|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,则|AB ⃗⃗⃗⃗⃗ |= . 【答案】2√5【解析】设B(x ,y),由|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,可得√10=√x 2+y 2, ① OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =x-3y=0, ② 由①②得x=3,y=1或x=-3,y=-1, 所以B(3,1)或B(-3,-1),故AB ⃗⃗⃗⃗⃗ =(2,4)或AB ⃗⃗⃗⃗⃗ =(-4,2),|AB⃗⃗⃗⃗⃗ |=2√5, 68.(2013·江苏·T10)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD=12AB ,BE=23BC.若DE ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 【答案】12【解析】由题意作图如图.∵在△ABC 中,DE ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ ,∴λ1=-16,λ2=23.故λ1+λ2=12.69.(2013·北京·理T13)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ= .【答案】4【解析】可设a=-i+j ,i ,j 为单位向量且i ⊥j ,则b=6i+2j ,c=-i-3j.∵c =λa +μb=(6μ-λ)i+(λ+2μ)j ,∴{6μ-λ=-1,λ+2μ=-3,解得{λ=-2,μ=-12.∴λμ=4. 70.(2013·全国1·T13)已知两个单位向量a ,b 的夹角为60°,c=ta+(1-t)b.若b ·c=0,则t= .【答案】2【解析】b ·c=ta ·b+(1-t)|b|2.又|a|=|b|=1,且a 与b 的夹角为60°,b ·c=0,∴0=t|a||b|c os 60°+(1-t),0=12t+1-t.∴t=2.71.(2013·全国2·理T13文T14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗ = .【答案】2【解析】以{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ }为基底,则AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,而AE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ , ∴AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗ =(12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =-12|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2=-12×22+22=2.72.(2013·天津·理T12)在平行四边形ABCD 中,AD=1,∠BA D=60°,E 为CD 的中点.若AC⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =1,则AB 的长为 .【答案】12【解析】如图所示,在平行四边形ABCD 中,AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ . 所以AC ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=-12|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+12AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =-12|AB ⃗⃗⃗⃗⃗ |2+14|AB ⃗⃗⃗⃗⃗ |+1=1,解方程得|AB ⃗⃗⃗⃗⃗ |=12(舍去|AB ⃗⃗⃗⃗⃗ |=0).所以线段AB 的长为12.73.(2013·北京·文T14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D 由所有满足AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC⃗⃗⃗⃗⃗ (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为 . 【答案】3【解析】AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =(2,1),AC⃗⃗⃗⃗⃗ =(1,2). 设P(x ,y),则AP⃗⃗⃗⃗⃗ =(x-1,y+1). ∴{x -1=2λ+μ,y +1=λ+2μ,得{λ=2x -y -33,μ=2y -x+33,∵1≤λ≤2,0≤μ≤1,可得{6≤2x -y ≤9,0≤x -2y ≤3,如图.可得A 1(3,0),B 1(4,2),C 1(6,3),|A1B1|=√(4-3)2+22=√5,两直线间距离d=√22+1=√5,∴D的面积S=|A1B1|·d=3.74.(2012·全国·理T13文T15)已知向量a,b夹角为45°,且|a|=1,|2a-b|=√10,则|b|= .【答案】3√2【解析】∵a,b的夹角为45°,|a|=1,∴a·b=|a|×|b|c os 45°=√22|b|,|2a-b|2=4-4×√22|b|+|b|2=10,∴|b|=3√2.75.(2012·安徽·文T11)设向量a=(1,2m),b=(m+1,1),c=(2,m),若(a+c)⊥b,则|a|= . 【答案】√2【解析】由题意,可得a+c=(3,3m).由(a+c)⊥b,得(a+c)·b=0,即(3,3m)·(m+1,1)=3(m+1)+3m=0,解之,得m=-12.∴a=(1,-1),|a|=√2.76.(2011·全国·文T13)已知a与b为两个不共线的单位向量,k为实数,若向量a+b与向量ka-b垂直,则k= .【答案】1【解析】由已知可得|a|=|b|=1,且a与b不共线,所以a·b≠1,a·b≠-1.由已知向量a+b与向量ka-b垂直,所以(a+b)·(ka-b)=0,即ka2-b2+(k-1)a·b=0,即k-1+(k-1)a·b=0,所以(k-1)(1+a·b)=0.因为a·b≠-1,即a·b+1≠0,所以k-1=0,即k=1.(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)。
十年真题(2010-2019)高考数学(文)分类汇编专题11 平面解析几何解答题(新课标Ⅰ卷)(解析版)

专题11平面解析几何解答题历年考题细目表历年高考真题汇编1.【2018年新课标1文科20】设抛物线C:y2=2,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N两点.(1)当l与轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.【解答】解:(1)当l与轴垂直时,=2,代入抛物线解得y=±2,所以M(2,2)或M(2,﹣2),直线BM的方程:y+1,或:y﹣1.(2)证明:设直线l的方程为l:=ty+2,M(1,y1),N(2,y2),联立直线l与抛物线方程得,消得y2﹣2ty﹣4=0,即y1+y2=2t,y1y2=﹣4,则有BN+BM0,所以直线BN与BM的倾斜角互补,∴∠ABM=∠ABN.2.【2017年新课标1文科20】设A,B为曲线C:y上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【解答】解:(1)设A(1,),B(2,)为曲线C:y上两点,则直线AB的斜率为(1+2)4=1;(2)设直线AB的方程为y=+t,代入曲线C:y,可得2﹣4﹣4t=0,即有1+2=4,12=﹣4t,再由y的导数为y′,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m=1,解得m=2,即M(2,1),由AM⊥BM可得,AM•BM=﹣1,即为•1,化为12+2(1+2)+20=0,即为﹣4t+8+20=0,解得t=7.则直线AB的方程为y=+7.3.【2016年新课标1文科20】在直角坐标系Oy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2p(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴,t,∴N(,t),∴ON的方程为y,与抛物线方程联立,解得H(,2t)∴2;(Ⅱ)由(Ⅰ)知MH,∴直线MH的方程为y+t,与抛物线方程联立,消去可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.4.【2015年新课标1文科20】已知过点A(0,1)且斜率为的直线l与圆C:(﹣2)2+(y﹣3)2=1交于点M、N两点.(1)求的取值范围;(2)若•12,其中O为坐标原点,求|MN|.【解答】(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程:y=+1,即:﹣y+1=0.由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由1,故当,过点A(0,1)的直线与圆C:(﹣2)2+(y﹣3)2=1相交于M,N两点.(2)设M(1,y1);N(2,y2),由题意可得,经过点M、N、A的直线方程为y=+1,代入圆C的方程(﹣2)2+(y﹣3)2=1,可得(1+2)2﹣4(+1)+7=0,∴1+2,1•2,∴y1•y2=(1+1)(2+1)=212+(1+2)+1•2+•1,由•1•2+y1•y212,解得=1,故直线l的方程为y=+1,即﹣y+1=0.圆心C在直线l上,MN长即为圆的直径.所以|MN|=2.5.【2014年新课标1文科20】已知点P(2,2),圆C:2+y2﹣8y=0,过点P的动直线l与圆C交于A,B 两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.【解答】解:(1)由圆C:2+y2﹣8y=0,得2+(y﹣4)2=16,∴圆C的圆心坐标为(0,4),半径为4.设M(,y),则,.由题意可得:.即(2﹣)+(y﹣4)(2﹣y)=0.整理得:(﹣1)2+(y﹣3)2=2.∴M的轨迹方程是(﹣1)2+(y﹣3)2=2.(2)由(1)知M的轨迹是以点N(1,3)为圆心,为半径的圆,由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.∵ON=3,∴直线l的斜率为.∴直线PM的方程为,即+3y﹣8=0.则O到直线l的距离为.又N到l的距离为,∴|PM|.∴.6.【2013年新课标1文科21】已知圆M:(+1)2+y2=1,圆N:(﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【解答】解:(I)由圆M:(+1)2+y2=1,可知圆心M(﹣1,0);圆N:(﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(≠﹣2).(II)设曲线C上任意一点P(,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与轴不平行,设l与轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=(+4),由l于M相切可得:,解得.当时,联立,得到72+8﹣8=0.∴,.∴|AB|由于对称性可知:当时,也有|AB|.综上可知:|AB|或.7.【2012年新课标1文科20】设抛物线C:2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,F A为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD,∴,解得p=2,所以F坐标为(0,1),∴圆F的方程为2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.8.【2011年新课标1文科20】在平面直角坐标系Oy中,曲线y=2﹣6+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【解答】解:(Ⅰ)法一:曲线y=2﹣6+1与y轴的交点为(0,1),与轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(﹣3)2+(y﹣1)2=9.法二:圆2+y2+D+Ey+F=0=0,y=1有1+E+F=0y=0,2﹣6+1=0与2+D+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为2+y2﹣6﹣2y+1=0(Ⅱ)设A(1,y1),B(2,y2),其坐标满足方程组,消去y,得到方程22+(2a﹣8)+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到1+2=4﹣a,12①,由于OA⊥OB可得12+y1y2=0,又y1=1+a,y2=2+a,所以可得212+a(1+2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.9.【2011年新课标1文科22】如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于的方程2﹣14+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程2﹣14+mn=0的两根为1=2,2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF(12﹣2)=5.故C,B,D,E四点所在圆的半径为510.【2010年新课标1文科20】设F1,F2分别是椭圆E:21(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=+c,其中设A(1,y1),B(2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)2+2c+1﹣2b2=0.则.因为直线AB 的斜率为1,所以 即. 则. 解得. 考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以解答题题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知椭圆22122:1(0)x y C a b a b +=>>6,椭圆22222:1(0)33x y C a b a b +=>>经过点33,22⎛ ⎝⎭.(1)求椭圆1C 的标准方程;(2)设点M 是椭圆1C 上的任意一点,射线MO 与椭圆2C 交于点N ,过点M 的直线l 与椭圆1C 有且只有一个公共点,直线l 与椭圆2C 交于,A B 两个相异点,证明:NAB △面积为定值.【答案】(1)22113y x +=; (2)见解析. 【解析】(1)解:因为1C, 所以22619b a=-,解得223a b =.①将点,22⎛⎫ ⎪ ⎪⎝⎭代入2222133x y a b +=,整理得2211144a b +=.② 联立①②,得21a =,213b =, 故椭圆1C 的标准方程为22113y x +=. (2)证明:①当直线l 的斜率不存在时,点M 为()1,0或()1,0-,由对称性不妨取()1,0M ,由(1)知椭圆2C 的方程为2213x y +=,所以有()N .将1x =代入椭圆2C的方程得y =,所以11122NAB S MN AB ∆=⋅=3=. ②当直线l 的斜率存在时,设其方程为y kx m =+, 将y kx m =+代入椭圆1C 的方程 得()222136310kxkmx m +++-=,由题意得()()()2226413310km k m∆=-+-=,整理得22313m k =+.将y kx m =+代入椭圆2C 的方程, 得()222136330kxkmx m +++-=.设()11,A x y ,()22,B x y ,则122613km x x k +=-+,21223313m x x k-=+, 所以AB ===. 设()00,M x y ,()33,N x y ,ON MO λ=u u u v u u u u v,则可得30x x λ=-,30y y λ=-.因为220022333113x y x y ⎧+=⎪⎨+=⎪⎩,所以2200222003113x y x y λ⎧+=⎪⎛⎫⎨+= ⎪⎪⎝⎭⎩,解得λ=λ=, 所以ON =u u u vu u u v,从而)1NM OM =.又因为点O 到直线l的距离为d =所以点N 到直线l 的距离为)11m d ⋅=所以))111122NABS d AB ∆=⋅==,综上,NAB ∆2.如图,在平面直角坐标系Oy 中,椭圆C :22221x y a b+=(a >b >0)经过点(0,),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1)求椭圆C 的标准方程;(2)当MF =2FN 时,求直线l 的方程;(3)若直线l 上存在点P 满足PM·PN=PF 2,且点P 在椭圆外,证明:点P 在定直线上.【答案】(1)22143x y +=;(25250x y ±=;(3)见解析. 【解析】(1)设椭圆的截距为2c ,由题意,b 3由点F 到左顶点的距离和到右准线的距离相等,得a+c =2a c c-,又a 2=b 2+c 2,联立解得a =2,c =1.∴椭圆C 的标准方程为22143x y +=;(2)当直线l 与轴重合时,M (﹣2,0),N (2,0),此时MF =3NF ,不合题意; 当直线l 与轴不重合时,设直线l 的方程为=my+1,M (1,y 1),N (2,y 2),联立22my 1x y 143x =+⎧⎪⎨+=⎪⎩,得(3m 2+4)y 2+6my ﹣9=0.△=36m 2+36(m 2+4)>0.122634m y y m +=-+ ①,1229y y 3m 4=-+②,由MF =2FN ,得y 1=﹣2y 2③, 联立①③得,1222126,3434m my y m m =-=++, 代入②得,()22227293434m m m-=-++,解得25m =5250x y ±=;(3)当直线l 的斜率为0时,则M (2,0),N (﹣2,0),设P (0,y 0), 则PM•PN=|(0﹣2)(0+2)|,∵点P 在椭圆外,∴0﹣2,0+2同号,又()()()()2220000PF x 1,x 2x 2x 1=-∴-+=-,解得052x =. 当直线l 的斜率不为0时,由(2)知,1212226m 9y y ,y y 3m 43m 4+=-=-++,10200PM y ,PN y ,PF =-=-=.∵点P 在椭圆外,∴y 1﹣y 0,y 2﹣y 0同号, ∴PM•PN=(1+m 2)(y 1﹣y 0)(y 2﹣y 0)=()()221201201my yy y y y ⎡⎤+-++⎣⎦()()2222002269113434m m y m y m m ⎛⎫=++-=+ ⎪++⎝⎭,整理得032y m =,代入直线方程得052x =.∴点P 在定直线52x =上. 3.已知抛物线C :24y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点. (1)若直线l 过点F 且8AB =,求直线l 的方程;(2)已知点(2,0)E -,若直线l 不与坐标轴垂直,且AEO BEO ∠=∠,证明:直线l 过定点. 【答案】(1)1y x =-或1y x =-+;(2)(2,0). 【解析】解:(1)法一:焦点(1,0)F ,当直线l 斜率不存在时,方程为1x =,与抛物线的交点坐标分别为(1,2),(1,2)-, 此时4AB =,不符合题意,故直线的斜率存在.设直线l 方程为(1)=-y k x 与24y x =联立得()2222220k x k x k -+-=,当0k =时,方程只有一根,不符合题意,故0k ≠.()212222k x x k++=,抛物线的准线方程为1x =-,由抛物线的定义得()()12||||||11AB AF BF x x =+=+++()222228k k+=+=,解得1k =±,所以l 方程为1y x =-或1y x =-+.法二:焦点(1,0)F ,显然直线l 不垂直于x 轴,设直线l 方程为1x my =+,与24y x =联立得2440y my --=,设11(,)A x y ,22(,)B x y ,124y y m +=,124y y =.||AB ==()241m ==+,由8AB =,解得1m =±, 所以l 方程为1y x =-或1y x =-+. (2)设11(,)A x y ,22(,)B x y ,设直线l 方程为(0)x my b m =+≠与24y x =联立得:2440y my b --=,可得124y y m +=,124y y b =-. 由AEO BEO ∠=∠得EA EB k k =,即121222y yx x =-++. 整理得121122220y x y x y y +++=,即121122()2()20y my b y my b y y +++++=, 整理得12122(2)()0my y b y y +++=, 即84(2)0bm b m -++=,即2b =. 故直线l 方程为2x my =+过定点(2,0).4.已知椭圆22221(0)x y a b a b +=>>,()2,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,点C 在第一象限,且0AC BC ⋅=u u u r u u u r,||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r .(1)求椭圆的标准方程;(2)设P 、Q 为椭圆上不重合的两点且异于A 、B ,若PCQ ∠的平分线总是垂直于x 轴,问是否存在实数λ,使得PQ AB =λu u u r u u u r?若不存在,请说明理由;若存在,求λ取得最大值时的PQ 的长.【答案】(1) 223144x y += (2)【解析】(1)∵0AC BC ⋅=u u u r u u u r,∴90ACB ∠=︒,∵||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r.即||2||BC AC =u u u r u u u r ,∴AOC △是等腰直角三角形, ∵()2,0A ,∴()1,1C , 而点C 在椭圆上,∴22111a b +=,2a =,∴243b =, ∴所求椭圆方程为223144x y +=.(2)对于椭圆上两点P ,Q , ∵PCQ ∠的平分线总是垂直于x 轴, ∴PC 与CQ 所在直线关于1x =对称,PC k k =,则CQ k k =-,∵()1,1C ,∴PC 的直线方程为()11y k x =-+,①QC 的直线方程为()11y k x =--+,②将①代入223144x y +=,得()()22213613610k x k k x k k +--+--=,③∵()1,1C 在椭圆上,∴1x =是方程③的一个根,∴2236113P k k x k --=+,以k -替换k ,得到2236131Q k k x k +-=+. ∴()213P Q PQ P Qk x x kk x x +-==-, ∵90ACB ∠=o ,()2,0A ,()1,1C ,弦BC 过椭圆的中心O , ∴()2,0A ,()1,1B --,∴13AB k =, ∴PQ AB k k =,∴PQ AB ∥, ∴存在实数λ,使得PQ AB =λu u u r u u u r,||PQ =u u ur =≤ 当2219k k =时,即k =±时取等号,max ||PQ =u u u r ,又||AB =u u u r,maxλ==,∴λ取得最大值时的PQ的长为35.已知抛物线216y x =,过抛物线焦点F 的直线l 分别交抛物线与圆22(4)16x y -+=于,,,A C D B (自上而下顺次)四点.(1)求证:||||AC BD ⋅为定值; (2)求||||AB AF ⋅的最小值. 【答案】(1)见证明;(2)108 【解析】(1)有题意可知,(4,0)F可设直线l 的方程为4x my =+,1122(,),(,)A x y B x y联立直线和抛物线方程2164y x x my ⎧=⎨=+⎩,消x 可得216640y my --=,所以1216y y m +=,1264y y =-, 由抛物线的定义可知,112||4,||42pAF x x BF x =+=+=+, 又||||4,||||4AC AF BD BF =-=-,所以2221212264||||(||4)(||4)16161616y y AC BD AF BF x x ⋅=--==⋅==,所以||||AC BD ⋅为定值16.(2)由(1)可知,12||||||8AB AF BF x x =+=++,1||4AF x =+,212111212||||(8)(4)12432AB AF x x x x x x x x ⋅=+++=++++,由1216x x =,可得2116x x =, 所以211164||||1248AB AF x x x ⋅=+++(其中1>0x ), 令264()1248f x x x x =+++,222642(2)(4)()212x x f x x x x -+'=+-=, 当(0,2)x ∈时,()0f x '<,函数单调递减,当(2,)x ∈+∞时,()0f x '>,函数单调递增, 所以()(2)108f x f ≥=. 所以||||AB AF ⋅的最小值为108.6.已知O 为坐标原点,点()()2,02,0A B -,,()01AC AD CB CD λλ===<<u u u r u u u r,过点B 作AC的平行线交AD 于点E .设点E 的轨迹为τ. (Ⅰ)求曲线τ的方程;(Ⅱ)已知直线l 与圆22:1O x y +=相切于点M ,且与曲线τ相交于P ,Q 两点,PQ 的中点为N ,求三角形MON 面积的最大值.【答案】(Ⅰ)()22105x y y +=≠;. 【解析】(Ⅰ)因为,AD AC EB AC =∥, 故EBD ACD ADC ∠=∠=∠, 所以EB ED =,故EA EB EA ED AD +=+==由题设得()()2,02,04A B AB -=,,,由椭圆定义可得点E 的轨迹方程为:()22105x y y +=≠.(Ⅱ)由题意,直线l 的斜率存在且不为0,设直线l的方程为y kx m=+,因为直线l与圆O相切,1=,∴221m k=+,由221,5,xyy kx m⎧+=⎪⎨⎪=+⎩消去y得()2221510550k x kmx m+++-=.设()()1122,,,P x y Q x y,由韦达定理知:()1212122210221515km mx x y y k x x mk k+=-+=++=++,.所以PQ中点N的坐标为225,1515km mk k⎛⎫-⎪++⎝⎭,所以弦PQ的垂直平分线方程为22151515m kmy xk k k⎛⎫-=-+⎪++⎝⎭,即2415kmx kyk++=+.所以MN=.将m=MN=2441155||||kMNk kk====++…k=,即m=取等号).所以三角形MON的面积为111=2255S OM MN=⨯⨯⨯⨯≤,综上所述,三角形MON.7.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,F 是椭圆C 的一个焦点.点(02)M ,,直线MF 的. (1)求椭圆C 的方程;(2)若过点M 的直线l 与椭圆C 交于A B ,两点,线段AB 的中点为N ,且AB MN =.求l 的方程.【答案】(1)22182x y +=;(2)22y x =±+【解析】(1)由题意,可得22cac⎧=⎪⎪⎨⎪=⎪⎩,解得a c ⎧=⎪⎨=⎪⎩,则222=2b a c =-, 故椭圆C 的方程为22182x y +=.(2)当l 的斜率不存在时,=2AB MN AB MN ≠=,,,不合题意,故l 的斜率存在. 设l 的方程为2y kx =+,联立221822x y y kx ⎧+=⎪⎨⎪=+⎩,得22(14)1680k x kx +++=, 设1122(()A x y B x y ,),,,则12122216k 8,14k 14kx x x x +=-=++, ()222(16)3214128320k k k ∆=-+=->即214k >, 设00()N x y ,,则12028214x x kx k+==-+,120||||,0AB MN x =-=-Q0x =,即28||14k k =+ 整理得21124k =>.故2k =±,l 的方程为22y x =±+.8.已知椭圆2222:1(0)x y C a b a b+=>>过点(,右焦点F 是抛物线28y x =的焦点.(1)求椭圆C 的方程;(2)已知动直线l 过右焦点F ,且与椭圆C 分别交于M ,N 两点.试问x 轴上是否存在定点Q ,使得13516QM QN ⋅=-u u u u r u u u r 恒成立?若存在求出点Q 的坐标若不存在,说明理由.【答案】(1) 2211612x y += (2)见解析【解析】(1)因为椭圆C 过点,所以221231a b+=, 又抛物线的焦点为()2,0,所以2c =. 所以2212314a a +=-,解得23a =(舍去)或216a =. 所以椭圆C 的方程为2211612x y +=.(2)假设在x 轴上存在定点(,0)Q m ,使得13516QM QN ⋅=-u u u u r u u u r. ①当直线l 的斜率不存在时,则(2,3)M ,(2,3)N -,(2,3)QM m =-u u u u r,(2,3)QN m =--u u u r,由2135(2)916QM QN m ⋅=--=-u u u u r u u u r ,解得54m =或114m =;②当直线l 的斜率为0时,则(4,0)M -,(4,0)N ,(4,0)QM m =--u u u u r ,(4,0)QN m =-u u u r,由21351616QM QN m ⋅=-=-u u u u r u u u r ,解得114m =-或114m =.由①②可得114m =,即点Q 的坐标为11,04⎛⎫⎪⎝⎭. 下面证明当114m =时,13516QM QN ⋅=-u u u u r u u u r 恒成立.当直线l 的斜率不存在或斜率为0时,由①②知结论成立.当直线l 的斜率存在且不为0时,设其方程为(2)(0)y k x k =-≠,()11,M x y ,()22,N x y .直线与椭圆联立得()()222234161630kxk x k +-+-=,直线经过椭圆内一点,一定与椭圆有两个交点,且21221643k x x k +=+,()212216343k x x k -=+.()()()222121212122224y y k x k x k x x k x x k =-•-=-++,所以()1122121212111111121,,44416QM QN x y x y x x x x y y ⎛⎫⎛⎫•=-•-=-+++ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r ()()()()222222221212221631112111161211241244164344316k k k x x k x x k k k k k k -⎛⎫⎛⎫=+-++++=+-+++= ⎪ ⎪++⎝⎭⎝⎭13516-恒成立 综上所述,在x 轴上存在点11,04Q ⎛⎫⎪⎝⎭,使得13516QM QN ⋅=-u u u u r u u u r 恒成立.9.关于椭圆的切线由下列结论:若11(,)P x y 是椭圆22221(0)x y a b a b+=>>上的一点,则过点P 的椭圆的切线方程为11221x x y y a b +=.已知椭圆22:143x y C +=.(1)利用上述结论,求过椭圆C 上的点(1,)(0)P n n >的切线方程;(2)若M 是直线4x =上任一点,过点M 作椭圆C 的两条切线MA ,MB (A ,B 为切点),设椭圆的右焦点为F ,求证:MF AB ⊥.【答案】(1)240x y +-=(2)见证明 【解析】(1)由题意,将1x =代入椭圆方程22:143x y C +=,得32y =,所以3(1,)2P ,所以过椭圆C 上的点3(1,)2P 的切线方程为32143yx +=,即240x y +-=.(2)设(4,)M t ,11(,)A x y ,22(,)B x y ,则过A ,B 两点的椭圆C 的切线MA ,MB 的方程分别为11143x x y y +=,22143x x y y +=, 因为(4,)M t 在两条切线上,114143x y t ⨯∴+=,224143x y t⨯+=, 所以A ,B 两点均在直线4143x yt +=上,即直线AB 的方程为13tyx +=, 当0t ≠时,3AB k t=-,又(1,0)F ,0413MF t t k -==-,313AB MF tk k t ⋅=-⨯=-,所以MF AB ⊥, 若0t =,点(4,0)M 在x 轴上,A ,B 两点关于x 轴对称,显然MF AB ⊥.10.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F ,,离心率为12,P 为椭圆上一动点(异于左右顶点),若12AF F △(1)求椭圆C 的方程;(2)若直线l 过点1F 交椭圆C 于,A B 两点,问在x 轴上是否存在一点Q ,使得QA QB ⋅u u u r u u u r为定值?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)见解析【解析】(1)由题意,当P 在上或下顶点时,12PF F ∆的面积取值最大值,即最大值为bc = 又12c a =,且222a c b =+,解得24a =,23b =, 故椭圆C 的方程为22143x y +=.(2)易知()11,0F -,设直线l 的方程为1x my =-,()()()11220,,,,,0A x y B x y Q x , 联立方程组221431x y x my ⎧+=⎪⎨⎪=-⎩,整理得22(34)690m y my +--=, 则122634my y m +=+,122934y y m =-+, ()()()()10120200212,,y QA QB x x y x x y x x x x y y ⋅=-⋅-=--+u u u r u u u r()212001212x x x x x x y y =+-++,∵111x my =-,221x my =-,∴()()()2212121212215111134m x x my my m y y m y y m =--=+-+=-+,()()()212122226112234m x x my my m y y m +=-+-=+-=-+, ∴222000222156912343434m m QA QB x x x m m m ⋅=-+-+-+++u u u r u u u r 22002281253434m x x m m +=+-++()222000231248534x m x x m -++-=+, 要使QA QB ⋅u u u r u u u r 为定值,则2200031248534x x x -+-=,解得0118x =-, 所以在x 轴上存在点11,08Q ⎛⎫-⎪⎝⎭,使得QA QB ⋅u u u r u u u r 为定值. 11.已知点()1,0F ,直线:1l x =-,P 为平面上的动点,过点P 作直线的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅u u u r u u u r u u u r u u u r .(1)求动点P 的轨迹C 的方程;(2)设直线y kx b =+与轨迹C 交于两点,()11,A x y 、()22,B x y ,且12y y a -= (0a >,且a 为常数),过弦AB 的中点M 作平行于x 轴的直线交轨迹C 于点D ,连接AD 、BD .试判断ABD ∆的面积是否为定值,若是,求出该定值,若不是,请说明理由 【答案】(1) 24y x = (2)见解析 【解析】(1)设(,)P x y ,则(1,)Q y -,QP QF FP FQ •=•u u u r u u u r u u u r u u u r Q ,(1,0)(2,)(1,)(2,)x y x y y ∴+•-=-•-,即22(1)2(1)x x y +=--+,即24y x =,所以动点P 的轨迹的方程24y x =.(2)联立方程组2,4,y kx b y x =+⎧⎨=⎩消去x ,得2440ky y b -+=,依题意,0k ≠,且124y y k+=,124b y y k =,由12y y a -=得()2212124y y y y a +-=, 即221616ba k k-=, 整理得:221616kb a k -=,所以2216(1)a k kb =-,① 因为AB 的中点222,bk M k k -⎛⎫⎪⎝⎭,所以点212,D k k ⎛⎫⎪⎝⎭,依题意, 122111||22BD bkS DM y y a k∆∆-=-=, 由方程2440ky y b -+=中的判别式16160kb ∆=->,得10kb ->,所以2112ABD bkS a k∆-=••, 由①知22116a k kb -=,所以23121632MBDa a S a ∆=••=,又a 为常数,故ABD S ∆的面积为定值. 12.已知点P 在抛物线()220C x py p =:>上,且点P 的横坐标为2,以P 为圆心,PO 为半径的圆(O 为原点),与抛物线C 的准线交于M ,N 两点,且2MN =. (1)求抛物线C 的方程;(2)若抛物线的准线与y 轴的交点为H .过抛物线焦点F 的直线l 与抛物线C 交于A ,B ,且AB HB ⊥,求AF BF -的值. 【答案】(1) 24x y = (2)4 【解析】(1)将点P 横坐标2P x =代入22x py =中,求得2P y p=, ∴P (2,2p),2244OP p =+, 点P 到准线的距离为22p d p =+, ∴222||||2MN OP d ⎛⎫=+ ⎪⎝⎭, ∴22222212p p p ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,解得24p =,∴2p =,∴抛物线C 的方程为:24x y =;(2)抛物线24x y =的焦点为F (0,1),准线方程为1y =-,()01H -,; 设()()1122A x y B x y ,,,, 直线AB 的方程为1y kx =+,代入抛物线方程可得2440x kx --=,∴121244x x k x x +==-,,…① 由AB HB ⊥,可得1AB HB k k ⋅=-, 又111AB AF y k k x -==,221HB y k x +=, ∴1212111y y x x -+⋅=-, ∴()()1212110y y x x -++=, 即2212121111044x x x x ⎛⎫⎛⎫-++= ⎪⎪⎝⎭⎝⎭, ∴()22221212121110164x x x x x x +--+=,…② 把①代入②得,221216x x -=,则()22121211||||1116444AF BF y y x x -=+--=-=⨯=. 13.已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义()PFd P FQ=. (1)当8(1)3P --,时,求()d P ; (2)证明存在常数a ,使得2()d P PF a =+.(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断13()()d P d P +与22()d P 的关系. 【答案】(1)83;(2)证明见解析;(3)()()()1322d P d P d P +>. 【解析】 (1)因为8443(1)233PFk y x ==⇒=-. 联立方程24(1)1344Q y x x y x ⎧=-⎪⇒=⎨⎪=⎩, 则1083()534PF d P QF ⎧=⎪⎪⇒=⎨⎪=⎪⎩. (2)当()1,0P -,易得2()2a d P PF =-=, 不妨设()1,P P y -,0P y >, 直线:1PF x my =+,则2P my =-,联立214x my y x=+⎧⎨=⎩,2440y my --=,2Q y m ==+2()||2P P Q y d P PF y m -==+2212122m m m +-+=-+=.(3)设()()()1122331,,1,,1,P y P y P y ---,则()()()13224d P d P d P +-⎡⎤⎣⎦1322PF P F P F =+-2221324424y y y =+++ 222131344242y y y y +⎛⎫=+++ ⎪⎝⎭()22213134416y y y y =++++因为()222213134416y y y y ⎡⎤++-++⎣⎦22131224428y y y y =++-,又因()()()()2222213131313444480y y y y y y y y ++-+=+->,所以()()()1322d P d P d P +>.14.已知抛物线2:2(0)C x py p =>的焦点F 到准线距离为2. (1)若点(1,1)E ,且点P 在抛物线C 上,求||||PE PF +的最小值;(2)若过点(0,)N b 的直线l 与圆22:(2)4M x y +-=相切,且与抛物线C 有两个不同交点,A B ,求AOB ∆的面积.【答案】(1)2(2) 2ABC S b ∆=【解析】解:(1)根据题意可知2p = 所以抛物线方程为24x y =则抛物线C 焦点为(0,1)F ,准线为1y =-; 记点,P E 到抛物线C 准线的距离分别为12,d d ,故12||||||2PE PF PE d d +=+≥=,等号成立当且仅当PE 垂直于准线, 故||||PE PF +的最小值为2 (2)设()11,A x y ,()22,B x y由题意知,直线l 斜率存在,设直线l 的方程为:y kx b =+ 将y kx b =+与24x y =联立得2440x kx b --=, 由韦达定理得12124,4x x k x x b +==-, 由()0,2M 到直线l的距离为12d ==得:2244b b k -=,又||AB =点O 到直线l 的距离为2d =所以2|ABC S b b ∆=== 15.已知曲线C 上的任意一点到直线l :=12的距离与到点F (102,)的距离相等. (1)求曲线C 的方程;(2)若过P (1,0)的直线与曲线C 相交于A ,B 两点,Q (1,0)为定点,设直线AQ 的斜率为1,直线BQ 的斜率为2,直线AB 的斜率为,证明:22212112k k k +-为定值. 【答案】(1)y 2=2;(2)见解析 【解析】(1)由条件可知,此曲线是焦点为F的抛物线,p122=,p=1.∴抛物线的方程为y2=2;(2)根据已知,设直线AB的方程为y=(1)(≠0),由()2y k x1y2x⎧=-⎨=⎩,可得y22y2=0.设A(211yy2,),B(222yy2,),则122y yk+=,y1y2=2.∵1112211y2yky y212==++,2222222y2yky y212==++.∴22221222221212(y2)(y2)11k k4y4y+++=+=22222212212212(y2)y(y2)y4y y+++=() 42422222122112122212y y y y8y y4y y4y y++++=()2221212128y y32(y y)2y y4 162+++-+==22482k42k+=+.∴222121124k k k+-=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十年高考真题分类汇编(2010—2019)数学
专题10立体几何
1.(2019·浙江·T4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3
)是( )
A.158
B.162
C.182
D.324 【答案】B
【解析】由三视图得该棱柱的高为6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2+62×3+4+62×3×6=162.
2.(2019·全国1·理T12)已知三棱锥P-ABC 的四个顶点在球O 的球面上,PA=PB=PC,△ABC 是边长为2的正三角形,E,F 分别是PA,AB 的中点,∠CEF=90°,则球O 的体积为( )
A.8√6π
B.4√6π
C.2√6π
D.√6π
【答案】D
【解析】设PA=PB=PC=2x.
∵E,F 分别为PA,AB 的中点,
∴EF ∥PB,且EF=12PB=x.
∵△ABC 为边长为2的等边三角形,
∴CF=√3.
又∠CEF=90°,∴CE=√3-x 2,AE=12
PA=x.
在△AEC 中,由余弦定理可知
cos ∠EAC=x 2+4-(3-x 2)2×2·x . 作PD ⊥AC 于点D,∵PA=PC,
∴D 为AC 的中点,cos ∠EAC=AD PA =12x .
∴x 2+4-3+x 24x
=12x . ∴2x 2+1=2.∴x 2=12,即x=√22.
∴PA=PB=PC=√2.
又AB=BC=AC=2,
∴PA ⊥PB ⊥PC.
∴2R=√2+2+2=√6.
∴R=√62.
∴V=43πR 3=43π×
6√68=√6π.
故选D.
3.(2019·全国2·理T7文T7)设α,β为两个平面,则α∥β的充要条件是( )
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
【答案】B
【解析】由面面平行的判定定理知,“α内有两条相交直线与β平行”是“α∥β”的充分条件.由面面平行的性质知,“α内有两条相交直线与β平行”是“α∥β”的必要条件,故选B.
4.(2019·全国3·理T8文T8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD,M 是线段ED 的中点,则( )
A.BM=EN,且直线BM,EN 是相交直线
B.BM ≠EN,且直线BM,EN 是相交直线
C.BM=EN,且直线BM,EN 是异面直线
D.BM ≠EN,且直线BM,EN 是异面直线
【答案】B
【解析】如图,连接BD,BE.
在△BDE 中,N 为BD 的中点,M 为DE 的中点,
∴BM,EN 是相交直线,排除选项C 、D.
作EO ⊥CD 于点O,连接ON.
作MF ⊥OD 于点F,连接BF.
∵平面CDE ⊥平面ABCD,平面CDE ∩平面ABCD=CD,EO ⊥
CD,EO ⊂平面CDE,∴EO ⊥平面ABCD.
同理,MF ⊥平面ABCD.
∴△MFB 与△EON 均为直角三角形.
设正方形ABCD 的边长为2,易知
EO=√3,ON=1,MF=√32,BF=√22+94=52,
则EN=√3+1=2,BM=√34+
254=√7, ∴BM ≠EN.故选B.
5.(2019·浙江·T8)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B 的平面角为γ,则( )
A.β<γ,α<γ
B.β<α,β<γ
C.β<α,γ<α
D.α<β,γ<β
【答案】B
【解析】如图G 为AC 中点,点V 在底面ABC 上的投影为点O,则点P 在底面ABC 上的投影点D 在线段AO 上,过点D 作DE 垂直AE,易得PE ∥VG,过点P 作PF ∥AC 交VG 于点F,过点D 作DH ∥AC,交BG 于点H,则α=∠BPF,β=∠PBD,γ=∠PED,所以cos α=
PF PB =EG PB =DH PB <BD PB =cos β,所以α>β,因为tan γ=PD ED >PD BD
=tan β,所以γ>β.故选B.
6.(2018·全国3·理T10文T12)设A,B,C,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9√3,则三棱锥D-ABC 体积的最大值为( )
A.12√3
B.18√3
C.24√3
D.54√3 【答案】B
【解析】由△ABC 为等边三角形且面积为9√3,设△ABC 边长为a,则S=12a ·√32a=9√3.∴a=6,则△ABC 的外接圆半径r=√32×23a=2√3<4.
设球的半径为
R,如图,OO 1=√R 2-r 2=√42-(2√3)2=2.当D 在O 的正上方时,V D-ABC =1S △ABC ·(R+|OO 1|)=1×9√3×6=18√3,最大.故选B.
7.(2018·全国1·理T7文T9)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )
A.2√17
B.2√5
C.3
D.2
【答案】B
【解析】如图所示,易知N 为CD
⏜的中点,将圆柱的侧面沿母线MC 剪开,展平为矩形MCC'M',易知CN=14CC'=4,MC=2,从M 到N 的路程中最短路径为MN.
在Rt△MCN中,MN=√MC2+NC2=2√5.
8.(2018·全国3·理T3文T3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )
【答案】A
【解析】由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应为A中图形.
9.(2018·北京·理T5文T6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。