二氧化铅钛阳极
钛阳极基础知识

电极失效
• 一、短路失效 • 阴阳极间距太小或中间有结垢物起搭桥作用,造成瞬间接触导电或中 间电解质击穿,阳极涂层烧损、基体溶解击穿 • 二、涂层脱落 • 活性物质从阳极上脱离。根据剥离区域扩展的主导方向,可分为横向 (沿平行于涂层表面的方向)和纵向(沿垂直于涂层表面的方向)剥 离这二种形式。 • 造成涂层脱落的原因主要有以下三种: • a 基体金属的化学损坏由于涂层具有多孔性,如若表面有裂 缝,在酸性电解液渗透到基体金属时,会加速基体金属损坏 b 内部析出气体的冲击电解液中含有的杂质(无机物和有机物)会加速 电极钝化。当部分电极表面被沉淀的杂质覆盖时,电极反应会从表 面迁移到涂层内部。涂层气孔内析出气体产生的压力非常高,导致涂 层机械破裂。
钛阳极基础知识
电化学基础理论知识
•
• • • • •
•
• •
•
•
•
电化学应用的研究主要涉及电能与化学能和其他能量形式的转化过程,我们一定要 明确关于电能的一些概念。 1.库仑: 若导线中载有1安培的稳恒电流[1],则在1秒内通过导线横截面积的电量为1库仑 库仑是电量单位,库仑不是国际单位制基本单位,而是国际单位制导出单位。 1库仑=1安培·秒。为纪念法国物理学家C.A.de库仑而命名。简称库,用C表示, 用基本单位表示的关系式为秒·安培(s·A) 定义如下: 1A电流在1s内输运的电量,即1C=1A·s。 在电化学研究中发现,1库仑相当于用AgNO3溶液电解生成1.0008g的银所需要 的能量。 库仑定律:在真空中两个静止的点电荷q1及q2之间的相互作用力的大小和q1q2 的乘积成正比,和它们之间的距离r的平方成反比,作用力的方向沿着它们的连线, 同号电荷相斥,异号电荷相吸引。 2.法拉第 法拉第定律又叫电解定律,是电镀过程遵循的基本定律。它又分为两个子定律, 即法拉第第一定律和法拉第第二定律。 (1) 法拉第第一定律法拉第的研究表明,在电解过程中,阴极上还原物质析出的 量与所通过的电流强度和 通电时间成正比。 (2) 法拉第第二定律 电解过程中,通过的电量相同,所析出或溶解出的不同物 质的物质的量相同。也可以 表述为:电解lmol的物质,所需用的电量都是l个“法 拉第”(F),等于96500 C或者26.8A•h。 1F=26.8A•h=96500C
改性二氧化铅电极的制备及其电催化性能研究

分类号:X505 密级:公开档案号:2010-172-081704-11-005 学号:0711091005硕士学位论文(2010届)改性二氧化铅电极的制备及其电催化性能研究研究生姓名季跃飞指导教师姓名魏杰(教授)专业名称应用化学研究方向应用电化学论文提交日期 2010年5月苏州科技学院硕士学位论文改性二氧化铅电极的制备及其电催化性能研究硕士研究生:季跃飞指导教师:魏杰(教授)学科专业:应用化学苏州科技学院化学与生物工程学院二○一○年五月Master Dissertation of Suzhou University of Science and TechnologyPreparation of Modified Lead Dioxide Electrode and Research of theElectro-catalytic PropertiesMaster Candidate: Ji YueFeiSupervisor: Wei Jie (Professor)Major: Applied ChemistrySuzhou University of Science and TechnologyDepartment of Chemical and Biological EngineeringMay, 2010苏州科技学院学位论文独创性声明和使用授权书独创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的研究成果。
对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式标明。
本声明的法律结果由本人承担。
论文作者签名:日期:年月日学位论文使用授权书苏州科技学院、国家图书馆等国家有关部门或机构有权保留本人所送交论文的复印件和电子文档,允许论文被查阅和借阅。
本人完全了解苏州科技学院关于收集、保存、使用学位论文的规定,即:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其他复制手段保存汇编学位论文;同意学校在不以赢利为目的的前提下,用不同方式在不同媒体上公布论文的部分或全部内容。
Ti/SnO2—Sb /PbO2阳极在硫酸溶液中失效的研究

Ti/SnO2—Sb /PbO2阳极在硫酸溶液中失效的研究摘要:本文通过研究Ti/SnO2—Sb/PbO2电极在硫酸溶液中钝化的现象,讨论了电极活性下降的原因,以便于延长电极的寿命提高电解的效率。
结果表明电极在硫酸溶液中失活的原因有二氧化铅活性组元的溶解、消耗,涂层的脱落或剥离以及Ti基钝化生成TiO2。
关键词:Ti/SnO2—Sb/PbO2电极,循环伏安;寿命;活化1 前言近些年来,Ti/SnO2—Sb /PbO2电极因其具有良好的导电性、催化活性、高析氧过电位和电镀成本较低等优点而被广泛应用于氯碱工业、氯酸盐生产、污水处理、电渗析、燃料电池、阳极保护和电有机合成等方面这些领域中。
然而,关于Ti/SnO2—Sb/PbO2 阳极在使用过程中失效的研究报道的却很少有。
为此,我们研究了Ti/SnO2—Sb/PbO2在硫酸溶液中失效的情况,以便于找到电极活性下降的原因,从而延长电极的使用寿命。
2 实验部分2.1 试剂与仪器苯酚、异丙醇、SnCl2·2H2O、SbCl3、Pb(NO3)2、HCl、HNO3、NaF和H2SO4均为分析纯试剂。
除特殊说明,溶剂均为去离子水。
CHI660B电化学工作站(上海辰华电化学公司)。
2.2 电极制备2.2.1 Ti/SnO2—Sb中间层的制备钛基体选用TA2钛板,其规格为3㎜×1㎜×1.0㎜,首先用洗涤剂脱脂,然后用20 %盐酸水溶液煮沸两小时,最后用去离子水冲洗干净备用。
采用热分解法制备Ti / SnO2—Sb混合氧化物中间涂层。
将SnCl2·2H2O、SbCl3按一定比例溶解在含有盐酸的异丙醇溶液中,按SnO2—Sb含量为10mg·cm2配制成涂液,刷涂在处理好的钛基体上,90℃下烘干,然后在氧气气氛中500℃下热氧化10分钟,反复操作,直至将涂液全部涂完为止,最后在500℃下烧结1小时。
2.2.2电沉积制备Ti/PbO2阳极Ti/PbO2电极由含有0.5 mol·L-1 Pb(NO3)2, 0.05 mol·L-1 NaF的0.1 mol·L-1 HNO3水溶液中电沉积在带有Sn-Sb氧化物中间层的钛基体上,温度为(65±1)℃,电镀时间为2h,空气搅拌。
钛基锡锑中间层上二氧化铅电沉积过程的研究

于 电有 机 合 成 和 污 水 处 理 等 方 面 。为 了 改 进
现 为在 同一 电位 下 阴极 扫 描 时 的沉 积 电 流 大 于 阳
0
0 5 1 0 1 5 2 0 2 5 3 0 . . . . . .
tt /
图 3 ,/m tt 因次 曲 线 , ~ / 无
图 3曲线 a表示 式 ( ) 对 应 的 瞬时 成核 理 论 1所
S u y o a o i e El c r d p st0 o e s o t d f Le d Di x d e t 0 e 0 ii n Pr c s n Ti n 一 b2 El c r de /S O2 S 05 e to
YAO n — Yi g WH,W ANG a Ch o
引 言
二氧 化铅 电极 由于具 有 较 高 的 电化 学 活 性 、 低 廉 的价格 及 良好 的稳 定 性 等 特 点 而 被 广 泛 地 应 用
合 力 、 少界 面 电阻 和 内应 力 。人 们 对 在 锡 锑 氧 化 减 物 上制 备二 氧化 铅 电极 进 行 了大 量 研 究 , 是 主要 但
位 阶跃 暂态 和 阻抗. 电位 测试 , 行 恒 电位 阶跃 暂 态 进
的形 成和新 相 的生 长 , 电流 逐 渐 上 升 , 电流 达 到 在 最 大值 后 出现 电流 衰 减 , 时 可 能 发 生生 长 中心 的 此
新型二氧化铅电极的研究进展

第46卷第20期2018年10月广 州 化 工Guangzhou Chemical Industry Vol.46No.20 Oct.2018新型二氧化铅电极的研究进展孙鹏哲1,2(1深圳市深港产学研环保工程技术股份有限公司,广东 深圳 518000;2重庆市环境保护设计工程设计研究院有限公司,重庆 404200)摘 要:概述了近年来国内采用压塑法制备复合二氧化铅电极的研究进展,主要涉及塑片复合二氧化铅电极的制备方法(包括原料的制备方法㊁压制的方法)㊁掺杂改性(改性材料有石墨粉㊁活性炭粉㊁金属粉以及金属氧化物粉)及在污水处理方面的应用㊂研究采用改性材料和二氧化铅粉末混合掺杂,从而优化电极;并指出塑片二氧化铅电极现存的问题,并展望了塑片二氧化铅电极的发展方向㊂关键词:二氧化铅;压塑法;塑片电极;改性材料 中图分类号:O646 文献标志码:A文章编号:1001-9677(2018)20-0024-03 Research Progress on New Lead Dioxide ElectrodeSUN Peng-zhe1,2(1IERE Environment Protection Engineering Technique Co.,Ltd.,Guangdong Shenzhen518000;2Chongqing Environment Engineering Acaoemu Co.,Ltd,Chongqing404200,China)Abstract:In recent years,research progress on plastic piece of lead dioxide composite electrodes,which were prepared by the high pressure molding technique,was summarized.The new preparation method of lead dioxide electrode mainly involved the methods for preparation of plastic piece of lead dioxide electrode,which included preparation of raw material,high pressing method,doping modified materials with graphite powder,activated carbon powder,metal powder or metal oxides powder,and application in wastewater treatment.Experimental research mixed modified materials and lead dioxide powder,so as to optimize electrode.The problems existing in plastic piece of lead dioxide electrode were pointed out.And the development trend was forecasted.Key words:lead dioxide;high pressure molding technique;plastic piece electrode;modified materials二氧化铅良好的导电性及稳定的化学惰性,早在20世纪30年代二氧化铅就被作为不溶性阳极用在化工工业生产中[1]㊂最初PbO2电极没有基体,是通过机械加压,粉末成型的方式制备二氧化铅电极,这种无基体二氧化铅电极机械性能不好,使用寿命短,因此,不受科研工作者的青睐,难以推广[2-3]㊂自1967年Beer发明钛基体氧化钌活性涂层电极以来,科研工作者对DSA电极(dimensionally stable anodes)进行了大量的研究工作,并在氯碱㊁氯酸盐㊁硫酸㊁电镀㊁冶金㊁电解水㊁污水处理㊁有机合成等工业领域获得应用[4-6]㊂近年来,大量科研工作者深入研究钛基体二氧化铅电极,大幅提升了钛基体二氧化铅电极的催化性能㊁使用寿命㊂该种电极并不是没有缺陷的,由于基体和活性层之间存在结构差异,结合不够紧密,同时在使用过程中由于基体钝化,电极不可避免造成镀层易脱落[7]㊂此外钛基体二氧化铅电极还存在有耐腐蚀性差,稳定性较差,成本高,使寿命相对较短等缺点,不利于推广应用[3]㊂因此,研究人员致力于开发性能良好的新型电极㊂近些年,研究人员重新采用高压塑片法制备二氧化铅电极,在二氧化铅粉末掺杂一定配比的有机黏结剂(有机微粉㊁PTFE乳液等)压制出的二氧化铅电极机械性能良好,提升了耐腐蚀性,延长了使用寿命㊂但由于该方法制备的二氧化铅电极的电阻率过高,催化活性较差,试验效果不好㊂目前,塑片二氧化铅电极在持续进行改性研究,逐步取得成效[8]㊂1 电极的制备1.1 β-PbO2粉末的制备二氧化铅是棕褐色粉末,有较好导电性[9]㊂PbO2有很多晶型,主要研究斜方晶型(α-PbO2)㊁四方晶型(β-PbO2)[10]㊂与α-PbO2的电阻率(650μΩ㊃cm)比相比,β-PbO2的电阻率(96μΩ㊃cm)较低,稳定性良好[11]㊂通常二氧化铅电极的活性层是有β-PbO2组成,是由于β-PbO2的析出氧电位较高[2]㊂β-PbO2粉末可以通过电化学沉积获得,也可以由α-PbO2通过热转化而来[9]㊂而现阶段在研究塑片二氧化铅电极时,通常采用庄京等[12]的制备工艺:将10g醋酸铅溶于20mL水中,调节pH值在9.0~10.0之间,添加80mL的NaClO溶液,混合后置于90℃恒温水浴锅中加热6h,最终的反应液过滤,所得滤饼冲洗,干燥,研磨,即制备得到深棕色的β-PbO2棒状晶体㊂1.2 塑片电极的制备工艺直接用β-PbO2粉末压制出的电极机械强度低,容易破碎,不适合应用在污水处理方面㊂研究发现在β-PbO2粉末中添加第46卷第20期孙鹏哲:新型二氧化铅电极的研究进展25一些有机黏结剂(有机微粉㊁聚四氟乙烯乳液等),改善粉末的成形状态,在高压下,可以制得机械性好,表面致密的塑片电极㊂现阶段实验室内制备塑片电极,主要的步骤是:首先把自制的β-PbO2粉末㊁改性物质及有机粘结混匀,其次将干燥的混合粉体装入模具,保持一定的高压几分钟即得塑片二氧化铅电极㊂2 掺杂的改性材料为了提高新型塑片二氧化铅电极的电催化活性,延长使用寿命等,因此制备过程会添加一定配比的物质去改善塑片电极的电化学性质㊂今年来,研究发现掺杂的某些必要物质(有机微粉㊁聚四氟乙烯乳液等)以及改性物质(软锰矿㊁纳米氧化钛㊁氧化铈粉末㊁镧粉㊁镍金属㊁粉活性炭㊁石墨粉等)均有利于电极的电催化氧化性能的提高㊂(1)聚四氟乙烯乳液在制片过程中,聚四氟乙烯乳液(PTFE)是作为黏结剂使用的㊂当然也可以使用其他物质,例如一些有机微粉㊂在DSA 电极的研究过程中,发现PTFE可以增加电极的疏水性和稳定性,提高电极催化活性[13]㊂而在压塑工艺中,添加聚四氟乙烯的电极的最大作用首先是使用寿命得到增加,增强电极的机械性能㊂其次,PTFE是具有疏水性的有机分子,有助于在电极表面上吸引汇集有机物类型的污染物,同时PTFE可塑性良好,且不参与反应㊂最后,PTFE会引起混合粉体的团聚现象,以致于制备出表面分布不均的电极,可能会产生表面凹凸,甚至是微孔,有助于增大电极表面积[14]㊂(2)石墨粉和活性炭[13]活性炭具有比表面比较大,吸附性能高的特点,所以常用于电极的表面改性处理㊂在塑片电极制备中,掺杂活性炭可以提升电极的吸附性能㊂石墨粉可以增强电极的致密㊁坚硬的特性,还可以提高电极的耐腐蚀性㊁导电性,提升电极的电流效率㊂因此,掺杂石墨粉或活性炭可以提高电极的电催化活性㊂(3)其他活性成分金属粉:镧和镍㊂镍是具有铁磁性的金属元素,抗腐蚀性能好,有良好导电率性,在复合材料的制备常会用到[15]㊂此外在DSA电极研究中,镍也会用于修饰二氧化铅电极的研究[16]㊂单志国等[17]通过添加镍金属粉制备电极,金属镍粉可以提升电极的导电性,从而增强电极的电催化氧化活性;镍金属粉还可以提升电极的硬度,使电极表面产生微孔,增加了电极的比表面积㊂在DSA电极研究中,镧也被作为改性物质用于电极的改性实验,可以提高电极的催化氧化能力掺杂镧粉制备电极,镧粉可以提高电极的导电性及析氧电位㊂金属化合物:二氧化钛㊁二氧化铈和软锰矿㊂在DSA电极研究中TiO2具有光催化性,可以增加电极的特性[21-22]㊂邵春雷等[10,23]加入纳米二氧化钛制备电极,其中与纯塑片电极(β-PbO2-PTFE)相比,添加的纳米二氧化钛的电极具有更好的电催化氧化能力,可能是因为掺杂二氧化钛的电极表面容易产生空穴,有利于生成羟基自由基,同时二氧化钛还提升电极的比表面积㊂但是,TiO2电阻率较高,会增电极电阻率㊂添加锰的化合物,会增加电极的粗糙度机械强度㊁耐磨性㊁耐蚀性㊁催化活性等,尤其粗糙度,衡量电极催化活性的重要指标[24-26]㊂李云霞等[27]加入锰矿粉制备复合电极,锰矿粉有助于延长电极的使用寿命,提高电极催化氧化能力㊂在DSA电极研究中发现CeO2增加催化降解有机物的能力[21,28-30]㊂孙鹏哲等[8]掺杂氧化铈及石墨粉制备塑片二氧化铅电极,氧化铈和石墨加入提高了电极的析氧电位,极大的提高了塑片电极的催化氧化能力㊂非金属化合物:二氧化硼㊂谢婷婷等[31]掺杂碳化硼和石墨制备二氧化铅塑片电极,该种二氧化铅电极具有较强的耐腐蚀性,较高的机械强度,较好的导电性,研究发现在处理偶氮染料染料废水时,碳化硼/石墨改性二氧化铅电极脱色效果优于β-PbO2电极㊂3 污水处理中的应用塑片PbO2电极可以用于处理难生物降解有机污染物,且对含盐有机废水效果显著㊂邵春雷等[10]采用压塑法制备β-PbO2电极,该种电极用于处理模拟240mg/L硝基苯废水, COD去除率较好㊂在同样的实验条件下,塑片电极的催化降解效果比石墨电极好㊂房豪杰等[32]采用压塑法制备β-PbO2电极,该种电极用于处理模拟中性枣红染料废水,在PbO2与FDPF-1(黏结剂)质量比为7/1时,该种配比的电极处理废水的效果最好㊂徐莺等[33]采用压塑法制备β-PbO2电极,该种电极处理模拟20mg/L染料废水(中性枣红),研究发现,在磷酸二氢钾或氯化钠作为电解质时候,能取得良好的预处理效果㊂曹长青[34]等人采用压塑法制备β-PbO2电极,该种电极处理模拟废水染料废水(茜素红),实验研究了pH值㊁电解质浓度㊁极板距离等因素对处理效果的影响㊂曹长青[23]等人将少量纳米二氧化钛粉末㊁β-PbO2粉末和FDPF-1有机粘合剂均匀混合后采用压塑法制备电极,该种改性β-PbO2/TiO2电极处理模拟240mg/L㊁0.05mol/L Na2SO4的硝基苯废水以及茜素红废水,发现不同电极的电催化活性的排序:β-PbO2/TiO2>β-PbO2>石墨,其中β-PbO2/TiO2(2%)电极的电催化活性最好㊂李云霞等[27]利用压塑法制备β-PbO2电极,掺杂锰矿粉的β-PbO2复合电极,研究发现当软锰矿粉掺杂量(质量百分比)达到17.6%时,该种电极的性能最好㊂在处理模拟30mg/L染料废水(弱酸性桃红-BS)㊁0.05mol/L电解质KNO3实验条件下,催化降解30min后,COD的去除率达到83%㊂同时,该实验还做了添加叔丁醇的实验(羟基自由基的验证实验),结果表明有羟基自由基的生成㊂单治国等[35-36]采用掺杂锰矿粉的β-PbO2复合电极处理模拟硝基苯废水,在电解质为10g/L的氯化钠实验条件下,催化降解120min后,COD的去除率达到99.43%,同时研究发现该降解过程符合一级反应动力学㊂朱艳等[37]利用压塑法制备掺杂活性炭㊁石墨混合粉体的二氧化铅粉末多孔电极,研究发现当掺杂量活性炭㊁石墨混合粉体质量百分比为20%时,该种电极处理效果较好㊂在氯化钠电解质体系下模拟处理氨氮废水,由于氯离子的协同作用,处理氨氮的处理效果较好㊂张弛等[38]利用压塑法制备了掺杂活性炭粉体㊁镧粉的改性二氧化铅电极,当掺杂量物质质量百分比为20%时,复合电极的电催化降解活性较好,在氯化钠电解质体系下,模拟处理100mg/L的染料废水(亚甲蓝),染料的脱色率效果明显,但COD的去除率不高㊂4 结 语高压塑片法制备二氧化铅的工艺简单,操作方便,原料成本相对低㊂新型塑片二氧化铅电极通过掺杂改性,使得电极的电催化氧化活性得到了极大的提高,同时还具有使用寿命长,耐腐蚀性强的优点,由此验证了压塑法制备二氧化铅电极的可能性㊂整体来看,对高压塑片法制备二氧化铅的研究时间较短,研究内容较少,研究深度不够㊂同时,该种新型电极的制备工艺有待进一步优化,需要进一步的探究对该种塑片电极的反复塑造影响㊁反应动力学㊁催化氧化反应机理㊁添加改性材26 广 州 化 工2018年10月料(如纳米氧化钛㊁镧粉㊁软锰矿)作用机理㊁表面多孔性与光滑性研究等方面㊂目前,在塑片电极改性研究中添加改性物质已有活性炭㊁石墨粉㊁镧粉㊁软锰矿㊁纳米氧化钛㊁氧化铈粉末㊁镍金属粉等等㊂还有很多材料可以尝试添加,如金属化合物系:金刚石颗粒㊁碳化物㊁碳化硼,碳系:石墨烯㊁碳纳米管㊂同时还可以考虑对掺杂物质的掺杂比例㊁掺杂种类的混合等当面的细化规范研究㊂此外对该种电极降解机理,耐腐蚀性检测,使用寿命,电化学测试方面等验证测试方面研究有限㊂压片机制备塑片电极过程中,制备压力,保持时间等因素对电极的使用寿命㊁催化活性具有重要的影响㊂关于塑片电极应用方面的研究要结合它本身的优缺点,还需要进一步的探讨,例如,关于电极的压制形状与三维电极应用方面结合研究;塑片电极可以考虑作为惰性电极或者金属冶炼等方面进行结合研究㊂参考文献[1] Schümann U,Gründler P.Electrochemical degradation of organicsubstances at PbO2anodes:monitoring by continuous CO2 measurements[J].Water Research,1998,32(9):2835. [2] 徐浩,张倩,邵丹,等.钛基体二氧化铅电极制备改性方法研究进展[J].化工进展,2013(6):1307.[3] 常立民,金鑫童.钛基二氧化铅电极的制备㊁改性及应用现状[J].电镀与涂饰,2012(7):46.[4] Thomassen M,Sunde S.Electrocatalysts for Oxygen Evolution Reaction(OER)[J].PEM Electrolysis for Hydrogen Production:Principles and Applications,2015:35.[5] Trasatti S.Electrocatalysis:understanding the success of DSA®[J].Electrochimica Acta,2000,45(15):2377.[6] 王晶,赵芳,张勇,等.钛基二氧化铅电极的制备及其应用[J].化学工程师,2009(05):45.[7] 孔德生,吕文华,冯媛媛,等.DSA电极电催化性能研究及尚待深入探究的几个问题[J].化学进展,2009,21(6):1107.[8] 孙鹏哲.塑片二氧化铅电极处理染料废水的研究[D].上海应用技术学院,2016.[9] Abaci S,Pekmez K,Yildiz A.The influence of nonstoichiometry on theelectrocatalytic activity of PbO2for oxygen evolution in acidic media [J].Electrochemistry communications,2005,7(4):328.[10]邵春雷.SFBP和SFBPT电极的制备及其电解处理有机废水的研究[D].复旦大学,2007.[11]朱松然,张勃然.铅酸电池技术[M].机械业出版社,2002:20.[12]庄京,邓兆祥,梁家和,等.β-PbO2纳米棒及Pb3O4纳米晶的制备与表征[J].高等学校化学学报,2002,23(7):1223. [13]Tong S-P,Ma C-A,Feng H.A novel PbO2electrode preparation andits application in organic degradation[J].Electrochimica Acta.,2008, 53(6):3002.[14]朱艳.PbO2粉末多孔电极处理氨氮及其在硝酸盐去除中的应用[D].合肥工业大学,2013.[15]张君燕,晋传贵,许智超.镍/聚苯胺复合材料的制备及其性质[J].安徽工业大学学报(自然科学版),2013(1):38. [16]李善评,王洪波,乔鹏,等.新型Ni修饰钛基PbO2电极处理印染废水的研究[J].工业水处理,2008,28(10):48.[17]单治国.新型PbO2电极处理难降解有机废水的研究[D].合肥:合肥工业大学,2009.[18]郑辉,戴启洲,王家德,等.La-PTFE共掺杂二氧化铅电极的制备及其性能研究[J].环境科学学报,2012,32(2):282. [19]Dai Q,Shen H,Xia Y,et al.The application of a novel Ti/SnO2-Sb2O3/PTFE-La-Ce-β-PbO2anode on the degradation of cationic gold yellow X-GL in sono-electrochemical oxidation system[J].Separation and Purification Technology,2013,104:9. [20]张驰.新型二氧化铅电极处理染料废水和氨氮废水的研究[D].合肥工业大学,2014.[21]Chen B-m,Guo Z-c,Xu R-d.Electrosynthesis and physicochemicalproperties ofα-PbO2-CeO2-TiO2composite electrodes[J].Transactions of Nonferrous Metals Society of China,2013,23(4):1191.[22]Lee SS,Bai H,Liu Z,et al.Novel-structured electrospun TiO2/CuOcomposite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater[J].Water Research, 2013,47(12):4059.[23]曹长青,杨龙誉,徐莺,等.高压塑片法制备β-PbO2电极及其改性研究//上海市化学化工学会2007年度学术年会论文集[C].2007: 202.[24]李娟,龚良玉,夏熙.α-PbO纳米粉体的固相合成及其对MnO2电极材料的改性作用[J].应用化学,2001,18(4):264. [25]夏熙,龚良玉.PbO2纳米粉体的固相合成及其对MnO2电极材料的改性作用[J].化学学报,2002,60(1):87.[26]Dan Y,Lin H,Liu X,et al.Porous quasi three-dimensional nano-Mn3O4+PbO2composite as supercapacitor electrode material[J].Electrochimica Acta,2012,83:175.[27]李云霞,汪家权,朱承驻,等.掺杂锰矿粉的PbO2复合电极的制备与应用[J].环境污染与防治,2008,30(7):16.[28]Song Y,Wei G,Xiong R.Structure and properties of PbO2–CeO2anodes on stainless steel[J].Electrochimica Acta,2007,52(24): 7022.[29]Xing X,Han Z,Wang H,et al.Electrochemical corrosion resistance ofCeO2-Cr/Ti coatings on304stainless steel via pack cementation[J].Journal of Rare Earths,2015,33(10):1122.[30]杨丽娟,魏杰,胡翔.Ce-PbO2/C电极的制备及其去除水中酸性红B[J].环境工程学报,2014(3):941.[31]Xie T,Hu H,Chen D,et al.Electrochemical Degradation ofTetracycline Hydrochloride in Aqueous Medium by(B4C/C)-β-PbO2 Electrode[J].Bulletin of the Korean Chemical Society,2017,38(7): 756-762.[32]房豪杰,王国华,孙晓,等.高压塑片法制备PbO2电极及其处理染料废水的研究[J].环境污染与防治,2007,29(6):459. [33]徐莺,朱承驻,董文博,等.新型二氧化铅电极处理有机染料废水的研究[J].环境污染治理技术与设备,2006,7(5):124. [34]曹长青,孟卓琰,何坚,等.新型β-PbO2电极电解处理茜素红废水的研究[J].环境污染与防治,2013,35(3):61.[35]单治国,吕剑,汪家权.锰矿掺杂PbO2电极电催化氧化对硝基苯酚废水的研究[J].合肥工业大学学报(自然科学版),2009,32(2):162.[36]单治国,汪家权,吕剑,等.锰矿掺杂β-PbO2电极电催化氧化对硝基苯酚及其动力学研究[J].工业水处理,2010,30(1):49. [37]朱艳,汪家权,陈少华,等.二氧化铅粉末多孔电极处理氨氮废水的研究[J].环境工程技术学报,2012,2(6):485.[38]张驰,汪家权.新型二氧化铅电极处理染料废水[J].环境工程学报,2014(06):2283.。
钛阳极

1、什么是钛阳极? 钛阳极就是钛基金属氧化物涂层中的阳极。根据其表面催化涂层不同分别具有析氧功能、析氯功能。一般电极材料要具有良好的导电性,极距变化小,耐腐蚀性强,机械强度和加工性能好,寿命长,费用低,对电极反应具有良好的电催化性能,目前钛是最能满足以上综合要求的金属,一般采用工业纯钛TA1\TA2
钛阳极上的金属氧化物涂层的作用是:电阻率低,具有良好的导电性(钛本身导电性能不好),贵金属涂层的化学组成稳定,晶体结构稳定,电极尺寸稳定,耐蚀性好,寿命长,具有良好的电催化性能,有利于降低析氧、析氯反应的过电位,节约电能。
2、冶金工业中的阳极分可溶性阳极和不溶性阳极。 可溶性阳极在电解过程中起补充金属离子和导电的作用,不溶阳极只起导电作用。最早的不溶性阳极是石墨和铅系阳极上世纪70年代钛阳极作为新技术开始应用在电解和电镀行业。目前不溶性阳极可分为两大类:析氯阳极和析氧阳极。析氯阳极主要用于氯化物电解液体系,电镀过程中阳极有氯气释放出来,因此称为析氯阳极;析氧阳极主要用于硫酸盐、硝酸盐、氢氰酸盐等电解液体系,电镀过程中阳极有氧气释放出来,因此称为析氧阳极。铅合金阳极析氧阳极,钛阳极根据其表面催化涂层不同分别具有析氧、析氯功能或二者功效兼有。
3、铅及铅合金阳极 铅合金阳极属于析氧阳极,析氧反应的电解液为硫酸和硫酸盐,主要用于电解冶金。这种阳极存在电解过程中几何尺寸会有所变化的缺陷。,在电解过程中,铅阳极基体首先转化成硫酸铅,然后再转化为氧化铅。硫酸铅是一个中间层,它是绝缘体,起着化学阻挡层的作用,可以在硫酸环境中保护内层的铅基体。氧化铅在外层是实际意义上的电极,上面发生析氧反应,氧化铅的析氧电位很高,并且随着电流密度的增加迅速上升,铅合金阳极的这种特征是由它外层物质氧化铅的固有特点—氧化铅是电的不良导体所决定的。此外,在电解过程中,氧化铅阳极结构的电化学性能不断衰减,其内部应力的产生导致氧化物一层层脱落,另外,过氧化铅的生成也导致氧化物不断溶解,作为中间层的硫酸铅再次被转化为氧化铅,成为新的外层氧化物电催化活性物质,内层的铅基体又被氧化,形成新的硫酸铅中间保护层。因此,在电解过程中,铅及其合金元素不断溶解到电解液里并沉淀造成溶液污染(溶液中化学沉淀)和阴极产物的污染(阴极表面的污染物电沉积,电解到铜的纯度不能很好的得到保证)。
2021二氧化铅电极的改性最新进展综述范文3

稀土元素具有特殊的4f 电子结构,使稀土元素原子易极化变形,以填补晶格空隙 或取代晶格位点的形式进入晶格内部,对 PbO2电极的表面微结构改变较大,使晶体颗 粒变小,镀层表面更加致密,有效阻止自由氧原子穿过电极表层向内部扩散的通道, 从而延长电极的使用寿命和稳定性。 林晓燕等[5]将稀土元素Er 掺杂到沉积液中,制备出 Ti /SnO2-Sb2O3/ ErPbO2电极。结果表明,稀土 Er 改性 PbO2电极镀层结构主要为 β-PbO2晶型,其晶粒 明显细化,析氧电位及电催化活性提高。苯酚降解实验表明,稀土 Er 掺杂改性 PbO2 电极,2 h 降解率达 91. 8 %。 4结语 随着电化学工业的发展,对电极的要求越来越高,PbO2电极作为典型的不溶性阳 极在电化学工业发挥着越来越大的作用。近些年来科学工作者围绕着PbO2电极的改性 做了大量研究工作,希望能够满足日益严格的电化学工业的要求。从文献报道来看, 主要的改性方法包括如下几个方面: 第一,优化现行的制备工艺。第二,开发新型的 中间层,并对现有中间层改性。第三,在表层中掺杂离子和固体颗粒等。研究表明, 这些改性方法使得 PbO2电极的整体性能得到改善。然而,在实际应用中,PbO2电极的 稳定性和催化活性还不够稳定,还需进一步提高。此外,目前使用 Ti 基体成本较 高,不利于大范围工业使用。所以寻找成本更加低廉、电化学性能优异的基体成为未 来的研究方向。
2021二其化学通式为PbOx( x <2) 。由于缺氧剩铅,使得 PbO2具有类似金属的导电性能。其在水溶液中具有析氧电位高、氧化能力强、耐腐蚀 性好及可通过大电流、投入成本低等特征。此外,这种电极材料可以加工成各种形 状,用过的或损坏的电极可以重镀再生。因此,PbO2电极成为电化学应用最广泛的阳 极之一,特别在电化学污水处理领域发挥着越来越大的作用。随着工业的发展,对 PbO2电极要求越来越高,新型 PbO2电极也随之产生。目前新型 PbO2电极一般由基 体、中间层与表层构成。PbO2电极的改性也主要体现在对基体、中间层和表面活性层 等的改进,以达到提高 PbO2电极的稳定性、使用寿命和催化活性的目的。 1基体 早期 PbO2电极没有基体,存在电极畸变大、脆、易损坏、机械加工困 难、成品率低、加工成本高等问题。为了解决这些问题,人们尝试在 PbO2电极中引入 基体。 Ti金属,相对于其他基体材料,具有质量轻、导电性良好、耐腐蚀性强,并且热 膨胀系数与 PbO2接近,可有效避免电沉积层剥离问题等优点,成为应用最广泛的 PbO2电极基体材料[1]。目前针对 Ti 基体的改性,多集中在工艺的改性,如 Ti 基 体的蚀刻、酸洗、碱洗; Ti 基体形态的选取,如网状 Ti 基体、多孔 Ti 基体,增大 比表面积,提高导电性。 2中间层 Ti 基体 PbO2电极在长期使用中,存在基体的钝化问题,会导致镀层 与基体的结合力下降、镀层脱落,从而使PbO2电极的工作稳定性和使用寿命下降。为 了解决上述问题并提高电极的导电性,往往在表层与基体之间引入中间层。 Sb-SnO2中间层是目前应用最广泛的PbO2电极中间层材料,将 Sb-SnO2涂层引入到 中间层,能有效降低表层与基体的内应力,使涂层表面致密,阻止基体的钝化,从而 使PbO2电极的导电性及寿命整体提高。朱福良等[2]将稀土元素 Eu 掺杂到 Sb-SnO2 涂层对电极中间层改性。结果表明,Eu 的掺杂对电极各项性能有较大影响,制备电极 时 Eu的最佳掺杂量为 n( Sn)n( Sb)n( Eu) =1. 00. 10. 01,此时PbO2 电极的析氧电位和电催化能力较高,电化学寿命达78. 6 h。 3表层 PbO2表层作为电化学反应发生的主要场所,是电极改性最重要的对象。 在实际应用中,表层存在结构不够理想,有多孔、内应力大及易损耗等缺点。人们通 过向 PbO2沉积液中掺杂离子来改性表层晶体结构及形貌,使其更加致密,减小电极内 应力,延长电极的使用寿命,提高电极的稳定性和催化活性。 F离子掺杂的 PbO2电极研究较早,目前已经非常成熟。徐兴福等[3]以电沉积法 从氟硼酸铅镀液中制备 Ti 基PbO2阳极( FB/) 及其掺杂 F 离子的 FB/F - 阳极。研 究表明,F 离子的掺杂对表层的沉积过程及表层微结构都有显着的影响。F 离子降低 沉积液结晶度的速率,使得镀层表面晶粒更加致密均匀。由于 F 离子能够进入晶格, 取代部分 O2 -。有效阻止自由氧原子扩散进入表层晶体通道,避免镀层性质的劣化 和基底氧化,延长了阳极的寿命。 O.Shmychkova 等[4]将 Bi 离子掺杂到 PbO2甲磺酸盐沉积液中,制备出 Ti/Bi-PbO2电极,研究了 Bi 离子掺杂对PbO2电沉积的动力学的影响以及对 PbO2表层 微结构的影响。结果表明,Bi 离子与 TiO2存在共吸附现象,有效降低了沉积速率, 减小了晶粒的大小,使表面更加致密。Bi离子掺杂的电极析氧电位显着提高,由于 Bi 离子的掺杂,诱导表面存在不同活性的位点,从而提高了电极的催化活性。
钛阳极常见应用领域

什么是钛阳极钛阳极,又称 DSA(Dimensionally Stable Anode,尺寸稳定阳极),是一种以金属钛为基体,在其表面涂覆以贵金属氧化物等活性涂层的新型电极材料。
钛阳极在应用电化学领域,是将电能转化为化学能的一种电极材料,在应用电化学中占据着至关重要的地位。
钛阳极具有优异的电化学性能,包括电催化活性高、过电位低、导电性良好等。
这使得钛阳极在电化学过程中能够高效地促进电化学反应的进行,提高反应效率和电流密度。
钛阳极的常见应用领域一、氯碱工业传统隔膜法烧碱生产以及离子膜烧碱生产中广泛应用。
在此行业中,钛阳极耐氯气和碱液的腐蚀,相比石墨阳极寿命显著增长(石墨阳极一般8个月,钛阳极可达6年以上)。
能在高电流密度下工作,提高生产效率;由于其表面生成的气泡细小且脱离迅速,降低了电极间的电阻和槽电压;避免了对电解液和阴极产物的污染,提高了氯气纯度和碱液浓度等。
二、电镀行业作为各种电镀(如镀镍、镀金、镀铬、镀锌、镀铜等)中的不溶性阳极。
其表面有高电化学催化性能的贵金属氧化物涂层,析氧过电位比传统铅合金不溶性阳极低,节能且稳定性高,不污染镀液;可在相同条件下降低槽电压、节约电能消耗;在电镀过程中化学和电化学稳定性好,使用寿命长;电极形状可以根据需求定制成网状、板状、带状、管状等。
三、电解提取有色金属能在复杂的电解液环境中保持稳定,克服一些传统电极材料易被腐蚀溶解的问题,可多次重复使用,降低生产成本;提高电流效率和提取的纯度。
四、污水处理领域工业废水处理(如电镀厂含氰废水等)可以对废水中的重金属离子等进行氧化还原反应,使其形成沉淀或转化为无害物质;利用其产生的强氧化性物质如次氯酸根等分解有机污染物等。
医院污水处理对医院污水中的病原体等微生物起到杀灭作用;可有效净化污水。
五、环境保护相关生活用水和食品用具消毒利用其电化学特性产生消毒成分,如在水中产生次氯酸等,对生活用水进行消毒净化处理,保证生活用水安全;用于食品用具消毒能避免传统消毒方式带来的化学残留等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二氧化铅钛阳极
二氧化铅钛阳极是一种合成的电极,通常用于水处理,包括水质改善和污水处理。
该材料是一种含有二氧化铅和钛的复合物,能够有效地产生氧气,从而促进水中细菌的活性,从而使水质改善。
此外,它还具有良好的耐腐蚀性能,可以在强酸、碱和温度等恶劣环境下使用,不会受到外界环境的影响。
二氧化铅钛阳极的制备方法有很多种,但最常用的是电解制备法。
在此方法中,需要将铅和钛的金属原料混合,然后将混合物放入电解槽中,将溶液作用于电解槽内的极板,使溶液中的铅和钛金属部分发生电解反应。
当电流通过极板时,极板上的铅和钛会发生电解,形成氧化物,并在极板上沉积,形成二氧化铅钛层。
制备好的二氧化铅钛阳极具有良好的耐腐蚀性能,可以有效地产生氧气,使水中的污染物得到净化,从而改善水质。
此外,它还具有良好的耐腐蚀性和导电性,不易腐蚀,可以在强酸、碱和温度等恶劣环境下使用,不会受到外界环境的影响。
此外,二氧化铅钛阳极还具有良好的抗冲击性,可以承受污水处理设备内的冲击和冲击,从而获得较高的使用寿命。
因此,二氧化铅钛阳极具有良好的耐腐蚀性能、良好的导电性能、高抗冲击性和良好的氧气产生能力,是水处理行业中应用最广泛的材料之一,具有重要的环境保护意义。