控制工程基础第六章

控制工程基础第三版机械工业出版社课后答案

控制工程基础习题解答 第一章 1-5.图1-10为张力控制系统。当送料速度在短时间内突然变化时,试说明该控制系统的作用情况。画出该控制系统的框图。 图1-10 题1-5图 由图可知,通过张紧轮将张力转为角位移,通过测量角位移即可获得当前张力的大小。 当送料速度发生变化时,使系统张力发生改变,角位移相应变化,通过测量元件获得当前实际的角位移,和标准张力时角位移的给定值进行比较,得到它们的偏差。根据偏差的大小调节电动机的转速,使偏差减小达到张力控制的目的。 框图如图所示。 角位移 题1-5 框图 1-8.图1-13为自动防空火力随动控制系统示意图及原理图。试说明该控制系统的作用情况。

该系统由两个自动控制系统串联而成:跟踪控制系统和瞄准控制系统,由跟踪控制系统 获得目标的方位角和仰角,经过计算机进行弹道计算后给出火炮瞄准命令作为瞄准系统的给定值,瞄准系统控制火炮的水平旋转和垂直旋转实现瞄准。 跟踪控制系统根据敏感元件的输出获得对目标的跟踪误差,由此调整视线方向,保持敏感元件的最大输出,使视线始终对准目标,实现自动跟踪的功能。 瞄准系统分别由仰角伺服控制系统和方向角伺服控制系统并联组成,根据计算机给出的火炮瞄准命令,和仰角测量装置或水平方向角测量装置获得的火炮实际方位角比较,获得瞄准误差,通过定位伺服机构调整火炮瞄准的角度,实现火炮自动瞄准的功能。 控制工程基础习题解答 第二章 2-2.试求下列函数的拉氏变换,假定当t<0时,f(t)=0。 (3). ()t e t f t 10cos 5.0-= 解:()[][ ] ()100 5.05 .010cos 2 5.0+++= =-s s t e L t f L t (5). ()?? ? ? ?+ =35sin πt t f 图1-13 题1-8图 敏感元件

控制工程基础第三章参考答案

第三章 习题及答案 传递函数描述其特性,现在用温度计测量盛在容器内的水温。发现需要时间才能指示出实际水温的98%的数值,试问该温度计指示出实际水温从10%变化到90%所需的时间是多少? 解: 41min, =0.25min T T = 1111()=1-e 0.1, =ln 0.9t h t t T -=-T 21T 22()=0.9=1-e ln 0.1t h t t T -=-, 210.9 ln 2.20.55min 0.1 r t t t T T =-=== 2.已知某系统的微分方程为)(3)(2)(3)(t f t f t y t y +'=+'+'',初始条件2)0( , 1)0(='=--y y ,试求: ⑴系统的零输入响应y x (t ); ⑵激励f (t ) (t )时,系统的零状态响应y f (t )和全响应y (t ); ⑶激励f (t ) e 3t (t )时,系统的零状态响应y f (t )和全响应y (t )。 解:(1) 算子方程为:)()3()()2)(1(t f p t y p p +=++ ) ()e 2 5e 223()()()( ) ()e 2 1e 223()()()( )()e e 2()(2 112233)( )2(; 0 ,e 3e 4)( 34 221e e )( 2x 2222x 212 121221x t t y t y t y t t t h t y t t h p p p p p p H t t y A A A A A A A A t y t t t t t t f f t t t t εεεε------------+=+=+-==-=?+-+= +++= -=??? ?-==????--=+=?+=∴* ) ()e 4e 5()()()( )()e e ()(e )()( )3(2x 23t t y t y t y t t t h t y t t t t t f f εεε------=+=-==* 3.已知某系统的微分方程为)(3)(')(2)(' 3)(" t f t f t y t y t y +=++,当激励)(t f =)(e 4t t ε-时,系统

机械控制工程基础第五章练习习题及解答

题型:选择题 题目:关于系统稳定的说法错误的是【】 A.线性系统稳定性与输入无关 B.线性系统稳定性与系统初始状态无关 C.非线性系统稳定性与系统初始状态无关 D.非线性系统稳定性与系统初始状态有关 分析与提示:线性系统稳定性与输入无关;非线性系统稳定性与系统初始状态有关。 答案:C 习题二 题型:填空题 题目:判别系统稳定性的出发点是系统特征方程的根必须为或为具有负实部的复数,即系统的特征根必须全部在是系统稳定的充要条件。 分析与提示:判别系统稳定性的出发点是系统特征方程的根必须为负实数或为具有负实部的复数,即系统的特征根必须全部在复平面的左半平面是系统稳定的充要条件。 答案:负实数、复平面的左半平面 习题三 题型:选择题 题目:一个线性系统稳定与否取决于【】 A.系统的结构和参数 B.系统的输入 C.系统的干扰 D.系统的初始状态 分析与提示:线性系统稳定与否取决于系统本身的结构和参数。 答案:A 习题四 题型:填空题 题目:若系统在的影响下,响应随着时间的推移,逐渐衰减并回到平衡位置,则称该系统是稳定的 分析与提示:若系统在初始状态的影响下(零输入),响应随着时间的推移,逐渐衰减并趋向于零(回到平衡位置),则称该系统是稳定的;反之,若系统的零输入响应发散,则系统是不稳定的。 答案:初始状态 习题五 题型:填空题 题目:系统的稳定决定于的解。 分析与提示:系统的稳定决定于特征方程的解。 答案:特征方程

题型:填空题 题目:胡尔维兹(Hurwitz )判据、劳斯(Routh )判据又称为 判据。 分析与提示:胡尔维兹(Hurwitz )判据、劳斯(Routh )判据,又称为代数稳定性判据。 答案:代数稳定性 习题二 题型:填空题 题目:利用胡尔维兹判据,则系统稳定的充要条件为:特征方程的各项系数均为 ;各阶子行列式都 。 分析与提示:胡尔维兹判据系统稳定的充要条件为:特征方程的各项系数均为正;各阶子行列式都大于零。 答案:正、大于零 习题三 题型:计算题 题目:系统的特征方程为 010532234=++++s s s s 用胡尔维兹判据判别系统的稳定性。 分析与提示:利用胡尔维兹判据,其各阶系数均大于零,计算子行列式。 答案:(1)特征方程的各项系数为 10,5,3,1,201234=====a a a a a 均为正值。 (2) 0131>==?a 0714232 4 132<-=-== ?a a a a a a a a 不满足胡尔维兹行列式全部为正的条件,所以系统不稳定 习题四 题型:计算题 题目:单位反馈系统的开环传递函数为 ()()() 125.011.0++= s s s K s G 利用胡尔维兹判据求使系统稳定的K 值范围。 分析与提示:利用胡尔维兹判据,其各阶系数均大于零,计算子行列式,反求出K 的范围。 答案:系统的闭环特征方程为 ()()0125.011.0=+++K s s s

控制工程基础第三章参考答案(供参考)

第三章 习题及答案 传递函数描述其特性,现在用温度计测量盛在容器内的水温。发现需要时间才能指示出实际水温的98%的数值, 试问该温度计指示出实际水温从10%变化到90%所需的时间是多少? 解: 41min, =0.25min T T = 2.已知某系统的微分方程为)(3)(2)(3)(t f t f t y t y +'=+'+'',初始条件2)0( , 1)0(='=--y y ,试求: ⑴系统的零输入响应y x (t ); ⑵激励f (t ) (t )时,系统的零状态响应y f (t )和全响应y (t ); ⑶激励f (t ) e 3t (t )时,系统的零状态响应y f (t )和全响应y (t )。 解:(1) 算子方程为:)()3()()2)(1(t f p t y p p +=++ 3.已知某系统的微分方程为)(3)(')(2)(' 3)(" t f t f t y t y t y +=++,当激励)(t f =)(e 4t t ε-时,系统的全响应)()e 6 1e 27e 314()(42t t y t t t ε-----=。试求零输入响应y x (t )与零状态响应y f (t )、自由响应与强迫响应、暂态响应与稳态响应。 解: 4. 设系统特征方程为:0310126234=++++s s s s 。试用劳斯-赫尔维茨稳定判据判别该系统的 稳定性。 解:用劳斯-赫尔维茨稳定判据判别,a 4=1,a 3=6,a 2=12,a 1=10,a 0=3均大于零,且有 所以,此系统是稳定的。 5. 试确定下图所示系统的稳定性. 解:210 110(1)(1)(). ()210(21) 1(1) s s s s a G s s s s s s s +++=?=?+++ 系统稳定。 满足必要条件,故系统稳定。 6.已知单位反馈系统的开环传递函数为) 12.001.0()(2++= s s s K s G ξ,试求系统稳定时,参数K 和ξ的取值关系。 解:2()(0.010.21)0D s s s s k ξ=+++=

控制工程基础第4章习题解答

若系统输入为不同频率ω的正弦函数t A ωsin ,其稳态输出相应为)sin(?ω+t B ,求该系统的频率特性 解:由频率特性的定义有:? ωj e A B j G =)((P119) ---------------------------------------------------------------------------------------------------------------------- 试求下列系统的幅频特性)(ωA 、相频特性)(ω?、实频特性)(ωu 、虚频特性)(ωv (P120, 121) 1 305 )(+= s s G 解:1 305 1305)(+= += ωωωj s j G j )(ωA = 1 90051 3052 += +ωωj )(ω?=1 30arctan )130()5(1 305 ω ωω-=+∠-∠=+∠ j j )(ωj G 可以展开为实部与虚部的形式,即:1 90015051305 )(2+-= += ωω ωωj j j G 所以,实频特性)(ωu = 1 90052 +ω 虚频特性)(ωv =1 9001502+-ωω ---------------------------------------------------------------------------------------------------------------------- 设系统的闭环传递函数为:1 ) 1()(12++=s T s T K s G B ,当输入信号为t R t x i ωsin )(=,试求该系 统的稳态输出。 解:系统的频率特性函数为: ()()) () arctan (arctan 21221212)() 1()1(1 )1(1 )1()(12ωωωω ωωωωωωj G j B T T j j B B e j G e T T K j T j T K s T s T K j G ∠-?=?++= ++= ++= 系统的对于特定频率的输入信号,其稳态输出为:(P118) )](sin[)()(ωωωj G t j G X t x B B i oss ∠+??= 因此,对于该系统,有: ()())]arctan (arctan sin[) 1()1()(122 122ωωωωωT T t T T K R t x oss -+?++?=

控制工程基础程第四章习题答案

2007机械工程控制基础第四章习题答案 第4章 频率特性分析 4.1什么是系统的频率特性? 答:对于线性系统,若输入为谐波函数,则其稳态输出一定是同频率的谐波函数,将输出的幅值与输入的幅值之比定义为系统的幅频特性,将输出的相位之差定义为系统的相频特性。系统的幅频特性和相频特性简称为系统的频率特性。 4.4若系统输入为不同频率ω的正弦t A ωsin ,其稳态输出相应为)sin(?ω+t B 。求该系统的频率特性。 解:由系统频率特性的定义知:?ωj e A B j G = )( 4.5已知系统的单位阶跃响应为)0(8.08.11)(94≥+-=--t e e t x t t o ,试求系统的幅频特性与 相频特性。 解:由已知条件得:s s X i 1)(=,9 8 .048.11)(+++-=s s s s X o 得系统传函为:) 9)(4(36)()()(++== s s s X s X s G i o 得系统频率特性:) 9)(4(36 )(ωωωj j j G ++= ,其中 幅频特性为:2 2 811636 )()(ω ωωω+?+= =j G A 相频特性为:9 arctan 4 arctan )(ω ω ω?--=4.6由质量、弹簧、阻尼组成的机械系统如图(4.6)所示。已知m=1kg ,k 为弹簧刚度,c 为阻尼系数。若外力tN t f 2sin 2)(=,由实验得到系统稳态响应为)2 2sin(π -=t x oss 。试确定k 和c 。 解:由系统结构知系统的动力学方程为: 当m=1时,得系统传函为: k cs s s G ++= 2 1 )(,得系统频率特性为: ω ωωjc k j G +-= 21 )(。 图(题4.6)

控制工程基础王积伟_第二版_课后习题解答完整

第一章 3 解:1)工作原理:电压u2反映大门的实际位置,电压u1由开(关)门开关的指令状态决定,两电压之差△u =u1-u2驱动伺服电动机,进而通过传动装置控制大门的开启。当大门在打开位置,u2=u 上:如合上开门开关,u1=u 上,△u =0,大门不动作;如合上关门开关,u1=u 下,△u<0,大门逐渐关闭,直至完全关闭,使△u =0。当大门在关闭位置,u2=u 下:如合上开门开关,u1=u 上,△u>0,大门执行开门指令,直至完全打开,使△u =0;如合上关门开关,u1=u 下,△u =0,大门不动作。 2)控制系统方框图 4 解:1)控制系统方框图

2)工作原理: a)水箱是控制对象,水箱的水位是被控量,水位的给定值h ’由浮球顶杆的长度给定,杠杆平衡时,进水阀位于某一开度,水位保持在给定值。当有扰动(水的使用流出量和给水压力的波动)时,水位发生降低(升高),浮球位置也随着降低(升高),通过杠杆机构是进水阀的开度增大(减小),进入水箱的水流量增加(减小),水位升高(降低),浮球也随之升高(降低),进水阀开度增大(减小)量减小,直至达到新的水位平衡。此为连续控制系统。 b) 水箱是控制对象,水箱的水位是被控量,水位的给定值h ’由浮球拉杆的长度给定。杠杆平衡时,进水阀位于某一开度,水位保持在给定值。当有扰动(水的使用流出量和给水压力的波动)时,水位发生降低(升高),浮球位置也随着降低(升高),到一定程度后,在浮球拉杆的带动下,电磁阀开关被闭合(断开),进水阀门完全打开(关闭),开始进水(断水),水位升高(降低),浮球也随之升高(降低),直至达到给定的水位高度。随后水位进一步发生升高(降低),到一定程度后,电磁阀又发生一次打开(闭合)。此系统是离散控制系统。 2-1解: (c )确定输入输出变量(u1,u2) 得到:11 21221222 )1(u R R dt du CR u R R dt du CR +=++ 一阶微分方程 (e )确定输入输出变量(u1,u2) 消去i 得到:C u dt du R C u dt du R R 1122221)(+=++ 一阶微分方程 第二章 2-2 解: 1)确定输入、输出变量f(t)、x 2

机械控制工程基础第三章 复习题及答案

题目:时间响应由和两部分组成。 分析与提示:时间响应由瞬态响应和稳态响应两部分组成。 答案:瞬态响应、稳态响应 题目:系统的输出量从初始状态到稳定状态的响应过程,称为。 分析与提示:瞬态响应,指系统在某一输入信号作用下,系统的输出量从初始状态到稳定状态的响应过程。 答案:瞬态响应 题目:系统的时间响应可从两方面分类,按振动性质可分为与。 分析与提示:系统的时间响应可从两方面分类,按振动性质可分为自由响应与强迫响应。 答案:自由响应、强迫响应 题目:系统的时间响应可从两方面分类,按振动来源可分为与。 分析与提示:系统的时间响应可从两方面分类,按振动性质可分为自由响应与强迫响应;按振动来源可分为零输入响应(即由“无输入时系统的初态”引起的自由响应)与零状态响应(即仅由输入引起的响应)。 答案:零输入响应、零状态响应 题目:系统微分方程的特解就是系统由输入引起的输出(响应),工程上称为。 分析与提示:初始条件及输入信号产生的时间响应就是微分方程的全解。包含通解和特解两个部分。通解完全由初始条件引起的,它是一个瞬态过程,工程上称为自然响应 (如机械振动中的自由振动)。特解只由输入决定,特解就是系统由输入引起的输出(响应),工程上称为强迫响应 (如机械振动中的强迫振动)。 答案:强迫响应 题目:系统的瞬态响应不仅取决于系统本身的特性,还与外加的形式有关。 分析与提示:系统的瞬态响应不仅取决于系统本身的特性,还与外加输入信号的形式有关。 答案:输入信号 题目:单位阶跃信号???<>=000t t t u 1)(的拉氏变换为【 】 A 、 s 1 B 、21 s C 、1 D 、s 分析与提示:熟练掌握典型信号的拉氏变换。B 为单位斜坡信号的拉氏变换,C 为单位冲击信号的拉是变换。 答案:A 题目:选取输入信号应当考虑以下几个方面,输入信号应当具有,能够反映系统工作的大部分实际情况。 分析与提示:选取输入信号应当考虑以下几个方面,输入信号应当具有典型性,能够反映系统工作的大部分实际情况。 答案:典型性 题目:选取输入信号时,输入信号的形式应当尽可能。 分析与提示:选取输入信号时,输入信号的形式应当尽可能简单。 答案:简单 题目:是使用得最为广泛的常用输入信号。 分析与提示:单位脉冲函数、单位阶跃函数、单位斜坡函数、单位抛物线函数 都为常用输入信号时,单位脉冲函数是使用得最为广泛的常用输入信号。 答案:单位脉冲函数 题目:设一阶系统的传递函数为 5 23 +s ,则其时间常数和增益分别是【】 A . 2,3 B .2,3/2 C . 2/5,3/5 D . 5/2,3/2

机械控制工程基础第五章 练习习题及 解答

习题一 题型:选择题 题目:关于系统稳定的说法错误的就是【】 A.线性系统稳定性与输入无关 B.线性系统稳定性与系统初始状态无关 C.非线性系统稳定性与系统初始状态无关 D.非线性系统稳定性与系统初始状态有关 分析与提示:线性系统稳定性与输入无关;非线性系统稳定性与系统初始状态有关。 答案:C 习题二 题型:填空题 题目:判别系统稳定性的出发点就是系统特征方程的根必须为或为具有负实部的复数,即系统的特征根必须全部在就是系统稳定的充要条件。 分析与提示:判别系统稳定性的出发点就是系统特征方程的根必须为负实数或为具有负实部的复数,即系统的特征根必须全部在复平面的左半平面就是系统稳定的充要条件。 答案:负实数、复平面的左半平面 习题三 题型:选择题 题目:一个线性系统稳定与否取决于【】 A.系统的结构与参数 B.系统的输入 C.系统的干扰 D.系统的初始状态 分析与提示:线性系统稳定与否取决于系统本身的结构与参数。 答案:A 习题四 题型:填空题 题目:若系统在的影响下,响应随着时间的推移,逐渐衰减并回到平衡位置,则称该系统就是稳定的 分析与提示:若系统在初始状态的影响下(零输入),响应随着时间的推移,逐渐衰减并趋向于零(回到平衡位置),则称该系统就是稳定的;反之,若系统的零输入响应发散,则系统就是不稳定的。 答案:初始状态 习题五 题型:填空题 题目:系统的稳定决定于的解。 分析与提示:系统的稳定决定于特征方程的解。 答案:特征方程 习题一 题型:填空题 题目:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据又称为判据。 分析与提示:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据,又称为代数稳定性判据。 答案:代数稳定性 习题二

控制工程基础考卷带答案复习资料

控制工程基础考卷带答案复习资料

一、填空题:(每空1分,共20分) 1.对控制系统的基本要求一般可归结为_________稳定性,准确性,快速性____、____________、___________。 2.自动控制系统对输入信号的响应,一般都包含两个分量,即一个是瞬态响应分量,另一个是____________响应分量。 3.在闭环控制系统中,通过检测元件将输出量转变成与给定信号进行比较的信号,这个信号称为_________________。 4.若前向通道的传递函数为G(s),反馈通道的传递函数为H(s),则闭环传递函数为__________________ 。 5 函数f(t)=的拉氏变换式是 _________________ 。 6 开环对数频率特性的低频段﹑ 中频段﹑ 高频段分别表征了系统的 稳定性,动态特性,抗干扰能力 ﹑ ﹑ 。 7.Bode 图中对数相频特性图上的-180°线对应于奈奎斯特图中的___________。 8.已知单位反馈系统的开环传递函数为: 20 ()(0.51)(0.041) G s s s = ++求出系统在单位阶跃输入时的稳 态误差为 。 9.闭环系统稳定的充要条件是所有的闭环极点 t e 63-

均位于s 平面的______半平面。 10.设单位反馈控制系统的开环传递函数为 10()1 G s s = +,当系统作用有x i (t ) = 2cos(2t - 45?)输入 信号时,求系统的稳态输出为_____________________。 11.已知传递函数为2 ()k G s s =,则其对数幅频特性 L (ω)在零分贝点处的频率数值为_________ 。 12 在系统开环对数频率特性曲线上,低频段部分主要由 环节和 决定。 13.惯性环节的传递函数11+Ts ,它的幅频特性的数学式是__________,它的相频特性的数学式是____________________。 14.已知系统的单位阶跃响应为()1t t o x t te e --=+-,则 系统的脉冲脉冲响应为__________。 一、填空题 (每空1分,共20分): 1 稳定性,准确性,快速性;2 稳态;3 反馈; 4 ) ()(1) (s H s G s G ±;5 3 ()6 F s s = + 6 稳定性,动态特性,抗干扰能力; 7 负实轴; 8 1 21 9 右半平面; 10

机械控制工程基础第四章习题解答

题目:线性定常系统对正弦信号(谐波输入)的 称为频率响应。 答案:稳态响应 题目:频率响应是系统对_____________的稳态响应;频率特性G(jω)与传递函数G(s)的关系为____________。 答案:正弦输入、s=ωj 题目:以下关于频率特性、传递函数和单位脉冲响应函数的说法错误的是【 】 A . ω ωj s s G j G ==)()( B . [])()(t F s G ω= C . [])()(t L s G ω= D . [])()(t F j G ωω= 分析与提示:令传递函数中ωj s =即得频率特性;单位脉冲响应函数的拉氏变换即得 传递函数;单位脉冲响应函数的傅立叶变换即为频率特性。 答案:B 题目:以下说法正确的有 【 】 A .时间响应只能分析系统瞬态特性 B .系统的频率特性包括幅频特性和相频特性,它们都是频率ω的函数 C .时间响应和频率特性都能揭示系统动态特性 D .频率特性没有量纲 E .频率特性反映系统或环节对不同频率正弦输入信号的放大倍数和相移 分析与提示:时间响应可分析系统瞬态特性和稳态性能;频率特性有量纲也可以没有量纲,其量纲为输出信号和输入信号量纲之比。 答案:B 、C 、E 题目:通常将 和 统称为频率特性。 答案:幅频特性、相频特性 题目:系统的频率特性是系统 响应函数的 变换。 答案:脉冲、傅氏 题目:频率响应是系统对_____________的稳态响应;频率特性G(jω)与传递函数G(s)的关系为____________。 答案:正弦输入、s=ωj 题目:已知系统的单位阶跃响应为()()0,8.08.1194≥+-=--t e e t x t t o ,试求系统的幅 频特性和相频特性。 分析与提示:首先由系统的输入输出得到系统传递函数;令s=ωj 即可得到频率特性,进而得到幅频特性和相频特性。 答案:由已知条件有 ()()9 18.0418.11, 1 +++-= =s s s s X s s X o i 传递函数为 ()()()()() 9436++== s s s X s X s G i o 则系统的频率特性为 ()()() 9436 ++= ωωωj j j G

控制工程基础第2章答案资料

第2章系统的数学模型(习题答案) 2.1什么是系统的数学模型?常用的数学模型有哪些? 解:数学模型就是根据系统运动过程的物理、化学等规律,所写出的描述系统运动规律、特性、输出与输入关系的数学表达式。常用的数学模型有微分方程、传递函数、状态空间模型等。 2.2 什么是线性系统?其最重要的特性是什么? 解:凡是能用线性微分方程描述的系统就是线性系统。线性系统的一个最重要的特性就是它满足叠加原理。 2.3 图( 题2.3) 中三图分别表示了三个机械系统。求出它们各自的微分方程, 图中x i表示输入位移, x o表示输出位移, 假设输出端无负载效应。 题图2.3 解:①图(a):由牛顿第二运动定律,在不计重力时,可得 整理得 将上式进行拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得

[] 于是传递函数为 ②图(b):其上半部弹簧与阻尼器之间,取辅助点A,并设A点位移为x,方向朝下;而在其下半部工。引出点处取为辅助点B。则由弹簧力与阻尼力平衡的原则,从A和B两点可以分别列出如下原始方程: 消去中间变量x,可得系统微分方程 对上式取拉氏变换,并记其初始条件为零,得系统传递函数为 ③图(c):以的引出点作为辅助点,根据力的平衡原则,可列出如下原始方程: 移项整理得系统微分方程

对上式进行拉氏变换,并注意到运动由静止开始,即 则系统传递函数为 2.4试建立下图(题图2.4)所示各系统的微分方程并说明这些微分方程之间有什么特点,其中电压)(t u r 和位移)(t x r 为输入量;电压)(t u c 和位移)(t x c 为输出量;1,k k 和2k 为弹簧弹性系数;f 为阻尼系数。 +-+- u ) t f C ) +- +- f )(a ) (b ) (c ) (d R 题图2.4 【解】:)(a 方法一:设回路电流为i ,根据克希霍夫定律,可写出下列方程组: ???? ?=+=?i R u u dt i C u c c r 1 消去中间变量,整理得: dt du RC u dt du RC r c c =+

机械控制工程基础习题集_第5章

第5章 系统的稳定性 一、填空题 1.稳定系统其自由运动模态随时间增加而逐渐(消失) 2.对于二阶系统,加大增益将使系统的(稳定性)变差。 3.若闭环系统的特征式与开环传递函数)()(s H s G 的关系为)()(1)(s H s G s F +=,则 )(s F 的零点就是(系统闭环极点) 。 4.Ⅰ型系统跟踪阶跃信号的稳态误差为(0)。 5.线性定常系统的偏差信号就是误差信号的条件为(反馈传递函数H(s)=1)。 6.控制系统含有的积分个数多,开环放大倍数大,则系统的(稳态性能)愈好。 7.降低系统的增益将使系统的稳态精度(变差)。 8.闭环系统稳定的充分必要条件是其开环极坐标曲线逆时针围绕点(-1,j0)的圈数等于落在S 平面右半平面的(开环极点)数。 9.统在前向通路中含有积分环节将使系统的稳定性严重(变差)。 10.系统开环频率特性的相位裕量愈大,则系统的(稳定性)愈好。 11.控制系统的误差是期望输出与(实际输出)之差。 12.降低系统的增益将使系统的(快速性或稳态性)变差。 三、名词解释题 1.穿越:是开环极坐标曲线穿过实轴上(-∞,-1)的区间。 2.相位裕度:在系统的开环幅频特性等于1时,其相应的相频特性距离-180°的相位差。或:极坐标曲线在幅值穿越频率处的相頻特性距离-180°的相位差。 3.幅值裕度:相頻穿越频率处开环幅频特性的倒数。 4.劳斯判据:利用系统闭环特征方程的系数建立劳斯系数表,根据劳斯表中第1列系数的符号变化判断系统稳定性即:劳斯表中第1列系数无符号变化则系统处于稳定状态,否则系统处于临界稳定或不稳定状态。 5.奈奎斯特稳定判据:闭环系统稳定的充分必要条件是其开环极坐标频率特性曲线逆时针围绕点(-1,j0)的圈数等于落在S 平面右半平面的开环极点数。 四、简答题 1.简述闭环特征函数的特点。 答:1)特征函数的零点就是系统的闭环极点;2)特征函数的极点就是系统的开环极点; 3)特征函数的分子和分母的阶次相同;4)特征函数与系统开环传递函数只差常数1。 2.简述积分、微分及惯性环节对最小相位系统稳定性的影响。

控制工程基础第5章习题解答

5.7 系统的传递函数方框图如图所示,已知25.0,1.021==T T , 试求: (1)系统稳定时K 值的取值范围; 解: 由题意可以写出系统的闭环传递函数为: ()()()()K s s T T s T T K s T s T s K s T s T s K s G B ++++=+++++=2213212121)(11111)( 系统的特征方程为:0)(221321=++++K s s T T s T T 即:04040141)(232 121221213=+++=++++K s s s T T K s T T s T T T T s 由特征方程写出 根据Routh 判据,系统闭环稳定的充要条件为: ? ??>>-040040560K K 即: 014>>K 5.9试根据下面开环频率特性,使用Nyquist 判据分析相应的闭环系统的稳定性 ()()1 10110)(++=ωωωωj j j j G K 解:使用Nyquist 判据要求画出开环频率特性)(ωj G K 的Nyquist 轨迹 )(ωj G K 的幅频特性函数与虚频特性函数分别为:

)1100()1(10 )(22++=ωωωωj G K 1 10arctan 1arctan 20)(ωωπω--- =∠j G K 将)(ωj G K 表示成下式: )1100)(1() 10100(110)1100)(1(10 )101)(1()(22222++-+-=++?--?-=ωωωωωωωωωωωj j j j j G K 可得其实频特性函数与虚频特性函数分别为: )1100)(1(110)}(Re{22++-=ωωωω ωj G K )1100)(1() 10100()}(Im{222++-=ωωωωωj G K 考虑ω的几个特殊值 当0=ω: ∞=)(ωj G 2 )(πω-=∠j G 当∞=ω: 0)(=ωj G πω2 3)(-=∠j G 由于当ω从0变化至∞,)(ωj G ∠从2π-变化至2 3π-,因此该系统的Nyquist 轨迹必然从复平面的第三象限移动至第二象限,也即轨迹必然与负实轴相交。 令0)1100)(1()10100()}(Im{222=++-= ωωωωωj G K ,即101=ω 此时: 9) 110)(11.0(110)1100)(1(110)}(Re{22-≈++-=++-=ωωωω ωj G K 即Nyquist 轨迹与负实轴相交点为(-9,j0) 由此可以做出)(ωj G K 的Nyquist 轨迹图,如下:

《控制工程基础》第三章习题解题过程及答案

3-1 已知某单位反馈系统的开环传递函数为1 )(+=Ts K s G k ,试求其单位阶跃响应。 解法一,采用拉氏反变换: 系统闭环传递函数为:()()()()1()1k k G s C s K s R s G s Ts K Φ=== +++ 输入为单位阶跃,即:1()R s s = 故:1()()()1 1K A B C s s R s K Ts K s s s T =Φ= ?=+ ++++ 可由待定系数法求得:,11 K K A B K K ==-++ 所以,1111 ()()111K K K K K C s K K s K s s s T T ++=-=-+++++ 对上式求拉氏反变换: 1 ()(1)1 k t T K c t e K +-=-+ 解法二,套用典型一阶系统结论: 由式(3-15),已知典型一阶系统为:()1 ()()1 C s s R s Ts Φ= =+ 由式(3-16),其单位阶跃响应为:1()1t T c t e -=- 若一阶系统为()()()1 C s K s R s Ts Φ==+,则其单位阶跃响应为:1()(1)t T c t K e -=- 现本系统闭环传递函数为:()()(1)()()1()1(1)11 k k G s C s K K K K s R s G s Ts K Ts K T s ' +Φ===== '++++++ 其中,,11 T K T K K K ''= =++ 所以,1 1()(1)(1)1 k t t T T K c t K e e K +--' '=-=-+ 采用解法二,概念明确且解题效率高,计算快捷且不易出错,应予提倡。 3-2 设某温度计可用一阶系统表示其特性,现在用温度计测量容器中的水温,当它插入恒温水中一分钟时,显示了该温度的98%,试求其时间常数。又若给容器加热,水温由0℃按10℃/min 规律上升,求该温度计的测量误差。 解: (1)由题意知,误差为2%,因此调节时间:41min s t T ==,即时间常数T : 1 0.25min 15sec 4 s T t ===

控制工程基础---第四章传递函数

第四章传递函数 第一节传递函数 一、定义:系统初始状态为零,系统输出与输入的拉氏变换之比。 ) () ()]([)]([)()()()(s R s Y t r L t y L s G s G t y t r = =,则为,系统传递函数 、系统输入、输出分别为 二、求法: 1、由微分方程求取。 若系统的微分方程为 ) ()()()()()()()(01) 1(1) (01) 1(1)(t x b t x b t x b t x b t y a t y a t y a t y a m m m m n n n n +'+++=+'+++---- 对微分方程的两端求拉氏变换 11 1011 1011 1011 1011 1011 1)() ()() ()() ()() ()()()()()()()(a s a s a s a b s b s b s b s X s Y s G s X b s b s b s b s Y a s a s a s a s X b s sX b s X s b s X s b s Y a s sY a s Y s a s Y s a n n n n m m m m m m m m n n n n m m m m n n n n +++++++==+++=++++++++=++++------------

例1:系统微分方程为)()() ()(2 2t f t kx dt t dx c dt t x d m =++,求系统的传递函数。 解:由给定的微分方程, k cs m s s F s X s G s F s X k cs m s s F s kX s csX s X m s t f t kx dt t dx c dt t x d m ++= ==++=++=++2222 21 )()()()()()()()()()()()() ()( 例2:求R-C 电路的传递函数。 解: 1 1 )()()()1()()()(00000+= =+=+=+Rcs s G s U s U Rcs s U s U s RcsU u u dt du Rc i i i 三、性质 1、系统的传递函数取决于系统的本身,与系统的输入、输出及其它外界因素无关。 2、对于实际的物理系统,m n ≥ 四、概念 1、零点、极点: 零点:系统传递函数分子s 多项式为零的根。 极点:系统传递函数分母s 多项式为零的根。 2、传递系数: 值定义为传递系数)0(G 。 3、特征方程:传递函数分母s 多项式。 4、阶:系统特征方程s 的最高指数。 例3、以例1、例2的结果为例。 第二节典型环节及其传递函数

《控制工程基础》(DOC)

目录 1.概述 (1) 2.实验一典型环节的电路模拟与软件仿真研究 (5) 3.实验二典型系统动态性能和稳定性分析 (12) 4.实验三典型环节(或系统)的频率特性测量 (16) 5. 使用说明实例 (21) 概述 一.实验系统功能特点 1.系统可以按教学需要组合,满足“自动控制原理”课程初级与高级实验的需要。只配备ACT-I实验箱,则实验时另需配备示波器,且只能完成部分基本实验。要完成与软件仿真、混合仿真有关的实验必须配备上位机(包含相应软件)及并口通讯线。 2.ACT-I实验箱内含有实验必要的电源、信号发生器以及非线性与高阶电模拟单元,可根据教学实验需要进行灵活组合,构成各种典型环节与系统。此外,ACT-I实验箱内还可含有数据处理单元,用于数据采集、输出以及和上位机的通讯。 3.配备PC微机作操作台时,将高效率支持“自动控制原理”的教学实验。系统提供界面友好、功能丰富的上位机软件。PC微机在实验中,除了满足软件仿真需要外,又可成为测试所需的虚拟仪器、测试信号发生器以及具有很强柔性的数字控制器。 4.系统的硬件、软件设计,充分考虑了开放型、研究型实验的需要。除了指导书所提供的10个实验外,还可自行设计实验。 二.系统构成 实验系统由上位PC微机(含实验系统上位机软件)、ACT-I实验箱、并行通讯线等组成。ACT-I实验箱内装有以AD C812芯片(含数据处理系统软件)为核心构成的数据处理卡,通过并口与PC微机连接。 1.实验箱ACT-I简介 ACT-I控制理论实验箱主要由电源部分U1单元、信号源部分U2单元、与PC机进行通讯的数据处理U3单元、元器件单元U4、非线性单元U5~U7以及模拟电路单元U8~U16等共16个单元组成,详见附图。 (1)电源单元U1

机械控制工程基础第五章 练习习题及 解答

机械控制工程基础第五章练习习题及解答 习题一题型:选择题题目:关于系统稳定的说法错误的是【】A.线性系统稳定性与输入无关B.线性系统稳定性与系统初始状态无关C.非线性系统稳定性与系统初始状态无关D.非线性系统稳定性与系统初始状态有关 分析与提示:线性系统稳定性与输入无关;非线性系统稳定性与系统初始状态有关。答案:C 习题二 题型:填空题 题目:判别系统稳定性的出发点是系统特征方程的根必须为 或为具有负实部的复数,即系统的特征根必须全部在 是系统稳定的充要条件。 分析与提示:判别系统稳定性的出发点是系统特征方程的根必须为负实数或为具有负实部的复数,即系统的特征根必须全部在复平面的左半平面是系统稳定的充要条件。 答案:负实数、复平面的左半平面 习题三 题型:选择题 题目:一个线性系统稳定与否取决于【】 A.系统的结构和参数 B.系统的输入

C.系统的干扰 D.系统的初始状态 分析与提示:线性系统稳定与否取决于系统本身的结构和参数。 答案:A 习题四 题型:填空题 题目:若系统在的影响下,响应随着时间的推移,逐渐衰减并回到平衡位置,则称该系统是稳定的 分析与提示:若系统在初始状态的影响下(零输入),响应随着时间的推移,逐渐衰减并趋向于零(回到平衡位置),则称该系统是稳定的;反之,若系统的零输入响应发散,则系统是不稳定的。 答案:初始状态 习题五 题型:填空题 题目:系统的稳定决定于的解。 分析与提示:系统的稳定决定于特征方程的解。 答案:特征方程 习题一 题型:填空题 题目:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据又称为 判据。 分析与提示:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据,

《控制工程基础》第四章习题解题过程和参考答案

4-1 设单位反馈系统的开环传递函数为:10 ()1 G s s =+。当系统作用有下列输入信号时:()sin(30)r t t =+?,试求系统的稳态输出。 解: 系统的闭环传递函数为:10 ()() 11()()1()1 11 C s G s s s R s G s Φ===++ 这是一个一阶系统。系统增益为:1011K =,时间常数为:1 11 T = 其幅频特性为:()A ω=其相频特性为:()arctan T ?ωω=- 当输入为()sin(30)r t t =+?,即信号幅值为:1A =,信号频率为:1ω=,初始相角为:030?=?。代入幅频特性和相频特性,有: 1 (1)A == = = 11 (1)arctan arctan 5.1911 T ω?ω==-=-=-? 所以,系统的稳态输出为: [ ]()(1)sin 30(1)24.81)c t A A t t ?=??+?+= +? 4-2 已知系统的单位阶跃响应为:49()1 1.80.8(0)t t c t e e t --=-+≥。试求系统的幅频特性和相频特性。 解: 对输出表达式两边拉氏变换: 1 1.80.8361 ()49(4)(9)(1)(1)49 C s s s s s s s s s s =-+== ++++++ 由于()()()C s s R s =Φ,且有1 ()R s s = (单位阶跃)。所以系统的闭环传递函数为: 1()(1)(1)49 s s s Φ= ++ 可知,这是由两个一阶环节构成的系统,时间常数分别为: 1211 ,49 T T == 系统的幅频特性为二个一阶环节幅频特性之积,相频特性为二个一阶环节相频特性之和:

《控制工程基础》王积伟-第二版-课后习题解答(完整)

第一章 3 解:1)工作原理:电压u2反映大门的实际位置,电压u1由开(关)门开关的指令状态决定,两电压之差△ u = u1- u2驱动伺服电动机,进而通过传动装置控制大门的开启。当大门在打开位置,u2= u上:如合上开门开关,u1 = u 上, ^u = 0, 大门不动作;如合上关门开关,u1 = u下,△ u<0,大门逐渐关闭,直至完全关闭,使厶u = 0。当大门在关闭位置,u2= u下:如合上开门开关,u1 = u 上, △ u>0,大门执行开门指令,直至完全打开,使△ u = 0;如合上关门开关,u1 = u下,△ u= 0,大门不动作。 2)控制系统方框图 解:1)控制系统方框图 a)系统方框图

2)工作原理: a ) 水箱是控制对象,水箱的水位是被控量,水位的给定值h'由浮球顶杆的长度给 定,杠杆平衡时,进水阀位于某一开度,水位保持在给定值。当有扰动(水的使 用流出量和给水压力的波动)时,水位发生降低(升高),浮球位置也随着降低 (升高),通过杠杆机构是进水阀的开度增大(减小),进入水箱的水流量增加(减 小),水位升高(降低),浮球也随之升高(降低),进水阀开度增大(减小)量 减小,直至达到新的水位平衡。此为连续控制系统。 b ) 水箱是控制对象,水箱的水位是被控量,水位的给定值 h'由浮球拉杆的长度 给定。杠杆平衡时,进水阀位于某一开度,水位保持在给定值。当有扰动(水的 使用流出量和给水压力的波动)时,水位发生降低(升高) ,浮球位置也随着降 低(升高),到一定程度后,在浮球拉杆的带动下,电磁阀开关被闭合(断开) , 进水阀门完全打开(关闭),开始进水(断水),水位升高(降低),浮球也随之 升高(降低),直至达到给定的水位高度。随后水位进一步发生升高(降低),到 一定程度后,电磁阀又发生一次打开(闭合)。此系统是离散控制系统。 2-1 解: (c )确定输入输出变量(u1,u2) U 2 = i 2 R 2 一阶微分方程 (e )确定输入输出变量( 1 u^iR 1 iR 2 i 得到:C R 2 晋 (1自"UR 2 詈貸U R i u1,u2) dt

相关文档
最新文档