初中数学7三角形的有关概念与性质(教师)

合集下载

第1讲 与三角形有关的线段和角

第1讲 与三角形有关的线段和角

知识讲解1.三角形的分类:1)按边分类:2)按角分类:2.三角形的高、中线、角平分线(1)三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高。

三角形的三条高交于一点,这一点叫做三角形的_____________.(2)三角形的中线:在三角形中,连接一个顶点和它对边的_____的线段叫做三角形的中线. (3)三角形的角平分线:在三角形中,一个内角的_______和对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

3.三角形的内角与外角(1)三角形的内角:✓定义:三角形中相邻两边组成的角,叫做三角形的_____.✓三角形内角和定理:三角形三个内角的和等于__________.✓三角形内角和定理的作用:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可求出其_______度数;③求一个三角形中各角之间的关系。

(2)三角形的外角✓定义:三角形一边与另一边_____组成的角,叫做三角形的外角。

三角形外角和为_____。

✓性质:①三角形的一个外角等于与它____相邻的两个内角的和。

②三角形的一个外角大于与它______相邻的任何一个内角.4.三角形的三边关系(1)三边关系性质:三角形的任意两边之和______第三边,任意两边之差_____于第三边,三角形的三边关系反应了任意三角形边的限制关系.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和____最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.考点/易错点1关于三角形的高的注意事项:(1)三角形的高线是一条线段;(2)锐角三角形的三条高都在三角形______,三条高的交点也在三角形____部;钝角三角形有两条高落在三角形的_____部,一条在三角形_____部,三条高所在直线交于三角形___一点;直角三角形有两条高恰好是三角形的两条直角边,它们的交点是直角的顶点,另一条在三角形的内部。

初中数学-全等三角形

初中数学-全等三角形

常见几种构造全等的题型
常见几种构造全等的题型一:倍长中线构造全等
例14、已知:△ABC中,AM是中线.求证:AB+AC>2AM
解析:延长AM至A',使得A'M=AM,连接A'B
很容易得△AMC≌△A'MB,从而A'B=AC
利用三角形三边关系可得AB+A'B>AA'
B
从而得AB+AC>2AM
A
M
C
A'
例3、已知BE=CF,AB=CD, ∠B=∠C.问AF=DE吗? 解析:除了已知条件以外,有重叠边EF=FE,
那么BE+EF=CF+FE,即BF=CE
A BE
D FC
例4、已知AB=AC, ∠1=∠2,AD=AE,问⊿ABD≌⊿ACE.说明理由。
解析:除了已知条件以外,有重叠角∠BAE=∠EAB, C 那么∠1+∠BAE=∠2+∠EAB,即∠CAE=∠BAD
2020/9/15
全等三角形的性质与判定
全等三角形的判定方法:
(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS):三边对应相等的两个三角形全等. (4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.
∴∠EMP=∠PNF=2∠PAE=2∠PBF,∴∠PAE=∠PBF
2020/9/15
课堂总结
1、认识并掌握全等三角形的性质与判定 2、掌握全等三角形的证明思路 3、掌握构造全等来得到相关结论的几种常见题型

初中数学几何专题-与三角形有关的角(优质讲义)

初中数学几何专题-与三角形有关的角(优质讲义)

第二讲 与三角形相关的角【知识归类】1、三角形内角和定理;2、三角形内角和定理的推论(外角定理);3、直角三角形的性质及判定.【典例讲练】一、基础过关 【例1】(1)如图1,在△ABC 中,∠A =70°,∠B =50°,则∠C =__________°.(2)如图2,在△ABC 中,点D 在CA 的延长线上,∠B =35°,∠C =52°,则∠BAD =__________° (3)如图3,在△ABC 中,AC ⊥BC ,∠B =36°,则∠A =__________°.【练】(1)在△ABC 中,∠A =30°,则∠B +∠C =__________°.(2)在△ABC 中,∠ABC 的外角为55°,∠A =35°,则∠C =__________°.(3)在△ABC 中,∠A =37°,∠C =53°,则AB 与BC 的位置关系为__________.【拓】小明把一副含45°,30°的直角三角板如图摆放,其中∠C =∠F =90°,∠A =45°,∠D =30°,则∠1+∠2等于__________°.二、内角和、方程、不等式【例2】在△ABC 中,80C ∠=︒,20A B ∠-∠=︒,则B ∠的度数是( )A .60︒B .30︒C .20︒D .40︒【变1】在△ABC 中,若∠A ﹣2∠B +∠C =0,则∠B 的度数是( )A .30°B .45°C .60°D .75°【变2】适合条件∠A =∠B =12∠C 的三角形是( )A .锐角三角形B .等边三角形C .钝角三角形D .直角三角形图3图2图1CBADC BAC BAF EDCBA21【变3】在锐角△ABC 中,∠B =3∠C ,则∠C 的取值范围是___________.【拓】在三角形中,最大角α的取值范围是___________.〖总结〗三、简单应用【例3】如图,△ABC 中,80A ∠=︒,剪去A ∠后,得到四边形BCED ,则12∠+∠= .【变1】如图,将ABC △沿着DE 翻折,若1280∠+∠=︒,则B ∠= .【变2】如图,由图1的ABC △沿DE 折叠得到图2;图3;图4.(1)如图2,猜想BDA CEA ∠+∠与A ∠的关系,并说明理由; (2)如图3,猜想BDA ∠和CEA ∠与A ∠的关系,并说明理由; (3)如图4,猜想BDA ∠和CEA ∠与A ∠的关系,并说明理由.21ED B CA A BCDE 12图112ABCD E 图212ED CBA 图321ABCD E图421ED CBA四、高、双直角、双高【例4】如图,CD ⊥AB ,∠1=∠2,∠A =55°,求∠BCA 的度数.【变1】如图,已知在△ABC 中,∠C =∠ABC =2∠A ,BD 是AC 边上的高,求∠DBC 的度数.【变2】如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D .(1)若∠B =35°,求∠ACD 的度数; (2)求证:∠ACD =∠B .【变3】在△ABC 中,(1)如图一,AB 、AC 边上的高CE 、BD 交于点O ,若∠A =60°,则∠BOC = _________ °. (2)如图二,若∠A 为钝角,请画出AB 、AC 边上的高CE 、BD ,CE 、BD 所在直线交于点O ,则∠BAC +∠BOC = _________ °,再用你已学过的数学知识加以说明. (3)由(1)(2)可以得到,无论∠A 为锐角还是钝角,总有∠BAC +∠BOC = _________ °.〖总结〗DCBA五、高线+角平分线【例5】如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC =60°,∠ABE =25°.求∠DAC 的度数.【变1】已知△ABC 中,∠ACB =90°,CD 为AB 边上的高,BE 平分∠ABC ,分别交CD 、AC 于点F 、E ,求证:∠CFE =∠CEF .【变2】在△ABC 中,∠C >∠B ,AE 是△ABC 中∠BAC 的平分线;(1)若AD 是△ABC 的BC 边上的高,且∠B =30°,∠C =70°(如图1),求∠EAD 的度数;(2)若F 是AE 上一点,且FG ⊥BC ,垂足为G (如图2),求证:∠EFG =12(∠C -∠B );(3)若F 是AE 延长线上一点,且FG ⊥BC ,G 为垂足(如图3),②中结论是否依然成立?请给出你的结论,并说明理由.【变3】如图,已知AD 是△ABC 的角平分线(∠ACB >∠B ),EF ⊥AD 于P ,交BC 延长线于M ,(1)如果∠ACB =90°,求证:∠M =∠1;(2)求证:∠M =12(∠ACB ﹣∠B ).〖总结〗【例6】如图,求α∠的度数.【变1】如图,P 是△ABC 内一点,试比较∠BPC 与∠A 的大小.【变2】如图,127.5∠=︒,295∠=︒,338.5∠=︒,则4∠的度数为_________°.【变3】如图,CGE α∠=,则A B C D E F ∠+∠+∠+∠+∠+∠= .【变4】如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B =60°,∠F =56°,则∠BDC的度数为__________°.〖总结〗αD CB A73︒30︒37︒PCBA4321ABDECαGFEDCBAFEDBA【例7】如图,求C D ∠+∠的度数.【变1】如图,线段AD 与BC 交于点O ,连接AB ,CD ,求证:∠A +∠B =∠C +∠D .【变2】(1)如图,求A B C D E ∠+∠+∠+∠+∠的度数.(2)如下图,已知133α∠=︒,83β∠=︒,求A B C D ∠+∠+∠+∠= .【拓1】(三叶草模型)如图所示,点E 和D 分别在ABC ∆的边BA 和CA 的延长线上,CF 、EF 分别平分ACB ∠和AED ∠,试探索F ∠与B ∠,D ∠的关系: .【拓2】如图,∠ABC +∠ADC =180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系__________.〖总结〗 70︒30︒E DCBA O DCBAABC D EFDCBAβαO F E D C BA【例8】在△ABC中.(1)如图①,点P在AC上(不同于A,C两点),∠BPC与∠A的大小关系是;(2)如图②,点P在△ABC内部,∠BPC与∠A的大小关系是;(3)如图③,点P是∠ABC,∠ACB平分线的交点,此时,∠BPC与∠A的等量关系是:;(4)如图④,点P是∠ABC的平分线与∠ACE的平分线交点时,∠BPC与∠A的等量关系是:;(5)如图⑤,点P是∠DBC与∠BCE的平分线交点,∠BPC与∠A的等量关系是:.【变】(1)在△ABC中,BD是ABC∠的角平分线,CD是∠ACB的外角平分线,BD、CD交于点D,若70∠=︒,则DA∠=__________.(2)在△ABC中,BI平分∠ABC,CI平分∠ACB,∠BIC=130°,则∠A=__________.(3)在△ABC中,点P是△ABC的∠A和∠C的外角平分线的交点,∠B=40°,则∠BPC=__________.【拓1】如图,已知BF、CE交于点D,BE、CF交于点A,∠AEC与∠ABF的平分线交于点M,∠ACE与∠AFB的平分线交于点N,试探究∠M与∠N的大小关系,并说明理由.【拓2】阅读下面的材料,并解决问题:已知在△ABC 中,∠A =60°. (1)如图(1),∠ABC 、∠ACB 的角平分线交于点O ,则∠BOC = ;(2)如图(2),∠ABC 、∠ACB 的三等分线交于点O 1、O 2,则∠BO 1C = ;∠BO 2C = ; (3)如图(3),∠ABC 、∠ACB 的n 等分线交于点O 1、O 2、……、O n -1,则∠BO 1C = ;∠BO n -1C = .(用含n 的代数式)图(1) 图(2) 图(3)〖总结〗【家庭作业】1、若△ABC 中,2(∠A +∠C )=3∠B ,则∠B 的外角度数为__________..2、如图,∠A =20°,∠C =90°,则∠B +∠D =__________.3、如图,已知70A ∠=︒,40B ∠=︒,20C ∠=︒,则BOC ∠度数为__________.4、如图,将纸片△ABC 沿着DE 折叠压平,则( ).A .12A ∠=∠+∠B .1(12)2A ∠=∠+∠C .1(12)3A ∠=∠+∠D .1(12)4A ∠=∠+∠5、如图,∠AEB ,∠AFD 的平分线相交于点O ,∠DAB +∠BCD =200°,则∠EOF 的度数为 .第2题图 第3题图 第4题图 第5题图 OB A CO 2O 1BA CCDA B CABCDE 12DCO FBPAE6、已知:在△ABC中,(1)如图(1),BD平分∠ABC,CD平分∠AC B.试判断∠A和∠BDC的关系.(2)如图(2),BE平分∠ABC,CE平分外角∠ACM.试判断∠A和∠BEC的关系.(3)如图(3),BF平分外角∠CBP,CF平分外角∠BCQ.试判断∠A和∠BFC的关系.7、如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式____________.8、在△ABC 中,BO 平分∠ABC ,点P 为直线AC 上一动点,PO ⊥BO 于点O . (1)如图1,当∠ABC =40°,∠BAC =60°,点P 与点C 重合时,∠APO = _________ ; (2)如图2,当点P 在AC 延长线时,求证:∠APO =12(∠ACB ﹣∠BAC );(3)如图3,当点P 在边AC 所示位置时,请直接写出∠APO 与∠ACB ,∠BAC 等量关系式 _________ .9、如图,△ABC 三条角平分线AD 、BE ,CF 交于点G ,GH ⊥BC 于H ,求证:∠BGD =∠CGH .10、如图,在三角形ABC 中,42A ∠=︒,ABC ∠和ACB ∠的三等分线分别交于D 、E ,求B D C ∠的度数.11、如图,已知∠MON=90°,点A,B分别在射线OM,ON上移动,∠OAB的角平分线与∠ABO的外角平分线交于点C.①当∠OAB=60°时,求∠ACB的度数;②试猜想,随着点A,B的移动,∠ACB的度数是否变化?说明理由.12、如图(1),AD,BC交于O点,根据“三角形内角和是180°”,不难得出两个三角形中的角存在以下关系:①∠DOC=∠AOB;②∠D+∠C=∠A+∠B.【提出问题】分别作出∠BAD和∠BCD的平分线,两条角平分线交于点E,如图(2),∠E与∠D、∠B之间是否存在某种数量关系呢?【解决问题】为了解决上面的问题,我们先从几个特殊情况开始探究.已知∠BAD的平分线与∠BCD的平分线交于点E.(1)如图(3),若AB∥CD,∠D=30°,∠B=40°,则∠E=.(2)如图(4),若AB不平行CD,∠D=30°,∠B=50°,则∠E的度数是多少呢?小明是这样思考的,请你帮他完成推理过程:易证∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,∴∠D+∠1+∠B+∠4=,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=,又∵∠D=30°,∠B=50°,∴∠E=度.(3)在总结前两问的基础上,借助图(2),直接写出∠E与∠D、∠B之间的数量关系是:.【类比应用】如图(5),∠BAD的平分线AE与∠BCD的平分线CE交于点E.已知:∠D=m°、∠B=n°,(m<n)求:∠E的度数.。

初中数学等腰三角形的性质教案(通用10篇)

初中数学等腰三角形的性质教案(通用10篇)

初中数学等腰三角形的性质教案(通用10篇)初中数学等腰三角形的性质教案篇1一、教材分析1、教材的地位和作用等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。

等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。

等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。

同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。

2、教材重组《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。

如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

3、学习目标根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

4、教学重、难点:重点:等腰三角形性质的探索与应用。

难点:等腰三角形性质的探索及证明。

5、突破难点策略:通过创设启发性强、学生感兴趣、有利于自主学习和探索的问题情境,让学生在活动丰富、思维积极的状态下进行探究学习,组织合作学习,引导合作过程,使学生朝着有利于知识建构的方向发展。

二、学情分析刚进入二年级的学生,观察、操作、猜测能力较强,但演绎推理、归纳和数学意识的应用能力较弱,缺乏思维的广泛性、敏捷性、紧凑性和灵活性,自主探究和合作学习的能力需要在课堂教学中进一步加强和引导。

北京市海淀区七年级数学三角形教材分析定稿

北京市海淀区七年级数学三角形教材分析定稿
本章地位作用
2.研究基本性质
研究定义所界定的数学对象的内涵或要素
之间的基本关系.几何对象组成要素之间、
相关要素之间确定的关系就是性质
我们把三角形要素之间的最基本关系(主要
是定性的等与不等关系)称为基本性质.

研究两个几何事物的某种位置关系下具有什么性
质,可以从探索这种位置关系下的两个几何事物
与其他几何事物之间是否形成确定的关系入手.


03
教学目标分析
3.教学目标分析
三角形在不同学段的要求
理解、探索、证明
第三学段(7-9年级)
理解三角形及相关概念;了解三角
形的稳定性;探索并证明三角形的
有关性质;理解全等三角形的概念,
掌握基本事实:SAS\ASA\SSS;探
索并掌握直角三角形的性质;探索
认识、知道
勾股定理及逆定理并解决实际问题;
A
43
4
F
1
2
1
B
图1
复合图形
拆分
基本图形
1
O
2
D
G
4.教学建议
变式:
在△ABC 中,AD是BC边上的高.
(2)若∠ACB=45°,点G是直线BC上一点,∠GAD=∠BAD,BE⊥AG于点F,分别交直
线AD、AC于点O,点E.
①如图,若45°<∠ABC < 90°,判断∠AEB与∠BAE的数量关系,写出你的结论并证明.
1.三角形的定义
2.三角形的边
3.三角形的内角和
4.三角形的外角
5.三角形的高线
6.三角形的角平分线
7.三角形的中线
4.教学建议
二、把握好教学要求:与三角形有关线段的概念在本章中只要求达

初中数学中考第六讲三角形知识点分析

初中数学中考第六讲三角形知识点分析

a60第4题图NPOA第六讲:三角形知识梳理知识点1. 三角形的定义三角形是多边形中边数最少的一种。

它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

三条线段不在同一条直线上的条件,如果三条线段在同一条直线上,我们认为三角形就不存在。

另外三条线段必须首尾顺次相接,这说明三角形这个图形一定是封闭的。

三角形中有三条边,三个角,三个顶点。

重点:三角形分类的依据 难点:三角形分类的划分 (1)(2)例:如果三角形的一个外角等于它相邻内角的2倍,且等于它不相邻内角的4倍,那么这个三角形一定是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、正三角形 解题思路:根据角度来判断是哪一种三角形。

答案B练习:如图,已知OA =a ,P 是射线ON 上一动点(即P 可在射 线ON 上运动),∠AON =600,填空: (1)当OP =时,△AOP 为等边三角形;(2)当OP =时,△AOP 为直角三角形;(3)当OP 满足时,△AOP 为锐角三角形; (4)当OP 满足时,△AOP 为钝角三角形。

答案:(1)a ;(2)a 2或2a ;(3)2a <OP <a 2;(4)0<OP <2a或OP >a 2重点:掌握三角形三条重要线段的概念 难点:三角形三条重要线段的运用三角形中的主要线段有:三角形的角平分线、中线和高线。

这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。

并且对这三条线段必须明确三点: (1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。

(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。

而三角形的高线在当△ABC 是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边。

(3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点。

《三角形的特性》教学设计【优秀5篇】

《三角形的特性》教学设计【优秀5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《三角形的特性》教学设计【优秀5篇】初中数学等腰三角形性质教学设计篇一教材分析:1、本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。

初中数学《全等三角形》教案优秀6篇

课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

等腰三角形与等边三角形的性质知识点总结

等腰三角形与等边三角形的性质知识点总结等腰三角形和等边三角形是我们在初中数学学习中经常遇到的两种特殊三角形。

它们具有一些独特的性质,这些性质对于我们理解三角形的性质和解题都有很大的帮助。

下面将对等腰三角形和等边三角形的性质进行总结和归纳,帮助大家更好地理解和应用这些知识点。

一、等腰三角形的性质1. 定义:等腰三角形是指两边长度相等的三角形。

2. 底角和顶角:等腰三角形的两个底角(底边两侧的角)是相等的,称为底角;顶角是等腰三角形的顶点所对的角,也是两个底角。

3. 对称性质:等腰三角形具有对称性,即等腰三角形可以通过一条对称轴分成两个对称部分。

4. 高度:等腰三角形的高度是从顶点到底边的垂直距离,高度所在的线段与底边垂直,并且把底边分为两个相等的线段。

5. 角平分线:等腰三角形的顶角所在的角平分线同时也是底边的中线和高线。

6. 等腰定理:等腰三角形的两个底角相等。

7. 等腰三角形的面积:等腰三角形的面积可以通过高度和底边的长度来计算,公式为:面积 = 底边长度 ×高度 ÷ 2。

8. 等腰三角形的判定:当我们知道一个三角形的两边相等时,可以判断它是否为等腰三角形。

二、等边三角形的性质1. 定义:等边三角形是指三条边长度都相等的三角形。

2. 角度:等边三角形的三个角都是60度。

3. 高度:等边三角形的高度是从顶点到底边的垂直距离,高度所在的线段与底边垂直。

4. 三角形内角和:等边三角形的三个角的和为180度,因为每个角都是60度,所以三角形的三个角相加为180度。

5. 等边定理:如果一个三角形的三边相等,则它是等边三角形。

6. 等边三角形的面积:等边三角形的面积可以通过边长来计算,公式为:面积 = 边长的平方× √3 ÷ 4。

7. 等边三角形的判定:当我们知道一个三角形的三边相等时,可以判断它是否为等边三角形。

三、等腰三角形与等边三角形的关系1. 等腰三角形也可以是等边三角形:当等腰三角形的两个底角为60度时,它就是等边三角形。

等腰三角形的性质与判定(教师版)-初中数学四维三难讲义

等腰三角形的性质与判定一、课堂目标1.了解等腰三角形的概念,探索并证明等腰三角形的性质定理.2.探索并掌握等腰三角形的判定定理.二、知识引入【温故知新】:三角形是轴对称图形吗?什么样的三角形是轴对称图形?【观察思考】:(1)这些美丽的图片中都包含一种特殊的三角形?(2)你能概括出什么样的三角形是等腰三角形吗?三、知识讲解1. 等腰三角形的性质定义有两边相等的三角形是等腰三角形.相等的两边叫做腰,另一条边叫做底边,两腰的夹角叫做顶角,底边与腰的夹角叫做底角.如右图,等腰,为腰,为底边,为顶角,为底角、、例题1A.B.C.D.【解析】【标注】在等腰中,,其周长为,则边的取值范围是( ).【答案】C ∵在等腰中,,其周长为,∴设,则,∴,解得.【知识点】等腰三角形的性质-等边对等角练习1【解析】【标注】等腰三角形的两边长为,,则等腰三角形的周长为 .【答案】当腰长为时,三边长为,,,则,不符合要求;当腰长为时,三边长为,,,此时周长.【知识点】已知两边求第三边或周长性质1【探究】:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开得到,它是等腰三角形吗?它有什么特点?【填空】:请同学试着完成下列表格【猜想】:等腰三角形除了两腰相等之外,你还能发现它的其他性质吗?重合的线段重合的角性质:等腰三角形的两个底角相等(简写成“等边对等角”).书写:∵,∴(等边对等角).已知:中,求证:【分析】:①如何证明两个角相等?②如何构造两个全等的三角形?【证明】:过点作的垂线交于点则有是等腰三角形在和中,≌性质2性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).书写:∵,,∴,(三线合一).【注意】1.如果要应用“三线合一”性质作辅助线,所作辅助线不能同时满足两条线的性质,如不能既作中线又作高,可通过作中线求证垂直或作高求证中线.2.等腰三角形是轴对称图形,其顶角平分线、底边上的中线、底边上的高线所在直线是对称轴.例题21.【解析】已知:如图,在中,,是上一点,且,求的度数.【答案】.设,∵,∴,∵为外角,∴,又∵,∴,∵,∴,∴在中,,∴.【标注】【知识点】等腰三角形的性质-等边对等角A. B. C. D.2.【解析】【标注】如图,在中,,是的中点,,则( ).【答案】C ∵,是的中点,∴,∵,∴.故选:.【知识点】等腰三角形的性质-三线合一练习2A.B.C.或D.或1.【解析】【标注】如果等腰三角形的一个角为,那么这个等腰三角形的顶角的度数为( ).【答案】D该角可能为等腰三角形的顶角或底角,当为底角时,顶角为,故这个等腰三角形的顶角的度数为或.【知识点】已知一角求其余两角2.在中,,,,,则 .【解析】【标注】【答案】根据等腰三角形三线合一的性质可得,根据等边对等角的性质可得因此.【知识点】等腰三角形的性质-三线合一例题3【解析】如图,在中,,是边上的中点,于点,于点.求证:.【答案】证明见解析.连接,∵,是边上的中点,∴,∵于点,于点,∴.【标注】【知识点】等腰三角形的性质-三线合一练习3方法一:方法二:【解析】【标注】如图,已知,.求证:.【答案】证明见解析.作于,∵(已知),∴(三线合一),又∵(已知),∴(三线合一),∴,即(等式的性质).∵,∴.∵,∴.∴.在和中,.∴≌().∴.【知识点】等腰三角形的性质-三线合一2. 等腰三角形的判定判定1①利用定义来判定:有两条边相等的三角形叫做等腰三角形.判定2【情境引入】:如图,位于海上两处的两艘救生船接到处遇险船只的报警,当时测得,如果这两艘救生船以同样的速度同时出发,能不能同时感到出事地点(不考虑风浪因素)?、【探究】:建模:已知:在三角形中,,那么它们所对的边和有什么数量关系?猜想:证明:过点作,垂足为在和中≌②判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).书写:∵ ∴(等角对等边).【注意】:以后可直接由等角推出边等,进而得到等腰三角形.例题41.A. B. C. D.【解析】【标注】如图,是的角平分线,,,将沿所在直线翻折,点在边上的落点记为点,那么等于( ).【答案】C由翻折可知,,又∵,∴.∴.∴.∴.故选.【知识点】等腰三角形的性质-等边对等角2.【解析】在中,是延长线上一点,,平分,求证:是等腰三角形.【答案】证明见解析.∵,∴,∴.∵平分,【标注】∴,∴,∴是等腰三角形.【知识点】等腰三角形的判定-等角对等边练习41.【解析】如图,是的边上的高,有以下四个条件:①;②;③;④.添加以上四个条件中的某一个就能推出是等腰三角形的是 .(把所有正确答案的序号都填写在横线上)【答案】②③④①无法判定.②当时,∵是边上的高,∴,则≌,∴,∴是等腰三角形.③当时,则是等腰三角形.④当时,∵是边上的高,∴,则≌,∴,∴是等腰三角形.【标注】所以正确答案的序号是②③④.【知识点】等腰三角形的判定-等角对等边2.【解析】【标注】如图,在中,是边上的高线,于点,.求证:.【答案】证明见解析.∵在中,是边上的高线,于点,∴.∴.又∵,∴.∴.【知识点】等腰三角形的判定-等角对等边等腰三角形的尺规作图【典型例题】:已知等腰三角形底边长为,底边上的高的长为,求作这个等腰三角形.作法:(1)作线段.(2)作线段的垂直平分线,与相交于点.(3)在上取一点,使.(4)连接,,则就是所求作的等腰三角形.例题5【解析】【标注】下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.已知:线段.求作:等腰,使,,边上的高为.作法:如图,()作线段;()作线段的垂直平分线交于点;()在射线上顺次截取线段,连接,.所以即为所求作的等腰三角形.请回答:得到是等腰三角形的作图依据是: .【答案】线段垂直平分线上的点与线段两个端点的距离相等,有两条边相等的三角形是等腰三角形得到是等腰三角形的作图依据是:线段垂直平分线上的点到线段两个端点的距离相等,有两条边相等的三角形是等腰三角形.故答案为:线段垂直平分线上的点到线段两个端点的距离相等,有两条边相等的三角形是等腰三角形.【知识点】作等腰三角形四、课堂总结重点复述五、出门测A. B. C. D.1.【解析】【标注】若实数、满足等式,且、恰好是等腰的两条边的边长,则的周长是( ).【答案】B∵,∴,,解得,,又∵、恰好是等腰的两条边的边长,当作腰时,三边为,,,不符合三边关系定理;当作腰时,三边为,,,符合三边关系定理,周长为:.故选.【知识点】已知两边求第三边或周长A.或B.或C.或D.2.如果等腰三角形的一个角是,那么它的底角是( ).【答案】A【解析】【标注】由题意得,①当这个角是底角时,即该等腰三角形的底角是②当这个角是顶角设等腰三角形的底角是则即三角形底角度数为.故选.【知识点】已知一角求其余两角A. B. C. D.3.【解析】【标注】如图,在中,,,的垂直平分线交于,则的度数是( ).【答案】A已知,,又∵垂直且平分∴∴.故选:.【知识点】线段的垂直平分线的性质定理【知识点】等腰三角形的性质-等边对等角【能力】推理论证能力【能力】运算能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的有关概念与性质课时目标1. 了解三角形的有关概念及三角形的分类;2. 理解三角形的任意两边之和大于第三边的性质;3. 掌握三角形的内角和定理以及外角的性质.知识精要1. 三角形的主要概念(1)三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形的边、角:组成三角形的三条线段叫做三角形的边,每两边所组成的角叫做三角形的内角,简称角.(3)三角形的表示方法:三角形用符号“∆”表示,三角形ABC可记作“∆ABC”或“∆BCA”或“∆ACB”.(4)三角形的外角:三角形的内角的一边与另一边的反向延长线所组成的角叫做三角形的外角.一个三角形的每个顶点上各有两个外角,这两个外角是对顶角.2. 三角形的分类(1)按角来分类:锐角三角形、直角三角形、钝角三角形;(2)按边来分类:不等边三角形、等腰三角形(等边三角形);注:等边三角形(正三角形)是特殊的等腰三角形.3. 三角形中的主要线段(1)三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (2)三角形的中线:联结三角形的一个顶点和它的对边中点的线段叫做三角形的中线.(3)三角形的高:从三角形的一个顶点向它的对边(或其延长线)引垂线,顶点和垂足之间的线段叫做三角形的高.(4)一个三角形有三条角平分线,三条中线,三条高.注意:①三角形的角平分线、中线都在三角形内部,而高线可以在内部(锐角三 角形),可以在外部(钝角三角形),也可以在三角形的边上(直角三角形). ②三角形的三条角平分线交于三角形内部一点,三条中线交于三角形内部 一点,三条高线所在直线交于一点.③三角形的角平分线、中线、高线都是线段.④三角形的中线将三角形分成面积相等的两个三角形.4. 三角形的基本要素及基本性质三角形有三个顶点、三个角、三条边共九个要素. (1)三角形边与边的关系:①三角形中任意两边之和大于第三边; ②三角形中任意两边之差小于第三边; ③直角三角形中,斜边大于直角边. (2)三角形角与角的关系:①三角形内角关系:三角形的内角和等于︒180 ②三角形的外角性质: <a >三角形的外角和等于︒360<b >三角形的一个外角等于与它不相邻的两个内角的和 <c >三角形的一个外角大于与它不相邻的任何一个内角 5. 三角形具有稳定性,而四边形不具有稳定性热身练习1. 如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( A ) A . 5米 B .10米 C . 15米D .20米2. 在一个三角形中,下列说法中错误的是( B ) A .至少有两个锐角 B . 最多能有两个钝角 C .至多有一个直角 D . 最多能有三个锐角3. 在△ABC 中,︒=∠︒=∠50,90A C ,则=∠B 40° .4. 在三角形ABC 中,若3:2:1::=∠∠∠C B A ,则=∠+∠B A 90° .5. 三角形的三边为1,a -1,9,则a 的取值范围是 -7< a <-9 . 6.一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,则第三边长为 9 厘米7. 建造房屋时,屋顶的支架通常为三角形,这是利用了三角形的 稳定 性. 8. 已知等腰三角形的一条边长为4,周长为10,那么它的底边长是 2 或 4 . 9. 已知等腰三角形一边长为20 cm ,另一边长为10cm ,则这个三角形的周长为 50cm .10. 若三角形边分别是3,4,5,8,用其中的三条线段组成三角形,可以有 2 种 不同选择.11. ∠ACD 是△ABC 的外角,则图中x 的值为 60° .C'B'C(11题图) (13题图)12. △ABC 的BC 边上的高把∠A 分成两个角分别为30°,50°,则∠B ,∠C 的度数分别为 60°,40°13. 在△ABC 中,∠B=∠C=45°,将△ABC 以A 为旋转中心顺时针旋转25°至AB C ''V ,则B C ''与AB 、BC 的夹角BEB '∠= 70 度,CDC '∠= 25 度. 14. 若一个三角形的一个内角为120°,那么另两个角的外角和为 300° .15. 在R t △ABC 中,AB=AC ,∠BAD=20°,AD=AE , ∠CDE= 25 度·ED CB AFE DCBA(15题图) (16题图)16. ∠A+∠B+∠C+∠D+∠E+∠F= 360° .17. 已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .精解名题例1 如图,∠A=70°,P 为△ABC 角平分线的交点,求∠BPC. 解:∠BPC=125°EGHEDC BAGF EDC BA例2如图,BE平分∠ABD,CF平分∠ACD,BE与CF相交于G,若∠BDC=140°,∠BGC=100°,求∠A的度数.解:∵∠DBC+∠DCB=40°,∠GBC+∠GCB=80°∴∠GBD+∠GCD=80°-40°=40°∵BE平分∠ABD,CF平分∠ACD,∴∠ABD+∠ACD=2(∠GBD+∠GCD)=80°∴∠ABC+∠ACB=80°+40°=120°∴∠A=60°例3 求图中∠A+∠B+∠C+∠D+∠E的大小.解:∠A+∠B+∠C+∠D+∠E=180°(提示:三角形外角的性质)例4纸片△ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内(如图),若∠1=20°,求∠2的度数.解:∠B=80°例5 如图所示,将△ABC 沿着DE 翻折,若∠1+∠2=80O ,求∠B 的度数. 解:∠B =40°巩固练习1. 已知在△ABC 中,C B A ∠=∠=∠2121,则=∠B 72° . 2. 已知三角形两边的长分别为1和2,如果第三边为整数,那么第三边长为 2 . 3. 在ABC ∆中,AB=3,BC=7,则AC 的取值范围是 4 < AC < 7 . 4. 如图,将三角尺的直角顶点放在直尺的一边上,已知∠1=30°,∠2=50°,则∠3= 20°.1FE BACDCBA(4题图) (6题图) (7题图)5. 已知一个三角形中两条边的长分别是a 、b ,且b a >,那么这个三角形的周长L 的取值范围是( B )A .b L a 33>>B .a L b a 2)(2>>+C .a b L b a +>>+262D .b a L b a 23+>>-6. 如图,在△ABC 中,90C ∠=。

,EF//AB ,150∠=。

,则B ∠的度数为 ( D )A .50° B. 60° C.30° D. 40°7. 如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD 等于 ( C )A. 100°B. 120°C. 130°D. 150°8. 若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的底角为(D )A.32.5°B.57.5°C.65°或57.5°D.32.5°或57.5°9. 已知ABC△的一个外角为50°,则ABC△一定是( B )A.锐角三角形B.钝角三角形C.直角三角形D.钝角三角形或锐角三角形10. 下列长度的三条线段能组成三角形的是(D )A.1cm,2cm,3. 5cm B.4cm,5cm,9cmC.5cm,8cm,15cm D.6cm,8cm,9cm11.如图,Rt ABC△中,90ACB∠=°,DE 过点C,且DE AB∥,若55ACD∠=°,则∠B的度数是( A )A.35°B.45°C.55°D.65°12.已知:如图,CE⊥AB于E,AD⊥BC于D,∠A=30°,求∠C的度数.解:∠C=30°13. 如图,已知ACBCDBCDE∠是,//的平分线,︒=∠︒=∠5070ACBB,,求EDC∠和BDC∠的度数.解:EDC∠=25°BDC∠=85°AD ECBACB D (4)D C BA自我测试1.在△ABC 中,已知∠A :∠B :∠C=1:1:2,则∠A= 45° ,∠B= 45° ,∠C= 90° .2. 在△ABC 中,已知∠B -∠C=15°,∠A=75°,则∠B= 60 度.3. 在△ABC 中,∠A=80°,∠B=36°,则∠C 的外角= 116 度.4. 如图,已知ACB ABC ∠∠和的平分线BD 、CE 相交于点︒=∠50,A O ,则 =∠BOC 115°. 5. 三组已知长度的线段①8、4和6 ②7、4和3 ③6、4和3 ,其中不能组成三角形的是 ② .6.在三角形的三个外角中,钝角最多有 3 个.7. 如果△ABC 的一个外角等于1500,且∠B =∠C ,则∠A = 30°或120°. 8. 如图,△ABC 中,∠A =60°,∠C =40°,则∠ABD = 100°.(8) 9.已知:如图,BE与CF 相交于A 点,试确定∠B +∠C 与∠E +∠F 之间的大小关系,并说明你的理由. 解: ∠B +∠C=∠E +∠F10. (1) 若三角形三条边的长分别是7,10,x,求x的范围.解:3<x<17(2) 若三边分别为2,x-1,3,求x的范围.解:∵1<x-1<5∴2<x<611.已知:如图,一轮船在海上往东行驶,在A处测得灯塔C位于北偏东60°,在B处测得灯塔C位于北偏东25°,求∠ACB.解:∠ACB=35°12.有一个五角星ABCDE,你能说明∠A+∠B+∠C+∠D+∠E=180°吗?解:∠A+∠B+∠C+∠D+∠E=∠A+∠D+∠B+∠C+∠E=∠BFG+∠B+∠C+∠E=∠CGE+∠C+∠E=180°EDCGFDECBA13. 等腰△ABC 中,一腰AC 上的中线BE 把三角形周长分成12CM 和15CM 两部分,求△ABC 各边长. 解:设腰长为x ,底边为y⎪⎪⎩⎪⎪⎨⎧=+=15211223y x x 或 ⎪⎪⎩⎪⎪⎨⎧=+=12211523y x x 则:⎩⎨⎧==118y x 或⎩⎨⎧==710y x ∴AB=AC=8cm ∴AB=AC=10cm BC=11cm BC=7cm14. BD 、CD 分别平分△ABC 的内角∠ABC 和外角∠ACE ,∠A=m ,用含m 的代数式表示∠D. 解:m ABD D ABD m +∠=∠+∠+212 ∴∠D=错误!未找到引用源。

相关文档
最新文档