实验六 热重法测聚合物的热稳定性

实验六 热重法测聚合物的热稳定性
实验六 热重法测聚合物的热稳定性

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

材料热稳定性的测定

材料热稳定性的测定 一、实验目的 1、了解陶瓷测定热稳定性的实际意义。 2、了解影响热稳定性的因素及提高热稳定性的措施。 3、掌握热稳定性的测定原理及测定方法。 二、实验原理 热稳定性(抗热震性)是指陶瓷材料能承受温度剧烈变化而不破坏的性能。普通陶瓷材料由多种晶体和玻璃相组成,因此在室温下具有脆性,在外应力作用下会突然断裂。当温度急剧变化时,陶瓷材料也会出现裂纹或损坏。测定陶瓷的热稳定性可以控制产品的质量,为合理应用提供依据。 陶瓷的热稳定性取决于坯釉料配方的化学成分、矿物组成、相组成、显微结构、坯釉料制备方法、成型条件及烧成制度等工艺因素以及外界环境。由于陶瓷内外层受热不均匀,坯料与釉料的热膨胀系数差异而引起陶瓷内部产生应力,导致机械强度降低,甚至发生分裂现象。 一般陶瓷的热稳定性与抗张强度成正比,与弹性模量、热膨胀系数成反比。而导热系数、热容、密度也在不同程度上影响热稳定性。 釉的热稳定性在较大程度上取决于釉的热膨胀系数。要提高陶瓷的热稳定性首先要提高釉的热稳定性。陶瓷坯体的热稳定性则取决于玻璃相、莫来石、石英及气孔的相对含量、粒径大小及其分布状况等。 陶瓷制品的热稳定性在很大程度上取决于坯釉的适应性,所以它也是带釉陶瓷抗后期龟裂性的一种反映。 陶瓷热稳定性测定方法一般是把试样加热到一定的温度,接着放入适当温度的水中,判定方法为: 1)根据试样出现裂纹或损坏到一定程度时,所经受的热变换次数; 2)经过一定次数的热冷变换后机械强度降低的程度来决定热稳定性; 3)试样出现裂纹时经受的热冷最大温差来表示试样的热稳定性,温差愈大,热稳定性愈好。 陶瓷热稳定性的测定方法一般是将试样(带釉的瓷片或器皿)置于电炉内逐渐升温到220℃,保温30分钟,迅速将试样投入染有红色的20℃水中10分钟,取出试样擦干,检查有无裂纹。或将试样置于电炉内逐渐升温,从150℃起,每隔20℃将试样投入20±2℃的水中急冷一次,直至试样表面发现有裂纹为止,并将此不裂的最高温度为衡量瓷器热稳定性的数据。 也有将试样放在100℃沸水中煮半小时到1小时,取出投入不断流动的20℃的水中,取出试样擦干,检查有无裂纹。如没有裂纹出现,则重复上述试验,直至出现裂纹为止。记录水煮次数,以作为衡量瓷器热稳定性的数据。热交换次数越多,说明该陶瓷样品的热稳定性越好。 本实验采用前面两种方法来测定试样的热稳定性。 三、实验仪器与材料 1、实验仪器:普通陶瓷热稳定性测定仪(由加热炉体、恒温水槽、送试样机构、控温仪表四部分组成)、万能材料试验机。 2、实验材料:市场购买的瓷砖样品、红墨水或黑墨水。 四、实验步骤 (一)方法一

稳定性试验办法

附件3 特殊医学用途配方食品稳定性研究要求(试行) 一、基本原则 特殊医学用途配方食品稳定性研究是质量控制研究的重要组成部分,其目的是通过设计试验获得产品质量特性在各种环境因素影响下随时间 稳定性研究用样品应在满足《特殊医学用途配方食品良好生产规范》要求及商业化生产条件下生产,产品配方、生产工艺、质量要求应与注册申请材料一致,包装材料和产品包装规格应与拟上市产品一致。 影响因素试验、开启后使用的稳定性试验等采用一批样品进行;加速试验和长期试验分别采用三批样品进行。 (二)考察时间点和考察时间

稳定性研究目的是考察产品质量在确定的温度、湿度等条件下随时间变化的规律,因此研究中一般需要设置多个时间点考察产品的质量变化。考察时间点应基于对产品性质的认识、稳定性趋势评价的要求而设置。加速试验考察时间为产品保质期的四分之一,且不得少于3个月。长期试验总体考察时间应涵盖所预期的保质期,中间取样点的设置应当考虑产品的稳定性特点和产品形态特点。对某些环境因素敏感的产品,应适当增加考 3.检验方法:稳定性试验考察项目原则上应当采用《食品安全国家标准特殊医学用途配方食品通则》(GB 29922)、《食品安全国家标准特殊医学用途婴儿配方食品通则》(GB 25596)规定的检验方法。国家标准中规定了检验方法而未采用的,或者国家标准中未规定检验方法而由申请人自行提供检验方法的,应当提供检验方法来源和(或)方法学验证资料。检验方法应当具有专属性并符合准确度和精密度等相关要求。

四、试验方法 (一)加速试验 加速试验是在高于长期贮存温度和湿度条件下,考察产品的稳定性,为配方和工艺设计、偏离实际贮存条件产品是否依旧能保持质量稳定提供依据,并初步预测产品在规定的贮存条件下的长期稳定性。加速试验条件由申请人根据产品特性、包装材料等因素确定。 %。如在6 温度 %, 25℃±2℃ 长期试验是在拟定贮存条件下考察产品在运输、保存、使用过程中的稳定性,为确认贮存条件及保质期等提供依据。长期试验条件由申请人根据产品特性、包装材料等因素确定。 长期试验考察时间应与产品保质期一致,取样时间点为第一年每3个月末一次,第二年每6个月末一次,第3年每年一次。 如保质期为24个月的产品,则应对0、3、6、9、12、18、24月样品进行

热分析实验报告

热分析实验报告 一、实验目的 1、了解STA449C综合热分析仪的原理及仪器装置; 2、学习使用TG-DSC综合热分析方法。

二、实验内容 1、对照仪器了解各步具体的操作及其目的。 2、测定纯Al-TiO2升温过程中的DSC、TG曲线,分析其热效应及其反应机理。 3、运用分析工具标定热分析曲线上的反应起始温度、热焓值等数据。 三、实验设备和材料 STA449C综合热分析仪 四、实验原理 热分析(Thermal Analysis TA)技术是指在程序控温和一定气氛下,测量试样的物理性质随温度或时间变化的一种技术。根据被测量物质的物理性质不同,常见的热分析方法有热重分析(Thermogravimetry TG)、差热分析(Difference Thermal Analysis,DTA)、差示扫描量热分析(Difference Scanning Claorimetry,DSC)等。其内涵有三个方面:①试样要承受程序温控的作用,即以一定的速率等速升(降)温,该试样物质包括原始试样和在测量过程中因化学变化产生的中间产物和最终产物;②选择一种可观测的物理量,如热学的,或光学、力学、电学及磁学等;③观测的物理量随温度而变化。

热分析技术主要用于测量和分析试样物质在温度变化过程中的一些物理变化(如晶型转变、相态转变及吸附等)、化学变化(分解、氧化、还原、脱水反应等)及其力学特性的变化,通过这些变化的研究,可以认识试样物质的内部结构,获得相关的热力学和动力学数据,为材料的进一步研究提供理论依据。 综合热分析,就是在相同的热条件下利用由多个单一的热分析仪组合在一起形成综合热分析仪,见图1,对同一试样同时进行多种热分析的方法。 图1 综合热分析仪器(STA449C) (1)、热重分析( TG)原理 热重法(TG)就是在程序控温下,测量物质的质量随温度变化的关系。采用仪器为日本人本多光太郎于1915年制作了零位型热天平(见图2)。其工作原理如下:在加热过程中如果试样无质量变化,热天平将保持初始的平衡状态,一旦样品中有质量变化时,

热稳定剂热稳定性能评价的相关标准

聚氯乙烯热稳定剂热稳定性能评价及相关标准 聚氯乙烯(PVC) 由于分子链上存在叔碳氯原子、烯丙基氯原子等不稳定氯原子,受热时容易分解。为保证PVC配混料具有良好的加工性能和赋于PVC制品合宜的使用性能,就必须在PVC配混料中加入热稳定剂,以保证加工和再加工过程能够顺利进行, 并满足制品在受热环境下的使用要求。 -. 热稳定性分类 热稳定性是热稳定剂的最基本功能, 从使用要求看,热稳定性能可分为初期热稳定性、长期热稳定性和残余热稳定性。初期热稳定性也称初期变色性,或称颜色保持稳定性(Color-Hold Stability),它是保证任一生产周期内,同一PVC制品自始至终的颜色稳定性,以及不同生产周期间,该PVC制品的色差保持在可允许范围内的热稳定性。长期热稳定性则是保证在生产过程中,因某些偶然故障造成生产不能顺利进行,导致PVC物料虽已分解变色, 但不致于停机清理模具或螺杆的热稳定性。而所谓残余热稳定性, 是满足制品在受热环境下的使用要求的稳定性, 也就是说,当以PVC制成品作为试样时, 对其所评价的热稳定性就是残余热稳定性。 从测试方法看,热稳定性能可分为静态热稳定性和动态热稳定性。静态热稳定性是指在只有热或在热和空气的共同作用下, 热稳定

剂阻滞PVC热分解的能力。动态热稳定性是指在热、空气和剪切力的共同作用下,热稳定剂抵抗PVC热分解的能力。现行测试热稳定性能的相关标准见表1。 表1 有关标准及其所采用的相关标准

二. 热稳定性评价 1.静态热稳定性 PVC配混料在加工或再加工过程都会在较高温度的设备中停留-定时间, PVC制品在使用过程中也会经受-定的环境温度, 这就

热熔胶粘剂热稳定性测定

热熔胶粘剂热稳定性测定GB/T16998-1997 Hot-melt adhesives—Determination of thermal stability 1范围 本标准规定了测定非反应性热熔胶粘剂热稳定性的方法,最高试验温度为260℃。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用标准的各方应探讨使用下列标准最新版本的可能性。 GB/T2794—1995胶粘剂粘度的测定 GB/T15332—94热熔胶粘剂软化点的测定环球法 3原理 将一定量的热熔胶在给定条件下加热,以一定的时间间隔取出样品,记录加热期间粘度和软化点的数值。胶粘剂试验温度和试验时间由供需双方商定。 4仪器 4.1不锈钢或玻璃容器:外径65mm,高95mm,配有松动配合的盖子。 4.2油浴或鼓风恒温烘箱:温度波动范围为±2℃。 4.3玻璃棒。 4.4测定软化点所用的仪器,按GB/T15332规定。 4.5测定粘度所用的仪器,按GB/T2794规定。 4.6温度计:分度值为0.1℃。 5操作步骤 5.1将不锈钢或玻璃容器(4.1)放入油浴或烘箱(4.2)中,将温度调节至所需的试验温度。 5.2将足量的试样放入容器中,用玻璃棒(4.3)搅拌热熔胶直至样品完全熔融,将温度计(4.6)插入样品中,测量温度。从该点开始计时。在试验温度±2℃范围内连续加热2h以达到热平衡。 5.3在试验温度±2℃范围内,按GB/T2794测量粘度1]。取适量胶粘剂,按GB/T15332测定软化点2]。 5.4以4h至6h的时间间隔,重复5.3中所述的全部操作,直至达到预定的试验时间止。如果在热熔胶粘剂表面发现形成表皮,则应在测量粘度前先除去表皮。 如果不可能以每隔4h至6h的时间间隔进行试验,则时间间隔的选取应避免使胶粘剂产生破坏。 采用说明: 1]ISO10363中,粘度测量按ISO2555:1989规定进行。 2]ISO10363中,软化点测量按ISO4625:1980规定进行。 中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询为载体,致力于搭建产研结合的桥梁。以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。

聚合物的差热分析及应用实验报告

实验六聚合物的差热分析及应用 差热分析是在温度程序控制下测量试样与参比物之间的温度差随温度变化的一种技术,简称DTA(Differential ThermaI Analysis),是热分析法的一种。在DTA基础上发展起来的另一种技术是差示扫描量热法。差示扫描量热法是在温度程序控制下测量试祥相对于参比物的热流速度随温度变化的一种技术,简称DSC(Differential Scanning Calorimetry)。试样在受热或冷却过程中,由于发生物理变化或化学变化而产生热效应,这些热效应均可用DTA、DSC进行检测。 DTA、DSC在高分子科学领域方应用十分广泛。比如在研究聚合物的相转变;测定结晶温度T c、熔点T m、结晶度X D、等温结晶动力学参数;测定玻璃化转变温度T g;研究聚合、固化、交联、氧化、分解等反应;测定反应温度或反应温区、反应热、反应动力学参数等方面均发挥重要作用。 一、实验目的与要求 1、掌握DTA、DSC的基本原理。 2、学会用DTA、DSC的测定聚合物的T g、T c、T m、X D。 二、实验原理 1、差热分析(DTA) 差热分析是对少量试样的热效应所进行的仪器分析技术(图6-1 DTA示意图)。 图6-1 DTA示意图 S—试样;R—参比物;E—电炉; 1—温度程序控制器;2—气氛控制;3—差热放大器;4—记录仪 图6-2 DTA曲线 当试样与参比物(在所研究的温度范围内不发生热效应的物质,常用的有石英粉、硅油、α-氧化铝等)分别放在两个坩埚内,再将两个坩埚放在同一金属板的两个托盘上,然后将它们置于加热炉中,加热炉按程序控制等速升温(或降温),在此变温过程中,试样如果没有热效应,则与参比物之间的温差ΔT= 0;若在某一温度范围内,试样发生变化时,则放出或吸收能量,这种热效应将使试样温度改变,而此时参比物并无温度变化,即导致温差ΔT 发生。如用热电偶测量并放大热电势信号、记录,可得图6-2所示DTA峰形曲线。在DTA 曲线上,由峰的位置可确定发生热效应的温度,由峰的面积可确定热效应的大小,由峰的形状可了解有关过程的动力学特性。并且已知图6-2中峰BCD的面积A和热效应ΔQ有如下

稳定性试验方案

稳定性试验方案 1 2020年4月19日

Stability Study Protocol for Exhibit Batch of Chloroquine Phosphate Tablets USP, 250mg 规格为250 mg的USP磷酸氯喹片长期、中期及加速稳定性研究方案 Prepared By: Date: 起草者:日期:Reviewed By QA: Date: 审核者:日期: Approved By: Date: 批准者:日期: Starting Date: Completed Date:

文档仅供参考,不当之处,请联系改正。 开始日期:结束日期: 3 2020年4月19日

Contents 目录 1. Purpose目的…………………………………………………………………………………………错误!未定义书签。 2. Scope范围…………………………………………………………………………………………..错误!未定义书签。 3. R e f e r e n c e s参考资料…………………………………………………………………………………..错误!未定义书签。 4. G e n e r a l I n f o r m a t i o n基本信息………………………………………………………………………..错误!未定义书签。 4.1 S t a b i l i t y S a m p l e s稳定性研究样品…………………………………………………………错误!未定义书签。 4.2 P r o d u c t O u t l i n e样品概述………………………………………………………………..……错误!未定义书签。 4.3 F o r m u l a t i o n处方………………………………………………………………………………错误!未定义书签。 4.4 C o n t a i n e r-C l o s u r e S y s t e m s包装……………………………………………………………错误!未定义书签。 4.5 Labeling标签…………………………………………………………………………………..错误!未定义书签。 4.6 S a m p l e s a n d P a c k a g e样品与包装………………………………………………………….错误!未定义书签。

物质热稳定性的热分析试验方法

物质热稳定性的热分析 试验方法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

物质热稳定性的热分析试验方法 1 主题内容与适用范围 本标准规定了用差热分析仪和(或)差示扫描量热计评价物质热稳定性的热 分析方法所用的试样和参比物、试验步骤和安全事项等一般要求。 本标准适用于在惰性或反应性气氛中、在-50~1000℃的温度范围内有焓变 的固体、液体和浆状物质热稳定性的评价。 2 术语 物质热稳定性 在规定的环境下,物质受热(氧化)分解而引起的放热或着火的敏感程度。 焓变 物质在受热情况下发生吸热或放热的任何变化。 焓变温度 物质焓变过程中的温度。 3 方法原理 本方法是用差热分析仪或差示扫描量热计测量物质的焓变温度(包括起始温度、外推起始温度和峰温)并以此来评价物质的热稳定性。 4 仪器和材料 仪器 差热分析仪(DTA)或差示扫描量热计(DSC):程序升温速率在2~30℃/min 范围内,控温精度为±2℃,温差或功率差的大小在记录仪上能达到40%~95% 的满刻度偏离。 样品容器

坩埚:铝坩埚、铜坩埚、铂坩埚、石墨坩埚等,应不与试样和参比物起反应。气源 空气、氮气等,纯度应达到工业用气体纯度。 冷却装置 冷却装置的冷却温度应能达到-50℃。 参比物 在试验温度范围内不发生焓变。典型的参比物有煅烧的氧化铝、玻璃珠、硅 油或空容器等。在干燥器中储存。 5 试样 取样 对于液体或浆状试样,混匀后取样即可;对于固体试样,粉碎后用圆锥四分 法取样。 试样量 试样量由被测试样的数量、需要稀释的程度、Y 轴量程、焓变大小以及升温 速率等因素来决定,一般为1~5mg,最大用量不超过50mg。如果试样有突然释放大量潜能的可能性,应适当减少试样量。 6 试验步骤 仪器温度校准按附录A 进行,校准温度精度应在±2℃范围内。 将试样和参比物分别放入各自的样品容器中,并使之与样品容器有良好的 热接触(对于液体试样,最好加入试样重量20%的惰性材料,如氧化铝等)。将装有试样和参比物的样品容器一起放入仪器的加热装置内,并使之与热传感元件紧密接触。

《热分析应用手册》梅特勒-托利多

梅特勒-托利多热分析应用精选 梅特勒-托利多 热分析应用手册聚合物的热分析 (DSC、TGA、TMA)

目录 主要热分析技术介绍.. 3 热分析技术在聚合物中的应用.. 6 热分析技术(DSC、TGA、TMA)在聚合物应用的一览表.. 8 常用聚合物的特征温度.. 9 1PE的熔化曲线和热历史.. 10 2.用DSC和TMA表征E/VAC的特性.. 11 3 不同厂商生产的PP (13) 4PP/PE共聚物识别14 5 用DSC表征ABS的玻璃化转变.. 15 6应用DSC和TGA技术研究PVC (17) 7 PVAC,玻璃化转变温度和增塑剂.. 18 8 PA6,玻璃纤维增强的影响20 9 PVC-U的热稳定性 21 10 PA66的质量控制. 22 11 PA66中的水分:TGA和DSC测试结果的比较. 23 12 PA6/PA66共混物. 24 13 PET,热历史25 14 PET,热焓松弛27 15 PET,由动态加载TMA所测得的固化曲线29 16 PMMA,玻璃化转变30 17 PC,聚碳酸脂和聚碳酸脂/ABS共混物. 31 18 POM,聚甲醛.. 32 19 TPE-E,酯类热塑性弹性体33 20 PPA,聚邻苯二酰胺34 21 应用DSC和TMA技术研究 PTFE同质多晶现象 35 22PEI,由ADSC所测的玻璃化转变.. 37 第2页聚合物梅特勒-托利多热分析应用精选

主要热分析技术介绍 热分析是在程序控制温度下,测量样品的性质随温度或时间变化的一组技术。这里所说的温度程序可包括一系列的程序段,在这些程序段中可对样品进行线性速率的加热、冷却或在某一温度下进行恒温。在这些实验中,实验的气氛也常常扮演着很重要的作用,最常使用的气体是惰性和氧化气体。 差示扫描量热,DSC 差示扫描量热法是在程序控制温度下,测量输入到样品和参比样的热流差随温度(时间)变化的一种技术。该热流差能反映样品随温度或时间变化所发生的焓变:当样品吸收能量时,焓变为吸热;当样品释放能量时,焓变为放热。 在DSC曲线中,对诸如熔融、结晶、固-固相转变和化学反应等的热效应呈峰形;对诸如玻璃化转变等的比热容变化,则呈台阶形。 典型的半结晶聚合物的DSC曲线:Array 1.与样品热容成比例的初始偏移 2.无热效应时DSC曲线的基线 3.无定形部分的玻璃化转变 4.冷结晶峰 5.结晶部分的熔融峰 6.在空气下开始氧化降解 热重分析,TGA 热重分析是在程序控制温度下,在设定气氛下测量样品的质量随温度度或时间变化的一种技术。质量的变化可采用高灵敏度的天平来记录。 样品在加热过程中产生的气相组分可通过联用技术如TGA-MS、TGA-FTIR进行逸出气体分析(EGA)。TGA851e的同步SDTA技术能同步提供样品的吸热或放热效应的DTA信号。 热重分析能提供下列结果: 易挥发性成分(水分、溶剂)、聚合物、碳黑或碳纤维组分、灰分或填充组分的组分分析; 聚合物样品的高温分解的机理、过程和动力学。 梅特勒-托利多热分析应用精选聚合物第3页

软件测试之服务器稳定性测试方法

服务器稳定性是最重要的,如果在稳定性方面不能够保证业务运行的需要,在高的性能也是无用的。 正规的服务器厂商都会对产品惊醒不同温度和湿度下的运行稳定性测试。重点要考虑的是冗余功能,如:数据冗余、网卡荣誉、电源冗余、风扇冗余等。 一些测试方法主要分以下几种: 压力测试:已知系统高峰期使用人数,验证各事务在最大并发数(通过高峰期人数换算)下事务响应时间能够达到客户要求。系统各性能指标在这种压力下是否还在正常数值之内。系统是否会因这样的压力导致不良反应(如:宕机、应用异常中止等)。 Ramp Up 增量设计:如并发用户为75人,系统注册用户为1500人,以5%-7%作为并发用户参考值。一般以每15s加载5人的方式进行增压设计,该数值主要参考测试加压机性能,建议Run几次。以事务通过率与错误率衡量实际加载方式。 Ramp Up增量设计目标:寻找已增量方式加压系统性能瓶颈位置,抓住出现的性能拐点时机,一般常用参考Hits点击率与吞吐量、CPU、内存使用情况综合判断。模拟高峰期使用人数,如早晨的登录,下班后的退出,工资发送时的消息系统等。 另一种极限模拟方式,可视为在峰值压力情况下同时点击事务操作的系统极限操作指标。加压方式不变,在各脚本事务点中设置同集合点名称(如:lr_rendzvous("same");)在场景设计中,使用事务点集合策略。以同时达到集合点百分率为标准,同时释放所有正在Run的Vuser。 稳定性测试:已知系统高峰期使用人数、各事务操作频率等。设计综合测试场景,测试时将每个场景按照一定人数比率一起运行,模拟用户使用数年的情况。并监控在测试中,系统各性能指标在这种压力下是否能保持正常数值。事务响应时间是否会出现波动或随测试时

差热分析_实验报告

学生实验报告 实验名称差热分析 姓名:学号:实验时间: 2011/5/20 一、实验目的 1、掌握差热分析原理和定性解释差热谱图。 2、用差热仪测定和绘制CuSO4·5H2O等样品的差热图。 二、实验原理 1、差热分析原理 差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及花絮而反应的一种分析方法,简称DTA(Differential Thermal Analysis)。 物质在受热或者冷却过程中个,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸收、脱附等物理或化学变化,因而产生热效应,其表现为体系与环境(样品与参比物之间)有温度差;另有一些物理变化如玻璃化转变,虽无热效应发生但比热同等某些物理性质也会发生改变,此时物质的质量不一定改变,但温度必定会变化。差热分析就是在物质这类性质基础上,基于程序控温下测量样品与参比物的温度差与温度(或时间)相互关系的一种技术。 DTA的工作原理(图1 仪器简易图)是在程序温度控制下恒速升温(或降温)时,通过热偶点极连续测定试样同参比物间的温度差ΔT,从而以ΔT对T 作图得到热谱图曲线(图2 差热曲线示意图),进而通过对其分析处理获取所需信息。 图1 仪器简易图

实验仪器实物图 图2 差热曲线示意图 在进行DTA测试是,试样和参比物分别放在两个样品池内(如简易图所示),加热炉以一定速率升温,若试样没有热反应,则它的温度和参比物温度间温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,有计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度 及其面积的大小与形状可以进行分析。 差热峰的面积与过程的热效应成正比,即 ΔH。式中,m为样品质量;b、d分别为峰的 起始、终止时刻;ΔT为时间τ内样品与参比物的温差;

热稳定性分析方法

版 本 号:0.1 页 码:1/3 发布日期:2009-12-09 实验室程序 编 写: 批 准: 签 发: 文件编号:SHLX\LAB\L2-008 题 目:热稳定性测量方法 1.0 目的 提供了产品热稳定性的测量方法。 2.0 概述 (1)原理 Na 2SO 3 方 法 : 用 1N 的 Na 2SO 3 溶 液 吸 收 样 品 粒 子 中 释 放 的 甲 醛 , 生 成HOCH 2SO 3Na 和 NaOH 。 CH 2O +Na 2SO 3+H 2O →HOCH 2SO 3Na +NaOH (2)本测量方法是利用聚甲醛树脂在高温熔融,产生甲醛气体,随氮气带出,被亚 硫酸钠溶液吸收,由滴定反应生成的氢氧化钠,得出甲醛含量。 3.0 仪器和试剂 【仪器】 (1) 油浴(容量约为 130L ,并配有样品熔融管) (2) 加热器 (3) 过热保护装置 (4) 搅拌器 (5) 自动滴定装置 (6) 数据处理计算机 【试剂】 (1) 0.005mol/l 硫酸 (2) 福尔马林(36.0~38.0%) (3) 亚硫酸钠(Na 2SO 3) (4) 缓冲液(pH 6.86) (5) 缓冲液(pH 9.18) (6) 0.1mol/l NaOH 4.0 定义 甲醛含量通过以下方式表示: (1)K 0 :表示从 2 分钟到 10 分钟之间,聚合物中溶解的甲醛,不稳定端基和聚合 物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 (2)K 1 :表示从 10 分钟到 30 分钟之间,聚合物中剩余的溶解甲醛,不稳定端基

文件编号:SHLX\LAB\L2-008 和聚合物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 (3)K2:表示从50 分钟到90 分钟之间,聚合物不稳定端基和聚合物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 5.0安全注意事项 (1)搁置和取出样品过程中,要穿戴安全手套,以防被烫伤。 (2)电极容易损坏,使用时防止碰撞。 (3)作业时,穿戴安全眼镜和防护手套。 (4)实验过程中使用氮气作为载气,所以要控制好氮气流量,并确保良好的通风。6.0步骤 6.1准备 (1) 确认油浴温度223±2℃,硫酸溶液的量。 (2) 打开参比液添加孔,检查电极内饱和KCL 的量,确保液位超过甘汞位置。 (3) 打开自动电位滴定仪、打印机及电脑电源。 (4) 打开电脑桌面上AT-WIN,输入密码并确认与自动电位滴定仪联机。 (5) 调整氮气流量到60 l/h。 (6) 分别用pH 为6.86(25℃)、9.18(25℃)的缓冲液,对电极进行校正(根据 电脑提示进行),若显示“OK”,则校正通过,否则进行检查并重复校正步 骤。 (7) 对自动电位滴定仪进行排气,确保滴定管路中无气泡。 (8) 用250ml 的烧杯,取150ml 吸收液(1mol/L 亚硫酸钠溶液,它的配制方法: 将250g 的Na 2SO3溶于2000ml 的水中,充分搅拌。),放入磁性搅拌子、加 盖、并将电极、N2管、喷嘴插入溶液中,启动搅拌按钮。 (9) 用硫酸溶液(0.1N)将溶液pH 调节至9.10,待稳定后,用0.1mol/l 甲醛溶 液(配制方法:将81g 的福尔马林放入1L 的容量瓶中,然后加水到刻度线, 配成约0.1mol/l 福尔马林),调节pH 至9.21~9.22,并稳定10 分钟以上。 (10) 电极浸泡液的配制方法:PH=4 的缓冲试剂250ml 一包溶于250ml 水中, 再加入56gKCL,适当加热,搅拌至完全溶解。 6.2步骤 (1) 用铝皿取3.000±0.003g,将其放到小金属底部,然后用钩子,将准备好的 样品放入油浴的熔融管中。 (2) 盖紧硅胶塞,快速按下START,开始试验,试验过程控制pH 值为9.20。 (3) 当实验进行到设定的时间后,自动结束。(按“RESET”键,可手动停止实 验。)测定结束,打印机自动打印结果。 (4) 取出金属筒冷却,取出电极,并将电极放入浸泡液中。

高聚物表征实验 热重分析法测定高聚物组成和热性能

岛津DTG-60H热分析实验 一.实验原理 热分析(thermal analysis)是在程序控制温度下,测量物质的物理性质与温度关系的一类技术,在加热和冷却的过程中,随着物质的结构、相态和化学性质的变化,通常伴有相应的物理性质的变化,包括质量、温度、热量以及机械、声学、电学、光学、磁学等性质,依此构成了相应的各种热分析测试技术。表1列出了几种主要的热分析法及其测定的物理化学参数和有关仪器。其中最具代表性的三种方法:热重法(TG),差热分析(DTA),差示扫描量热法(DSC)。 本实验使用的岛津DTG-60H是一类差热(DTA)—热重(TG)同步测定装置。 热重法(Thermalgravimetry, TG)是在程序控制温度下,测量物质的质量和温度关系的一种技术。热重法记录的是热重曲线(TG曲线),它是以质量作纵坐标,从上向下表示质量减少;以温度(T)或时间(t)作横坐标,自左向右表示增加。用于热重法的仪器是热天平,它连续记录质量和温度的函数关系。热天平一般是根据天平梁的倾斜与质量变化的关系进行测定的,通常测定质量变化的方法有变位法和零位法两种。变位法利用质量变化与天平梁的倾斜成正比关系,用直接差动变压器检测。零位法根据质量变化引起天平梁的倾斜,靠电磁作用力使

天平梁恢复到原来的平衡位置,所施加的力与质量变化成正比。DTG-60H采用的为变位法。只要物质受热时发生质量的变化,就可用热重法来研究其变化过程。其应用可大致归纳成如下几个方面:(1)了解试样的热(分解)反应过程,例如测定结晶水、脱水量及热分解反应的具体过程等;(2)研究在生成挥发性物质的同时所进行热分解反应,固相反应等;(3)用于研究固体和气体之间的反应;(4)测定熔点、沸点;(5)利用热分解或蒸发、升华等,分析固体混合物。图1为在相同实验条件下测得的聚氯乙烯(PVC),聚甲基丙烯酸甲酯(PMMA),高压聚乙烯(HPPE),聚四氟乙烯(PTPE)和芳香聚四酰亚胺(PI)的热重曲线。它们不仅提供了高聚物分解温度的信息,也很简便地比较了高聚物的热稳定性。 差热分析(Differential thermal analysis, DTA)是在程序控制温度下,测量试样与参比物(一种在测量温度范围内不发生任何热效应的物质)之间的温度差与温度关系的一种技术。在实验过程中,可将试样与参比物的温差作为温度或时间的函数连续记录下来: ⊿T= ? (T或t) 由于试样和参比物的测温热电偶是反向串联(见图2),所以当试样不发生反应,即试样温度(T s)和参比温度(T r)相同时,⊿T = T s —T r = 0,相应的温差电势为0。当试样发生物理或化学变化而伴有热的吸收或释放时,则⊿T ≠ 0,相应的温差热电势讯号经放大后送入记录仪,得到以⊿T为纵坐标,温度为横坐标的差热曲线(DTA曲线),如图3所示其中

服务器的稳定性服务器稳定性测试思路方法

服务器的稳定性:服务器稳定性测试思路方法疯狂代码 https://www.360docs.net/doc/d916624736.html,/ ?:http:/https://www.360docs.net/doc/d916624736.html,/SoftwareTesting/Article35038.html 服务器稳定性是最重要如果在稳定性方面不能够保证业务运行需要在高性能也是无用 正规服务器厂商都会对产品惊醒区别温度和湿度下运行稳定性测试重点要考虑是冗余功能如:数据冗余、网卡荣誉、电源冗余、风扇冗余等 些测试思路方法主要分以下几种: 压力测试:已知系统高峰期使用人数验证各事务在最大并发数(通过高峰期人数换算)下事务响应时间能够达到客户要求系统各性能指标在这种压力下是否还在正常数值的内系统是否会因这样压力导致不良反应(如:宕机、应用异常中止等) Ramp Up 增量设计:如并发用户为75人系统注册用户为1500人以5%-7%作为并发用户参考值般以每 15s加载5人方式进行增压设计该数值主要参考测试加压机性能建议Run几次以事务通过率和率衡量实际加载方式 Ramp Up增量设计目标: 寻找已增量方式加压系统性能瓶颈位置抓住出现性能拐点时机般常用参考Hits点击率和吞吐量、CPU、内存使用情况综合判断模拟高峰期使用人数如早晨登录下班后退出工资发送时消息系统等 另种极限模拟方式可视为在峰值压力情况下同时点击事务操作系统极限操作指标加压方式不变在各脚本事务点中设置同集合点名称(如:lr_rendzvous("same");)在场景设计中使用事务点集合策略以同时达到集合点百分率为标准同时释放所有正在RunVuser 稳定性测试:已知系统高峰期使用人数、各事务操作频率等设计综合测试场景测试时将每个场景按照定人数比率起运行模拟用户使用数年情况并监控在测试中系统各性能指标在这种压力下是否能保持正常数值事务响应时间是否会出现波动或随测试时间增涨而增加系统是否会在测试期间内发生如宕机、应用中止等异常情况 根据上述测试中各事务条件下出现性能拐点位置已确定稳定性测试并发用户人数仍然根据实际测试服务器(加压机、应用服务器、数据服务器 3方性能)估算最终并发用户人数 场景设计思想: 从稳定性测试场景设计意义应分多种情况考虑: 针对同个场景为例以下以公文附件上传为例简要分析场景设计思想: 1)场景:已压力测试环境下性能拐点并发用户为设计测试场景目验证极限压力情况下测试服务器各性能指标 2)场景 2:根据压力测试环境中CPU、内存等指标选取服务器所能承受最大压力50%来确定并发用户数 测试思路方法:采用1)Ramp Up-Load all Vusers simultaneously

热重分析实验报告

南昌大学实验报告 学生姓名:_______ 学号:_______专业班级:__________ 实验类型:□演示□验证□综合□设计□创新实验日期:2013-04-09实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示:

南京大学-差热分析实验报告

差热分析 近代物理实验 一.实验目的 1?掌握差热分析的基本原理及测量方法。 2?学会差热分析仪的操作,并绘制CuSO4 5H2O等样品的差热图。 3?掌握差热曲线的处理方法,对实验结果进行分析。 二.实验原理 1、差热分析基本原理 物质在加热或冷却过程中,当达到特定温度时,会产生物理或化学变化,同时产生吸热和放热 的现象,反映了物质系统的焓发生了变化。在升温或降温时发生的相变过程,是一种物理变化,一般来说由固相转变为液相或气相的过程是吸热过程,而其相反的相变过程则为放热过程。在各种化学变化中,失水、还原、分解等反应一般为吸热过程,而水化、氧化和化合等反应则为放热过程。差热分析利用这一特点,通过对温差和相应的特征温度进行分析,可以鉴别物质或研究有关的转化温度、热效应等物理化学性质,由差热图谱的特征还可以用以鉴别样品的种类,计算某些反应的活化能和反应级数等。 在差热分析中,为反映微小的温差变化,用的是温差热电偶。在作差热鉴定时,是将与参比物 等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线。如果在某一温度区间样 品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。 将在实验温区内呈热稳定的已知物质与试样一起放入一个加热系统中,并以线性程序温度对它们加热。如以AI2O3为参比物,它在整个试验温度内不发生任何物理化学变化,因而不产生任何热

高分子近代测试 聚合物测试考试 热分析部分

1、下图为某一复合材料的热失重曲线,请从图中指出该复合材料的主要配方组 成。 答:上图表明挥发物(增塑剂)的质量分数为19.8%,聚合物的质量分数为43.3%,炭黑为34.5%,灰分为2.4%。 2简要说明TG.DTG.DTA.DSC的原理,在他们的热谱中,纵坐标和横坐标各代表什么? 答:TG:热重分析法为使样品处于一定的温度程序(升/降/恒温)控制下,观察样品的质量随温度或时间的变化过程。热谱中纵坐标为质量保持率,横坐标为时间或温度。 DTG:微商热重法是TG对温度或时间的一阶导数。热谱图中纵坐标为质量变化率,横坐标为温度或时间。 DTA:热差分析法是把试样和参考试样同置于相同的加热或冷却的条件下,观察随温度或时间变化,它们之间的温差与温度间的关系的一种技术。其纵坐标为样品与参考试样的温差,横坐标为温度或时间。 DSC:差示扫描量热法是使试样与参考试样绝热分离,分别输入能量,测量使两者温差为0时需的能量差△E与温度的关系。纵坐标代表能量差△W或功率变化率dw/dt和热焓变化率dH/dt,横坐标为温差△T

3应用DTA或DSC如何测定高分子材料的玻璃化转变温度Tg。 答:聚合物随温度升高,当达到Tg时在DTA或DSC曲线上会显示出拐弯的变化。在测定Tg时由于开始温度很难准确地确定,一般要以拐弯处的外延线与基线交点作为Tg的值。 4如何应用DTA或DSC研究某二元聚合物共混物样品中两种聚合物的相容性,并画出示意图。 答:聚合物共混的相容性往往用Tg测定来研究,相容性好的的两聚合物的Tg在共混物中表示出相互靠近或称一个统一的Tg。相反,不相容的两聚合物的Tg在共混后仍表现出远离的Tg。 (图见老师课件) 对于结晶型聚合物,若相容性好,混炼均匀,分散性好,则其结晶度降低较大。相反,不相容或混炼不均匀而造成互相分散性差的对结晶度影响较小。即可以通过结晶度的变化大小推断两者的相容性, 5为考察PET(聚对苯二甲酸乙二醇酯)与EV A(乙烯-醋酸乙烯共聚物)共混体系的相容性,采用一种热分析方法测定了不同比例共混体系的玻璃化转变温度Tg、冷结晶温度Tc和结晶熔融温度Tm,以及热焓变化等热性能,结果见下表所示。请回答PET/EV A共混体系的相容性如何?为什么?(15分) 第1题表PET/EV A共混体系的热分析谱图数据 答:聚合物共混的相容性往往用Tg测定来研究。在上表可知,组分PET 的Tg并没有因共混比例的变化而出现大幅的变化,基本保持在80 ℃左右,这表明PET 与EV A 共混后在无定形区是不相容的。而且共混后PET 的Tm 与纯PET 的Tm 相一致,也不随共混组分比例变化而变化,可见其晶区也是不相容的。

相关文档
最新文档