聚合物基复合材料在汽车工业中的应用

聚合物基复合材料在汽车工业中的应用
聚合物基复合材料在汽车工业中的应用

Material Sciences 材料科学, 2016, 6(6), 315-321 Published Online November 2016 in Hans. https://www.360docs.net/doc/dc3548395.html,/journal/ms https://www.360docs.net/doc/dc3548395.html,/10.12677/ms.2016.66041

文章引用: 周玉敬, 杨涛, 范广宏. 聚合物基复合材料在汽车工业中的应用[J]. 材料科学, 2016, 6(6): 315-321.

Applications of Polymer Composites on Automotives

Yujing Zhou, Tao Yang, Guanghong Fan

Advanced Manufacture Technology Center, China Academy of Machinery Science &Technology, Beijing

Received: Oct. 8th , 2016; accepted: Oct. 30th , 2016; published: Nov. 2nd , 2016

Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.360docs.net/doc/dc3548395.html,/licenses/by/4.0/

Abstract

Characteristics and process of polymer composites are presented. Applications of composite ma-terials on auto industry are also elaborated. In the end, the development trend of automotive composite materials is discussed. Keywords

Automotives, Polymer Composites, Applications, Development

聚合物基复合材料在汽车工业中的应用

周玉敬,杨 涛,范广宏

机械科学研究总院先进制造技术研究中心,北京

收稿日期:2016年10月8日;录用日期:2016年10月30日;发布日期:2016年11月2日

摘 要

本文阐述了聚合物基复合材料的特点,介绍了复合材料在汽车工业中的应用现状,并讨论了汽车用复合材料的发展前景。

Open Access

周玉敬等

关键词

汽车,聚合物基复合材料,应用,发展

1. 引言

随着汽车工业的快速发展,汽车工业面临的能源短缺、环境污染等一系列问题日益突出,节能环保型汽车成为21世纪汽车工业发展的必然趋势,其中汽车轻量化是关键因素之一。为实现汽车节能降重的目的,结构材料中钢铁等材料所占比例将逐步下降,有色金属、陶瓷材料、复合材料等新型材料的用量将逐步上升。世界铝业协会的报告指出,汽车自重每减少10%,燃油消耗可降低6%~8%;巴斯夫公司统计指出,车重每减轻100 kg,每100 km油耗可降低0.4 L,CO2排放量减少1 kg [1]。因而,汽车轻量化是实现节能减排、降低油耗效果的有效途径。采用聚合物基复合材料是当前汽车轻量化的重要措施之一。

若用比重仅有1.6 g/cm3的复合材料代替比重7.80 g/cm3的钢质零件,可使汽车构件减重40%~60% [2]。

福特公司2007年所做的研究报告称,复材可将零部件种类减为原来的8%,加工费用相对钢材降低60%,粘结费用相对焊接减少25%~40%。同时,复材模具费只约占钢制件模具的10%~20%,成本降低更加显著[3]。现在,无论是欧、美、日等汽车工业发达国家,还是中国、巴西和印度等汽车工业快速发展中国家,都已在汽车制造中大量采用汽车复合材料,主要应用范围也从内饰件、车身面板、车门、车窗等非结构件发展到传动轴、板弹簧等结构件、半结构件。

本文介绍了聚合物基复合材料的特点,总结了近年来复合材料在汽车行业的应用现状及发展前景。

2. 聚合物基复合材料分类及特点

聚合物基复合材料又称纤维增强复合材料,由短切、长切或连续纤维与热固性或热塑性树脂基体复合而成,是目前制造技术比较成熟且应用最为广泛的一种复合材料。聚合物基复合材料通常按照增强纤维类型、基体材料类型、分散相形态进行分类[4]。

1) 按照增强纤维类型分类

按照增强纤维类型分为碳纤维复合材料、玻璃纤维复合材料、芳纶复合材料、硼纤维复合材料、玄武岩纤维复合材料、混杂纤维复合材料等。

2) 按照基体材料类型分类

按照基体材料类型分为热固性树脂基复合材料和热塑性复合材料两种。

3) 按照分散相形态分类

按照分散相的形态可分为连续纤维增强复合材料、片状增强复合材料、短纤维增强复合材料、颗粒增强复合材料。

聚合物基复合材料,具有高比模量、耐腐蚀等优异的力学特性和热物理性能、化学稳定性、阻尼减震降噪性等一系列金属材料所无法比拟的优良性能,并具有可设计性强、可大规模整体成型等一系列优点,在汽车制造业中得到广泛应用[5]。

3. 复合材料在国内外汽车工业上的应用

自从1953年世界上第一部FRP汽车——GM Corvette制造成功以后,聚合物基复合材料即成为汽车工业的一支生力军。20世纪70年代开始,由于片状模压成型(SMC, Sheet Molding Compound)、块状模压成型(BMC, Bulk Molding Compound)材料的成功开发和机械化模压技术的应用,汽车玻璃纤维增强复合材料发展得到快速发展。以SMC、BMC制造工艺为代表,主要用于汽车的汽车内饰件和防腐蚀外护板

周玉敬等

件,也有少量用于汽车的结构件和半结构件;随着环保和轻量化、节能等需求,复合材料原材料以及工艺制造和装备的不断进步,汽车复合材料构件的制造成本降低、生产效率提高,以玻璃毡增强热塑性树脂成型工艺(GMT, Glass Mat Reinforced Thermoplastics)、长纤维在线模压成型工艺(LFT-D, Long Fiber Reinforced Thermoplastics-Direct processing)、树脂注射成型(RTM, Resin transfer molding)为代表的高性能复合材料得到了迅猛发展,主要用于汽车的车身、车身地板、车门、轮毂等结构件和半结构件。

3.1. 复合材料在国外汽车上的应用

统计显示,全世界平均每辆汽车的塑复材用量在2000年就已达105千克,约占汽车总重量的8%~12%。而发达国家汽车平均使用量为120千克,占汽车总重量的12%~20%。预计到2020年,发达国家汽车平均复材用量将达到500千克/辆以上[6]。复合材料在国外汽车车身覆盖件、内饰件等半结构件开发与制造得到广泛应用,主要是以SMC、GMT等短切玻璃纤维增强复合材料构件为主,包括车顶板、后备箱盖板、车备胎仓、保险杠、内饰板和车前端等。近年来,复合材料在轿车上的覆盖件及内饰件应用见表1所示。

由于玻璃钢存在刚度不足的缺点,不能用于主承力结构,高性能的连续碳纤维复合材料正在引发全球汽车制造业一场新的技术革新。BMW M3 CSL碳纤维车顶是在BMW汽车公司的Landshut工厂中的第一条高自动化的碳纤维车身零部件加工生产线上制作而成,相比钢制车顶,其重量减轻了约6 kg,相当于钢制车顶重量的一半。Polimotor Research Inc. 公司开发了一种新的、轻巧、碳纤维复合材料四缸发动机缸体(如图1所示),采用东邦耐克丝碳纤维被选为环氧树脂基增强材料,采用模塑成型工艺,使用低成本的加工材料,循环时间比传统的碳纤维复合材料的成型方法更快,模具工具成本减少50%,碳纤维复合材料缸体比合金的重量轻20磅,新发动机缸体重量比铝的轻45%~50% [7]。

宝马2013年推出首款i3电动车以及其后推出的i8跑车的整个车身结构都是由碳纤维材料制成,采用RTM进行高压树脂注射技术,将成型时间控制在10分钟内;在整车组装方面,宝马采用新的自动化接合技术,极大提高了生产效率。宝马i8 Spyder概念车的重量仅为1630公斤,能够比传统新能源汽车减轻250~350公斤(如图2所示)。

复合材料在国外大型客车中也得到进一步的拓展应用,应用部件包括前后围、前后保险杠、翼子板、轮护板、踏步围板、行李箱门板、裙板(侧围板)、后视镜、仪表板、仓门板、空调顶置壳体等[8]。荷兰人甚至研制了一个全复合材料超级巴士(如图3所示),该车15 × 2.5 × 1.5 m,可乘24人,双侧各有8个门上下方便,其主用材为T700-12K/环氧树脂,采用真空辅助树脂熔塑法成形。

3.2. 复合材料在国内汽车工业上的应用

我国汽车复合材料应用始于美系、日系等引进车型上,奇瑞、吉利、长城等自主品牌也在自主开发的一些车型上近几年也取得了长足进步。复合材料在国内汽车中的部分应用实例见表2。

自2009年的哥本哈根会议,“低碳经济、新能源”成为世界各国都关注的焦点。作为汽车消费大国的中国,新能源汽车的生产和使用必将成为未来的发展趋势,这就给了国内汽车轻量化一个机遇,同时也是复合材料汽车零部件借势发展的一个巨大市场。上汽采用轻质GMT复合材料制备顶棚内饰板(如图4所示),可实现减重20%~30%,综合成本可降低约20元/件。上汽大通校车顶凸台采用SMC材料,减重14 kg,重量较原有钣金件降低60% [9]。

近年来,复合材料零部件在国内客车及载货汽车的应用,也有不少成功案例。比如,南京依维柯都灵V系列车的SMC豪华面罩、后行李厢门、BMC前大灯和雾灯、FRP后围等构件、一汽集团解放J5、J6系列的SMC前保险杠、前围面板、导流罩等;中国重汽华沃系列的SMC前端面板、脚踏板、门下装

周玉敬等

Table 1. Applications of composite materials on automobile in foreign

表1.国外汽车复合材料的应用

汽车车型部件实例

美国林肯大陆SMC发动机罩、保险杠、行李箱盖

美国雪弗莱SMC车身板、车顶内板

英国Sultan跑车100%玻璃纤维车身和装饰件

意大利科维奇RTM驾驶室顶

法国雷诺Master 玻璃纤维增强树脂弹簧片德国奔驰GMT发动机罩、LFT-D底盘护板及车备胎盒德国大众高尔夫GMT前端板、发动机防噪板

奥迪A6

SMC后保险杠背衬、后备胎箱、BMC车灯反射罩以及GMT前端支架和前端底板衬里、

发动机罩板、LFT-D引擎底板等

Figure 1. Carbon fiber composite engine block

图1. 碳纤维复合材料发动机缸体

Figure 2. Carbon fiber frame of BMW i series

图2. 宝马i系列碳纤维车架

Figure 3. The composite passenger bus

图3. 复合材料客车

周玉敬等

饰板和侧护板等;陕汽德龙系列的SMC面罩、保险杠、脚踏板、左右护栏板和导流罩等[10]。国内首辆自主研发的复合材料车厢自卸车如图5所示,车身长度达到8.6米,但车身自重仅为4.8吨,其载重能力可达50吨,与传统的金属车厢运输车重量减轻了29%左右。

近年来,聚合物基复合材料在客车及载货汽车领域应用有所增加,而且SMC、LFT-D工艺正逐步替代传统手糊工艺,而且以短切纤维增强复合材料为主,连续碳纤维复合材料国内汽车厂家应用案例较少。

4. 复合材料在国内汽车工业中应用展望

据统计显示,2008年我国汽车总产量为1000万辆,2010年已经1800万辆,计划2015年达到2500万辆[11]。巨大的市场需求不仅使中国成为继美国之后的世界第二大汽车消费市场,还成为仅次于美国和日本的世界第三大汽车生产国。汽车轻量化的发展趋势,对汽车复合材料提出了更高的要求,在减轻自重的同时,更要提高性能。

随着SMC、LFT、RTM等低成本、快速成型制造技术及装备的迅速发展,大大降低了汽车复合材料的工艺及制造成本,促进了汽车复合材料的发展和应用。复合材料从制备简单的SMC后保险杠背衬、后备胎箱、车灯反射罩以及发动机罩板等汽车非承力零件逐渐发展到制备复合材料高性能汽车板簧及全复合材料轮毂等承力构件。复合材料的增强材料也从玻璃纤维向高性能的碳纤维和芳纶纤维以及复合纤维发展,这些高性能材料的使用,大大改善了复合材料的结构性能,加速了复合材料在汽车工业更为广泛的应用。比如,整体碳纤维轮毂每个仅重6.81~8.17 kg,其质量比铝合金轮毂轻40%~50%,可大幅提高

Table 2. Applications of composite materials on automobile in domestic

表2. 复合材料在国内汽车中的部分应用实例

汽车制造商车型部件实例

一汽大众宝来系列SMC后保险杠背衬、GMT前端支架

海南马自达马自达6 长玻纤增强聚丙烯注射成型的前端模块和车门模块载体

一汽轿车红旗系列SMC后保险杠背衬、后备胎箱、FRP尾翼

上海大众帕萨特B5 GMT蓄电池托架、发动机罩板、前端底板衬里以及BMC车灯反射罩斯柯达LFT-D仪表盘骨架

途安系列LFT前端支架

上汽汽车荣威系列SMC底部导流板

北汽制造勇士系列SMC前后保险杠、左右风窗铰链装饰板、蓄电池托架、FRP发动机罩盖、左右翼子板、车顶等奇瑞汽车东方之子GMT前保缓冲器支架

郑州日产锐琪系列SMC顶饰件总成、中隔窗、双开式后门

Figure 4. Ceiling trim panel

图4. 顶棚内饰板

周玉敬等

Figure 5. The truck with composite box

图5. 复合材料箱体运输车

(a) LFT-D process

(b) GMT process

Figure 6. A specimen for LFT-D process and GMT process

图6. LFT-D成型工艺和GMT成型工艺的示意图

汽车燃油效率;用碳纤维复合材料取代钢材制造车身和底盘,可减轻质量68%,油耗下降40% [12]。

聚合物基复合材料经过四十多年的研究、应用和发展,在航空航天领域已经取得了长足的进步,但是在汽车中的应用目前存在一些技术障碍和问题急需研究解决。除了成本因素外,复合材料的生产和制造不同于金属材料,无论是结构设计、材料选择还是工艺制造均缺乏经验和数据积累,也缺少新的设计标准。特别是在复合材料成型工艺方面,现有的工艺原则上均可用于汽车工业,但是除考虑制件的力学性能外,工艺的成型效率和制造成本同样影响着复合材料在汽车上的应用。目前,模压成型工艺在汽车复合材料制造工艺中应用最为广泛。模压成型工艺的生产效率高,便于实现专业化和自动化大批量生产;能一次成型结构复杂的制品,无需二次修饰;产品尺寸精度高,重复性好。目前,引擎盖、车门、后厢盖、后举门、车门中间承载板、座椅骨架和底部护板等汽车部件均采用模压成型工艺制作而成[13]。

在提到模压成型工艺技术时,特别要提到近年来在汽车复合材料行业中最受关注和市场成长最快的LFT-D成型工艺(如图6(a)所示)。LFT-D成型工艺是长纤维增强热塑性复合材料在线直接生产制品的一种工艺技术,将设计好比例的树脂、添加剂以及长纤维在专用设备中进行混合,将混配好的原料送入双螺杆挤出机中制成坯料后经传输装置送入冲压模压单元,直接快速成形成品[14]。与传统GMT成型工艺(如

周玉敬等

图6(b)所示)相比,LFT-D成型工艺省略了半成品制备步骤,因而大幅度提高生产效率,比传统工艺成本低20%~50%。与同类材料成形工艺相比,其制品的抗冲击性能提高大约40%~60%。LFT-D成型工艺包含材料复合工艺、冲压模压工艺、数控化设备等关键难点,欧洲已成功应用20多年,目前国内尚未系统攻克。机械科学研究总院先进制造技术研究中心针对汽车等领域对轻量化技术的重大需求,组织材料、工艺、设备等多学科力量,开发研制具有自主知识产权LFT-D成套技术,为复合材料替代金属结构件提供了一定的技术保障。

5. 结束语

先进复合材料历经多年的研究发展,已在技术上取得了长足的进步,积累了丰富的设计、制造、应用方面的经验,这为复合材料在汽车领域的应用提供了强有力的技术支撑和前提条件。随着大量高性能复合材料开发以及节能减排的需求,应用于汽车部分的复合材料数量不断增加,应用范围涉及汽车的车身内、外饰件以及部分半结构件和结构件,为汽车工业的轻量化做出了巨大的贡献。

参考文献(References)

[1]冯奇, 何健, 万党水, 等. 复合材料在汽车中应用的发展趋势[J]. 上海汽车, 2013,(2): 50-53.

[2]Duflou, J.R., Demoor, J., Verposet, I., et al. (2009) Environmental Impact Analysis of Composite Use in Car Manu-

facturing. CIRP Annals-Manufacturing Technology, 58, 9-12.https://www.360docs.net/doc/dc3548395.html,/10.1016/j.cirp.2009.03.077

[3]张林文. 树脂基复合材料在汽车工业的应用[J]. 新材料产业, 2007(9): 27-28.

[4]王耀光. 复合材料力学与结构设计[M]. 上海: 华东理工大学, 2009.

[5]益小苏. 先进复合材料技术研究与发展[M]. 北京: 国防工业出版社, 2006: 2-8.

[6]郑学森. 国内汽车复合材料应用现状与未来展望[J]. 玻璃纤维, 2010(3): 35-42.

[7]美国开发碳纤维复合材料汽车发动机[2011-07-18]. https://www.360docs.net/doc/dc3548395.html,

[8]张力, 张恒. 复合材料汽车零部件设计制造及应用[M]. 北京: 科学出版社, 2010: 13-15.

[9]陶骏, 杨丹, 马华跃, 杨汐, 徐浩. 浅析轻质GMT在汽车内饰板上的应用[J]. 汽车工艺与材料, 2009(9): 65-66.

[10]凌静, 王庆明. 复合材料部件在汽车轻量化中的应用[J]. 现代零部件, 2013(2): 34-37.

[11]陈绍杰. 先进复合材料在汽车领域的应用[J]. 高科技纤维与应用, 2011, 30(1): 11-17.

[12]方鲲, 顾轶卓, 刘建才, 马鸣图. 碳纤维增强(树脂基)热塑性复合材料汽车轮毂的CAE分析[A]. 第十一界先进

成型与材料加工技术国际研讨会, 2014: 12.

[13]陶永亮, 徐翔青. 树脂基复合材料在汽车上的应用分析[J]. 化学推进剂与高分子材料, 2012, 10(4): 36-40.

[14]沈玉考. 长纤维增强热塑性复合材料模塑技术新动向[J]. 玻璃钢/复合材料, 2004(2): 53-55.

期刊投稿者将享受如下服务:

1. 投稿前咨询服务(QQ、微信、邮箱皆可)

2. 为您匹配最合适的期刊

3. 24小时以内解答您的所有疑问

4. 友好的在线投稿界面

5. 专业的同行评审

6. 知网检索

7. 全网络覆盖式推广您的研究

投稿请点击:https://www.360docs.net/doc/dc3548395.html,/Submission.aspx 期刊邮箱:ms@https://www.360docs.net/doc/dc3548395.html,

生物质塑料在汽车上的应用

生物质塑料在汽车上的应用 摘要:随着汽车工业的不断发展,轻量化、节能和环保等问题日益凸显。发展生物质塑料成为降低汽车产业对石油等非可再生资源的依赖并实现汽车塑料可持续性发展的关键一环。本文主要介绍了生物质塑料的种类、生产工艺,复合材料的加工工艺以及在汽车上的应用。 关键词:生物质塑料汽车天然纤维 1. 前言 汽车工业是我国国民经济的支柱产业,近几年来已取得迅猛的发展。随着汽车工业的不断发展,轻量化、节能和环保等问题日益凸现出来。减少燃料消耗和降低对环境的污染已成为汽车工业发展和社会可持续发展急需解决的关键问题。实现汽车轻量化,是节省能源的最有效的途径之一。汽车重量每减轻10%,就会节省6%~8%的燃料。使用塑料及其复合材料取代金属应用于汽车零部件上已成为汽车轻量化的发展必然趋势和最重要的手段之一。目前,汽车塑料约占汽车车身总重量的10%,以2010年我国的汽车总产量超过1800万辆计算,需求的塑料量超过几百万吨。这必然给日益增长的石化产品的消耗带来极大的压力。随着石油价格的波动性太大,也使得传统石油基聚合物的价格成本无法明确。为了满足汽车轻量化的需求并降低汽车产业对石油等不可再生能源的依赖,发展生物质塑料成为实现汽车塑料可持续性发展的关键一环。 生物质塑料指的是以木本、禾本和藤本植物及林产品废弃物等可再生生物质资源为原材料,通过生物化工技术,加工制造的高分子材料。生物质塑料是从原料的角度来分的,与之相对的是以石油等不可再生资源为原料的石油基塑料。目前生物质塑料主要可以分为三大类:天然高分子材料、完全生物质合成高分子材料以及部分生物质合成高分子材料。 本文将从原材料的加工、具体的应用及存在的问题等方向,对生物质塑料在汽车应用研究做一定的综述。 2. 天然高分子 天然高分子材料是最早得到应用的生物质塑料,也是研究比较广泛的生物质塑料,其主要包括淀粉基聚合物材料、天然纤维以及甲壳素等。目前在汽车工业中应用最多的就是天然纤维。相对于传统的玻璃纤维,天然纤维及其复合材料具有节约石油资源、废弃后对环境影响小、减重效果更明显(密度小,质量轻)、原料成本低且来源广泛等优点。天然纤维在汽车内饰件制造的应用已经越来越广泛,并已开始用于汽车外部部件(如挡泥板衬和扰流板)的尝试。 2.1 天然纤维的改性研究 宣善勇,男,博士,毕业于中国科学技术大学火灾国家重点实验室,2011年7月进入奇 瑞汽车股份有限公司博士后工作站,主要研究方向为聚乳酸复合材料的改性。

聚合物基复合材料 知识点总结

第二章增强材料 1.增强材料的品种: 1)无机纤维:(1)玻璃纤维 (2)碳纤维:①聚丙烯腈碳纤维②沥青基碳纤维 (3)硼纤维,(4)碳化硅纤维,(5)氧化铝纤维 2)有机纤维:(1)刚性分子链——液晶(干喷湿纺): ①对位芳酰胺②聚苯并噁唑③聚芳酯 (2)柔性分子链:①聚乙烯②聚乙烯醇 2.玻璃纤维的分类: 1)按化学组成份:有碱玻璃纤维,碱金属含量>12%;中碱玻璃纤维,碱金属含量6%~12%;低碱玻璃纤维,碱金属含量2%~6%;微碱玻璃纤维,碱金属含量<2% 2)按纤维使用特性分:普通玻纤(A-GF);电工玻纤(E玻纤);高强玻纤(S玻纤或R玻纤);高模玻纤(M-GF);耐化学药品玻纤(C玻纤)…… 3)按产品特点分:长度(定长玻纤<6-50mm>,连续玻纤);直径(粗纤维30μm,初级纤维20μm,中级纤维10-20μm,高级纤维3-9μm);外观(连续纤维,短切纤维,空心玻纤,磨细纤维和玻璃粉) 3.玻璃纤维的制备:目前生产玻璃纤维最多的方法有坩埚拉丝法(玻 璃球法)和池窑拉丝法(直接熔融法) 4.玻璃纤维的力学特性: 1)玻璃纤维的拉伸应力--应变关系:玻璃纤维直到拉断前其应力-应变关系为一条直线,无明显的屈服、塑性阶段,呈脆性材料特征 2)玻璃纤维的拉伸强度较高,但模量较低;解释: (1)Griffith微裂纹理论: 玻璃在制造过程中引入许多微裂纹,受力后裂纹尖端应力集中。当应力达到一定值时,裂纹扩展,材料破坏。所以,缺陷尺寸越大,越多,应力集中越严重,导致强度越低 (2)分子取向理论: 玻纤在制备过程中,受到定向牵引力作用,分子排列更规整,所以玻纤强度更大。 3)玻璃纤维强度特点:单丝直径越小,拉伸强度σb越高;试样测试段长度L越大,拉伸强度σb越低。这两点结果被称为玻璃纤维强度的尺寸效应和体积效应,即体积或尺寸越大,测试的强度越低 4)缺点:①强度分散性大,生产工艺影响②强度受湿度影响,吸水后,湿态强度下降③拉伸模量较低(70GPa),断裂伸长率约为2.6% 5.玻璃纤维纱的常用术语、参数:(填空) 1)原纱:指玻璃纤维制造过程中的单丝经集束后的单股纱 2)表示纤维粗细的指标:①支数β:指1g原纱的长度(m),支数越大表示原纱越细②特(tex):指1000m长原纱的质量(g),tex数越大,纱越粗③旦、袋(den):指9000m长原纱的质量(g),den 数越大纱越粗 3)捻度:表示纱的加捻程度,指每米长原纱的加捻数,即捻/m。S:右捻,Z:左捻。增加抱合力 4)股数N:指由几根原纱合股组成。纱的合股数指以一根原纱为一股,几根原纱合并起来的原纱根数即为合股纱的合股数N。玻璃纱的公称支数为原纱支数除以股数(β=β0/N) 6.预氧化阶段施加张力的目的,是使纤维中形成的梯形结构取向。热定型后的聚丙烯纤维在温度高于玻璃化温度后,在纤维长轴方向上会发生收缩。预氧化过程前期为物理收缩,表现为取向度

ABS树脂在汽车行业的应用

ABS树脂在汽车行业的应用 胡沁1,王斌1,陈晓东2 (1.上海锦湖日丽塑料有限公司,上海201107;2.上海日之升新技术有限公司,201108) 摘要:ABS树脂一直在汽车内外饰零件生产中起着重要作用,因其具有优异的机械性能和加工性能,在汽车行业的应用也越来越广泛。目前,ABS树脂的发展趋势正朝着高性能化、多功能化的专用树脂方向发展,本文综述了近年来专用ABS树脂在汽车行业的应用及其发展方向 关键词:ABS树脂、汽车、应用、内外饰 近年来,随着我国汽车保有量的迅猛增长,我国ABS树脂消费市场和应用的重心正在逐步转移,ABS 树脂在交通运输领域有着极为广泛的应用,尤其是汽车内外饰件制品成为了ABS树脂新的消费亮点。众所周知,ABS树脂是聚丁二烯橡胶与单体苯乙烯和丙烯腈的接枝共聚物,拥有优良的耐热性、抗冲击性、电镀性、涂装性、尺寸稳定性及加工性能。ABS树脂的发展趋势正朝着高性能化、多功能化的专用树脂方向发展,例如:耐热ABS、耐候ABS、高抗冲ABS、高光泽ABS、哑光ABS以及抗静电ABS等等;与此同时,ABS树脂的合金化是ABS树脂高性能化的另一个重要发展方向,如ABS/PC、ABS/PBT、ABS/PET、ABS/PA、ABS/PMMA等合金树脂[1]。 1 概述 ABS树脂具有良好的机械性能和优异的成型加工特性,在汽车行业得到了广泛应用。如汽车内饰中的门板、仪表板、副仪表板、遮阳板,汽车外饰中的散热格栅、后视镜、车灯、牌照板等。ABS塑料在汽车产品上有着极其重要的地位,表1为2010年ABS树脂在某A级汽车中用量的情况,该车总重量为1135Kg,其中ABS树脂及其合金用量达到20kg。 ABS树脂后加工性能良好,适合进行涂装,电镀,水转印,IMD(模内转印)等二次加工,可以提高汽车的美观性和舒适性。汽车档次越高,ABS树脂及其合金材料的用量也越多。 对于ABS树脂而言,其主要应用在汽车内饰、外饰、车灯等系统,由于其工作环境和成型方法的差异,对ABS树脂系能的要求也不尽相同,但总体来说,ABS树脂耐热性能、耐候性能及二次加工性能是非常重要的性能指标。因此,针对汽车内饰,外饰机车灯的不同应用,开发了对应的改性ABS品种和牌号,如耐热ABS、低气味ABS,电镀ABS等,常见牌号和应用情况如表2所示。

聚合物基复合材料的发展现状和最新进展

聚合物基复合材料的发展现状和最新进展 摘要聚合物基复合材料以聚合物为基体,玻璃纤维、碳纤维、芳纶等为增强材料复合而成。主要包括热固性复合材料和热塑性复合材料。本文先介绍聚合物基复合材料的最新性能研究,再简单介绍下最近几年的研究热点,最后从应用角度谈一谈聚合物基复合材料的发展现状和最近进展。 关键词聚合物基复合材料发展现状最近进展 一、引言 我国聚合物基复合材料的研究始于1958 年,第一个产品就是我们所熟知的玻璃钢。我国热塑性树脂基复合材料开始于20世纪80年代末期,近20年来取得了快速发展。迄今,我国已经成功将碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维增强高性能聚合物基复合材料实用化,其中高强度玻璃纤维增强复合材料已达到国际先进水平,形成了年产500t的规模[1]。随着科技的高速发展,传统聚合物基复合材料已不能满足使用需求,对高性能、耐高温、耐磨损、耐老化性能的研究不断深入。新型复合材料的出现也给该领域带来了更大的发展前景,进而在军事、航空航天、交通,乃至日常生活中的广泛运用也使得该领域具有巨大的发展空间和良好的市场前景[2]。 二、性能研究进展 常见的高性能耐高温聚合物材料有聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)、聚酰亚胺(PI)等。研究发现液晶材料能很好的提高PTFE的耐磨损性能,将PEEK与其它聚合物共混或采用碳纤

维(CF)、玻璃纤维(GF)、无机纳米粒子等复合增强,已成为制备摩擦学性能和力学性能更优异的PEEK复合材料的首选[3]。美国一家PI复合材料供应商,主要生产不含MDA型PI/碳纤维、玻璃纤维、石英纤维单向带、织物以及预制品。该公司开发的900HT材料的瓦约为426℃,使用温度最高816℃,可采用热压罐、模压以及某些液体模塑工艺加工[4]。该材料还具有十分优异的热氧化稳定性,因此尤其适用于制造在高温氧气环境中长期工作的发动机以及机身部件[5]。 聚合物基复合材料在自然环境下使用,性能会受到许多环境因子(如紫外辐射、臭氧、氧、水、温度、湿度、微生物、化学介质等)的影响。这些环境因子通过不同的机制作用于复合材料,导致其性能下降、状态改变、直至损坏变质,通常称之为“腐蚀”或“老化”[6]。环境因素对复合材料性能的影响主要是通过树脂基体、增强纤维以及树脂/纤维粘接界面的破坏而引起性能的改变。陈跃良等分析了湿热老化、化学侵蚀和大气老化对复合材料的作用机理及对其力学性能的影响[7],也提出了复合材料老化寿命预测方法。 对于大多数聚合物材料而言,阻燃性能不佳,加入阻燃剂往往是必须的。从阻燃剂发展趋势来看,以高效、价廉、无卤素、无污染为特征的无机类阻燃剂符合世界各国发展环保型材料,推进可持续发展战略的政策要求。无机阻燃剂可以单独使用,也可以与有机阻燃剂复配使用,产生协同效应,起到很好的阻燃效果,是目前阻燃剂发展的主流。而其中的氢氧化物阻燃剂被认为是最有发展前途的、环境友好的无机阻燃剂, 成为近几年各国研究的热点[8]。Kazuki等研究发现了含

聚合物基复合材料制备方法

摘自课本《聚合物基复合材料》,针对的是聚合物基纳米复合材料的制备方法。 1、溶胶-凝胶法 溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。溶胶-凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。根据聚合物与无机组分的相互作用情况,可将其分为以下几类: (1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。(2)嵌入的聚合物与无机网络有共价键作用在聚合物侧基或主链末端引入能与无机组分形成共价键的基团,就可赋予其具有可与无机组分进行共价交联的优点,可明显增加产品的弹性模量和极限强度。在良好溶解的情况下,极性聚合物也可与无机物形成较强的物理作用,如氢键。 (3)有机-无机互穿网络在溶胶-凝胶体系中加入交联单体,使交联聚合和前驱物的水解与缩合同步进行,就可形成有机-无机同步互穿网络。用此方法,聚合物具有交联结构,可减少凝胶的收缩,具有较大的均匀性和较小的微区尺寸,一些完全不溶的聚合物可以原位生成均匀地嵌入到无机网络中。 溶胶-凝胶法的特点是可在温和条件下进行,可使两相分散均匀,通过控制前驱物的水解-缩合来调节溶胶-凝胶化过程,从而在反应早期就能控制材料的表面与界面性能,产生结构极其精细的第二相。存在的问题是在凝胶干燥过程中,由于溶剂、小分子、水的挥发可能导致材料内部产生收缩应力,从而会影响材料的力学和机械性能。另外,该法所选聚合物必须是溶解于所用溶剂中的,因而这种方法受到一定限制。 2、层间插入法 层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机-无机纳米复合材料。层状无机物是一维方向上的纳米材料,其粒子不易团聚且易分散,其层间距离及每层厚度都在纳米尺度范

聚合物基复合材料

聚合物基复合材料 摘要:聚合物基复合材料以其特有的性能近年来越来越受到人们的青睐。本文简单的介绍了聚合物基复合材料,描述了其作为一种新材料的性能特点,并详细描述了其发展历史及应用。 关键词:聚合物、复合材料、应用、历史 1、聚合物基复合材料 复合材料是指:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 (1) 复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是各组分材料性能的简单加和,而是有着重要的改进。(2)复合材料中通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。(3)分散相是以独立的形态分布在整个连续相中,两相之间存在着界面。分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 聚合物基复合材料(PMC)是以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合,各种材料在性能上互相取长补短,产生协同效应,材料的综合性能优于原组成材料而满足各种不同的要求,充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。通常意义上的聚合物基复合材料一般就是指纤维增强塑料。 而聚合物基复合材料一般都具有以下特性: 1. 比强度、比模量大。比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的

聚合物基复合材料精彩试题

第一章 聚合物合金的概念、合金化技术的特点? 聚合物合金:有两种以上不同的高分子链存在的多组分聚合物体系 合金化技术的特点:1、开发费用低,周期短,易于实现工业化生产。2、易于制得综合性能优良的聚合物材料。3、有利于产品的多品种化和系列化。 热力学相容性和工艺相容性的概念? 热力学相容性:达到分子程度混合的均相共混物,满足热力学相容条件的体系。 工艺相容性:使用过程中不会发生剥离现象具有一定程度相容的共混体系。 如何从热力学角度判断聚合物合金的相容性? 1、共混体系的混合自由能(ΔG M )满足ΔG M =ΔH M -TΔS M <0 2、聚合物间的相互作用参数χ 12 为负值或者小的正值。 3、聚合物分子量越小,且两种聚合物分子量相近。 4、两种聚合物的热膨胀系数相近。 5、两种聚合物的溶度参数相近。 *思考如何从改变聚合物分子链结构入手,改变聚合物间的相容性? 1、通过共聚使分子链引入极性基团。 2、对聚合物分子链化学改性。 3、通过共聚使分子链引入特殊相互作用基团。 4、形成IPN或交联结构。 5、改变分子量。 第二章 *列举影响聚合物合金相态结构连续性的因素,并说明分别是如何影响的? 组分比:含量高的组分易形成连续相; 黏度比:黏度低的组分流动性较好,容易形成连续相; 内聚能密度:内聚能密度大的聚合物,在共混物中不易分散,容易形成分散相;溶剂类型:连续相组分会随溶剂的品种而改变; 聚合工艺:首先合成的聚合物倾向于形成连续性程度大的相。 说明聚合物合金的相容性对形态结构有何影响?

共混体系中聚合物间的工艺相容性越好,它们的分子链越容易相互扩散而达到均匀的混合,两相间的过渡区越宽,相界面越模糊,分散相微区尺寸越小。完全相容的体系,相界面消失,微区也随之消失而成为均相体系。两种聚合物间完全不相容的体系,聚合物之间相互扩散的倾向很小,相界面和明显,界面黏接力很差,甚至发生宏观的分层剥离现象。 什么是嵌段共聚物的微相分离?如何控制嵌段共聚物的微相分离结构? 微相分离:由化学键相连接的不同链段间的相分离 控制溶剂、场诱导、特殊基底控制、嵌段分子量来控制 *简述聚合物合金界面层的特性及其在合金中所起的作用。 特性:1、两种分子链的分布是不均匀的,从相区到界面形成一浓度梯度;2、分子链比各自相区内排列松散,因而密度稍低于两相聚合的平均密度;3、界面层内易聚集更多的表面活性剂、其他添加剂、分子量较低的聚合物分子。 作用:力的传递效应;光学效应;诱导效应。 第三章 简述橡胶增韧塑料的形变机理及形变特点。 形变机理:银纹化和剪切带形变 特点:1、橡胶的存在有利于发生屈服形变;2、力学性能受形变机理影响 简述橡胶增韧塑料形变机理的研究方法及影响形变机理的因素。 定量研究:高精度的蠕变仪同时测定试样在张应力作用下的纵向和横向形变 影响因素:树脂基体;应力和应变速率;温度;橡胶含量;拉伸取向 简述橡胶增韧塑料的增韧机理,并列举实例加以说明。 多重银纹化增韧理论:在橡胶增韧的塑料中,由于橡胶粒子的存在,应力场不再是均匀的,橡胶粒子起着应力集中的作用。(脆性玻璃态高聚物受外力作用发生银纹形变时材料韧性很差) 银纹-剪切带增韧机理:银纹和剪切到之间存在着相互作用和协同作用。(ABS 拉伸过程中既有发白现象,又有细颈形成) 试比较橡胶增韧塑料和刚性粒子工程塑料的异同点。 1、增韧剂种类不同; 2、增韧的对象不同; 3、增韧剂含量对增韧效果的影响不同; 4、改善聚合物合金性能的效果不同; 5、增韧机理不同; 6、对两相界面黏结强度的要求是相同 第四章

塑料在汽车上的运用现状

塑料在汽车上的运用现状 摘要:随着汽车行业在我国的飞速发展,车用材料越来越多,尤其是非金属材料中的塑料。塑料的成本低,制造相对方便,使得汽车的内饰、外饰和某些零部件呈现塑料化,运用程度快速增加。塑料的优点显著,在汽车上的运用广泛,因此它在车用材料中占有不可替代重要的地位。 关键词:汽车;塑料;优点;应用 论文主题: 0、引言:随着经济的发展,汽车的普及率越来越高,并越来越显现其在国民经济发展中的重要作用。如今人们生活水平不断提高,人们对汽车提出了更节能、更美观、更环保、更舒适即更安全可靠等越来越多的性能要求,因此要求汽车具备更多更实用的功能。塑料因其具有质轻,性能优良,耐腐蚀和易成形加工等优点,使其在汽车材料中的应用比例不断增加。塑料部件的大量应用,显著减轻了汽车的自重,降低了油耗,减少了环境污染,提高了汽车的造型美观和设计的灵活性。如今,汽车塑料化已是一个国家汽车工业技术水平的重要标志之一。 1、车用塑料的优点: 1.1 密度小、质量轻 轻量化是汽车追求的目标,塑料在此方面可以大显其威。一般塑料的密度在0.9~1.5kg/cm3之间,是铝的1/2,纤维复合强度密度也不会超过2.0kg/cm3,应用塑料是减轻车体质量的有效途径。每100kg的塑料可代替其他塑料200~300kg,可减少汽车自重,增加有效载荷。 1.2 塑料的抗冲击性、柔韧性优良 耐磨、避振,能吸收大量的碰撞能量,能对强烈撞击有较大的缓冲作用,能对车辆和成员起到保护作用。因此,现代汽车上都采用塑化仪表板和方向盘,以增强缓冲作用。前、后保险杠、车声装饰条都采用塑料,以减轻物体对车身的冲击力。另外,塑料还具有吸收和衰减振动和噪声的能力,可以提高乘坐的舒适性。 1.3 比强度高 工程塑料的比强度是材料中最高的。如玻璃纤维增强的环氧树脂(玻璃钢)其比强度比刚高2倍左右。通过不同组分搭配的复合材料有含硬质金属的颗粒复合材料,有以夹层板材和树脂胶合纤维为主的层板复合材料和以玻璃纤维、碳纤维为主的纤维复合材料,这些复合材料具有很高的机械强度,可以代替钢板制作车身覆盖件或结构件,减轻汽车的质量。 1.4 耐化学耐腐蚀,局部受损不会腐蚀 塑料对酸、碱、盐等化学物质的腐蚀具有很强的抵抗能力。其中聚四氟乙烯是化学

非金属材料在汽车上的应用及发展

目录 一、中国汽车工业发展概况 二、非金属材料在汽车上的应用现状 三、非金属材料在汽车上的发展趋势 2

19981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020销量164 187210 238333446509577722879938136518061850193121982300250027173019335537284142 百分比 14%14%13%40%34%14%13%25%22%7%46%32%2% 4%14%5% 8% 8%10%10%10%10% 0% 5% 10%15%20%25%30%35%40%45%50%01000 20003000400050006000一、中国汽车工业发展概况 最近二十年,中国汽车经历着飞速增长的时期,年销量从1998年的164万辆,跃居至2013年的2198万辆,增长了13倍,是当前全球最大的汽车市场,也是全球最具有活力的汽车市场。 预计在未来的10年,中国汽车产业仍将保持高速的增长。 汽车工业的蓬勃发展,有力的促进了新材料在汽车领域的应用与发展。 中国汽车市场需求及未来趋势分析 中国汽车工业发展概况

目录 一、中国汽车工业发展概况 二、非金属材料在汽车上的应用现状 三、非金属材料在汽车上的发展趋势 4

大量高性能新材料的成功开发,出现了高性能、大规模工业化的应用产品,结合汽车工业的规模化生产需求,使得新材料的发展和汽车工业的发展紧密的结合在一起。 汽车的“小型化”和“轻量化”是未来汽车发展的主流之一,和新能源汽车一样的重要,新材料的创新性开发以及大范围推广使用是轿车轻量化和环保的一个重要手段。 汽车耗油量的改善程度(%)汽车轻量化

聚合物基复合材料

纤维增强的聚合物基复合材料 一、复合材料 1、定义 复合材料是一种多相的复合体系,由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料。 2、分类 根据组成复合材料的不同物质在复合材料中的形态,可将它们分为基体材料和分散材料。复合材料按分散材料形式不同可分为纤维增强复合材料、粒子增强复合材料、晶须增强复合材料等;按基体材料不同可分为聚合物基复合材料、金属基复合材料、陶瓷基复合材料。 二、纤维增强聚合物基复合材料 聚合物基复合材料是以高分子聚合物为基体,添加增强纤维制得的一种复合材料。 它有许多优异的性能:(1)质轻高强。若按比强

度计算(强度与密度的比值),玻璃纤维增强的聚合物基复合材料不仅大大超过碳钢,而且可超过某些特殊合金钢。特别是有机纤维、碳纤维复合材料有更低的密度和更高的强度。(2)耐疲劳性能好。聚合物复合材料中的纤维与基体的界面能阻止裂纹的发展,金属的疲劳强度是其拉伸强度的30~50%,碳纤维/不饱和聚酯复合材料是70~80%。(3)耐热性强。虽然聚合物基复合材料的耐热性不及金属基和陶瓷基复合材料,但随着高性能树脂和高性能增强材料的发展,它的耐热性也达到很优异的效果。甲基二苯乙炔基硅烷树脂为基体的复合材料在500℃下仍能保持较好的力学性能。(4)介电性能好。通过选择树脂基体和增强纤维可制备低介电损耗角正切(小于0.005)的复合材料.如,热固性丁苯树脂基、聚酰亚胺树脂基复合材料。 1、聚合物基体 目前可供选择的树脂主要有两类:一类为热固性树脂,其中包括环氧树脂、聚酰亚胺树脂、酚醛树脂等,另一类为热塑性树脂,如尼龙、聚砜、聚醚醚酮、聚醚酰亚胺等。 聚合物的选择应考虑:A、基体材料能在结构使用温度范围内正常使用;B、基体材料具有一定的力学

常用塑料在汽车上的应用

常用塑料在汽车上的应用 如今汽车行业,塑料代替昂贵的金属材料已经成为发展的必然趋势,高强度的工程塑料不但降低零部件加工、装配及维修费用,还使汽车更轻量化、节能和环保。根据数据显示,塑料及其复合材料是最重要的汽车轻质材料。它不仅可减轻零部件约40%的质量,而且还可以使采购成本降低40%左右,因此近年来在汽车中的用量也迅速上升,成为汽车制造的“新宠儿”。 目前,汽车塑料中用量最大的通用塑料品种是聚丙烯(PP)、ABS树脂、聚氯乙烯(PVC)和聚乙烯(PE)。聚烯烃材料构成了汽车主要的塑料件,下面将列举几种主流的汽车工程塑料。 聚丙烯(PP)

PP可以用作多种汽车零部件,现在典型的乘用车中,PP塑料部件占60多个。PP汽车零部件主要品种有:保险杠、仪表板、门内饰板、空调器零部件、蓄电池外壳、冷却风扇、方向盘,其中前五种占全车PP用量的一半以上。 聚乙烯(PE) 通过对高密度PE和低密度PE树脂的接枝改性和填充增韧改性,得到了具有良好的柔韧性、耐候性和涂装性能的系列改性PE合金材料。PE主要采用吹塑方法生产燃油箱、通风管、导流板和各类储罐等。 近几年PE在汽车上的用量基本没增加,值得注意的是汽车轻量化的发展趋势促进了燃油箱的塑料化。欧洲汽车上正式采用塑料燃油箱,其主要材料为高分子量高密度聚乙烯(HMWHDPE)。 聚甲醛(POM) 具有优良的耐摩擦磨耗特性、长期滑动特性、成型流动性和表面美观、光泽特性,也适用于嵌件模塑。汽车底盘衬套,如转向节衬套、各种支架衬套、前后板簧衬套、制动器衬套等广泛采用聚甲醛型三层复合材料,它是以冷轧钢板为基体,以烧结多孔青铜粉为中间层,表面覆合改性聚甲醛作减摩层的三层复合材料。并轧出一定规律的储油坑,其结构决定丁它的特殊性能:既具有钢的机械强度和刚性,同时又有优良的边界润滑条件下的减摩抗磨特性。其它应用包括车门把手、安全带机械部件、组合开关和反射镜等。 ABS树脂

塑料在汽车工业中的应用

塑料在汽车工业中的应用 当前,世界汽车材料技术发展的主要方向是轻量化和环保化。减轻汽车自身的重量是降低汽车排放,提高燃烧效率的最有效措施之一,汽车的自重每减少10%,燃油的消耗可降低6%~8%。为此,增加塑料类材料在汽车中的使用量,便成为降低整车成本及其重量,增加汽车有效载荷的关键。 汽车用塑料零部件分为三类:内饰件、外饰件和功能件。自20世纪90年代以来,随着汽车材料国产化的开展,我国汽车用塑料步入了世界发展的轨道。 在我国,塑料件约占汽车自重的7%~10%,举例来说,在轿车和轻型车中,CA7220小红旗轿车中的塑料用量为88.33kg,上海桑塔纳为67.2 kg,奥迪为89.98 kg,富康为81.5 k g,依维柯0041则为144.5 kg;在重型车中,斯太尔1491为 82.25kg,斯太尔王为120.5 kg。据有关部门统计,我国汽车用塑料的品种按用量排列依次为PP,PVC,PU,不饱和树脂,ABS,PF,PE,PA,PC,复合材料。 但是,与汽车工业发达国家相比,我国还存在很大的差距,德国、美国、日本等国的汽车塑料用量已达到10%~15%,有的甚至达到了20%以上。虽然各国使用的塑料品种不尽相同,但大体相似。就不同品种的塑料用量来看,如果按使用数量排列,德国是PVC,PU,PP,PE,ABS;美国是PU,PP,PE, PVC,ABS;日本是PVC,PP,PU,ABS,PE,FRP。 内饰件 一辆汽车最容易出彩的是内饰件,因为汽车的外观是给别人看的,而人们真正享受的是汽车的内饰,内饰强调触觉、手感、舒适性和可视性等。内饰产品主要包括以下几个方面: ●仪表板 欧洲汽车的仪表板一般以ABS/PC及增强PP为主要材料;美国汽车的仪表板多用苯乙烯/顺丁烯二酸酐SMA,这类材料价格低,耐热、耐冲击,具有良好的综合性能;日本汽车的仪表板曾采用过ABS和增强PP材料,目前则以玻璃纤维增强的SAN为主,有时也采用耐热性更好的改性PPE。随着电子技术的应用,高度的控制技术、发动机前置前轮驱动汽车操纵系统以及其它中央控制系统等将被集中在仪表板周围,因此,由纺织物来取代目前在聚氨酯发泡体表面覆盖的聚乙烯表皮将成为可能。 目前,我国使用的仪表板可分为硬仪表板和软仪表板两种。硬仪表板常被用在轻、小型货车、大货车和客车上,一般采用PP、PC、ABS、ABS/PC等一次性注射成型。这种仪表板表面有花纹,尺寸很大,无蒙皮,对表面质量要求很高,对材料的要求是耐湿、耐热、刚性好、不易变形。但由于这种仪表板通常采用多点注射成型,易形成流痕和粘接痕,同时添加色母不均,容易产生色差,因此表面需经涂装后才能使用,且最好选用亚光漆涂装。另外,由于高档仪表板追求质感,所以在仪表板表面做一部分桃木饰纹将是一种发展方向。 软质仪表板由表皮、骨架材料、缓冲材料等构成。斯太尔“7001”产品采用钢板骨架,也有用ABS、改性PP、FRP做骨架的;桑塔纳、捷达、富康及斯太尔“7001”均采用PVC/ABS或PVC片材作为表皮材料,并带有皮纹,其加工工艺是先将表皮真空吸塑成型,再将吸塑好的表皮修剪后备用,置入发泡模腔内,

聚合物基复合材料

聚合物基复合材料 摘要:本文主要研究的是聚合物基复合材料的制备、性能、和应用。聚合物基复合材料是以有机聚合物为基体,连续纤维为增强材料组成的复合材料。它有许多突出的性能:比强度大、比模量大;耐疲劳性能好;减振性好;过载时安全性好等。聚合物基复合材料的结构和性能存在广泛的灵活关系,通过不同的工艺控制,可以形成不同的结构形态,从而获得目标性能。 关键词:聚合物基复合材料制备性能应用 1、聚合物基复合材料的制备 1.1.聚合物复合材料概述及其制备流程 聚合物基复合材料(PMC)是以有机聚合物为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。 1.2.基体及其制备: 基体是聚合物基复合材料的主要成分。用于复合材料的聚合物基体主要按树脂热行为可分为热固性及热塑性两类。热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砚、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加工成型而无任何化学变比。热固性基体如环氧树脂、酚醛树脂、双马树脂、不饱和聚酯等,它们在制成最终产品前,通常为分于量较小的液态或固态预聚体,经加热或加固化剂发生化学反应固化后,形成不溶不熔的三维网状高分子。 1.2.1热固性聚合物的制备

聚合物基复合材料的加工工艺

聚合物基复合材料的加工工艺 聚合物基复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展。其成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业生产。 复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在造反材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。 (2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此,用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。 本文讨论几种主要的加工工艺。如下: 一、手糊成型工艺 手糊成型的工艺流程如下: (1)生产准备 场地手糊成型工作场地的大小,要根据产品大小和日产量决定,场地要求清洁、干燥、通风良好,空气温度应保持在15~35℃之间,后加工整修段,要设有抽风除尘和喷水装置。 模具准备准备工作包括清理、组装及涂脱模剂等。 树脂胶液配制配制时,要注意两个问题:①防止胶液中混入气泡;②配胶量不能过多,每次配量要保证在树脂凝胶前用完。 增强材料准备增强材料的种类和规格按设计要求选择。 (2)糊制与固化 铺层糊制手工铺层糊制分湿法和干法两种:①干法铺层用预浸布为原料,

先将预学好料(布)按样板裁剪成坏料,铺层时加热软化,然后再一层一层地紧贴在模具上,并注意排除层间气泡,使密实。此法多用于热压罐和袋压成型。②湿法铺层直接在模具上将增强材料浸胶,一层一层地紧贴在模具上,扣除气泡,使之密实。一般手糊工艺多用此法铺层。湿法铺层又分为胶衣层糊制和结构层糊制。 手糊工具手糊工具对保证产品质量影响很大。有羊毛辊、猪鬃辊、螺旋辊及电锯、电钻、打磨抛光机等。 固化制品固化分硬化和熟化两个阶段:从凝胶到三角化一般要24h,此时固化度达50%~70%(巴柯尔硬性度为15),可以脱模,脱后在自然环境条件下固化1~2周才能使制品具有力学强度,称熟化,其固化度达85%以上。加热可促进熟化过程,对聚酯玻璃钢,80℃加热3h,对环氧玻璃钢,后固化温度可控制在150℃以内。加热固化方法很多,中小型制品可在固化炉内加热固化,大型制品可采用模内加热或红外线加热。 (3)脱模和修整 脱模脱模要保证制品不受损伤。脱模方法有如下几种:①顶出脱模在模具上预埋顶出装置,脱模时转动螺杆,将制品顶出。②压力脱模模具上留有压缩空气或水入口,脱模时将压缩空气或水(0.2MPa)压入模具和制品之间,同时用木锤和橡胶锤敲打,使制品和模具分离。③大型制品(如船)脱模可借助千斤顶、吊车和硬木楔等工具。④复杂制品可采用手工脱模方法先在模具上糊制二三层玻璃钢,待其固化后从模具上剥离,然后再放在模具上继续糊制到设计厚度,固化后很容易从模具上脱下来。 修整修整分两种:一种是尺寸修整,另一种缺陷修补。①尺寸修整成型后的制品,按设计尺寸切去超出多余部分;②缺陷修补包括穿孔修补,气泡、裂缝修补,破孔补强等。 二、喷射成型技术 喷射成型技术是手糊成型的改进,半机械化程度。 (2)生产准备 场地喷射成型场地除满足手糊工艺要求外,要特别注意环境排风。根据产品尺寸大小,操作间可建成密闭式,以节省能源。

聚合物基复合材料

聚合物基复合材料 第二节聚合物基复合材料(PMC) 1.1聚合物基体 1.2PMC界面 1.3PMC制备工艺 1.4PMC性能与应用 聚合物基复合材料(PMC)是以有机聚合物为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、

短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。 通常意义上的聚合物基复合材料一般就是指纤维增强塑料(FRP),而为各种目的加入各种填料的高分子材料不在这里论及。 1.1聚合物基体 聚合物基体是纤维增强塑料的一个必需组分,在复合材料成型过程中,基体经过复杂的物理、化学变化过程,与增强纤维复合成具有一定形状的整体。因而基体性能直接影响复合材料性能。基体的主要作用包括将纤维粘合成整体并使纤维位置固定,在纤维间传递载荷,并使载荷均匀;决定复合材料的一些性能。如复合材料的高温使用性能(耐热性)、横向性能、剪切性能、耐介质性能(如耐水、耐化学品性能)等;决定复合材料成型工艺方法及工艺参数选择;保护纤维免受各种损伤。此外对复合材料一些性能有重要影响,如纵向位伸、尤其是压缩性能,疲劳性能,断裂韧性等。 1、分类 用于复合材料的聚合物基体主要按树脂热行为可分为热固性及热塑性两类。热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砚、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加

聚合物基复合材料重点内容

测试题型 一、填空题(1分*10题=10分) 二、判断题(1分*6=6分) 三、名词解释(4分*5=20分) 四、简答题(8分*8题=64分,含1道计算题) 第一章聚合物基复合材料的概念、特性、使用和进展 1.什么是复合材料?和金属材料相比有何主要差别? 答:定义:复合材料是由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料。它既保持了原组分材料的主要特色,又通过符合效应获得原组分所不具备的的新性能。可以通过材料设计使各组分的性能互相补充并充分并联,从而获得新的优越性能,这和一般的简单的混合有本质的区别。 和金属材料的区别: 2.复合材料有哪些优点?存在的主要问题是什么? 答:优点:1)比强度、比模量高;2)耐疲劳性好,破损性能高;3)阻尼减振性好:a.受力结构的自振频率除了和结构本身形状有关以外,还和材料的比模量平方根成正比;b.复合材料具有较高的自振频率,其结构一般不易产生共振;c.复合材料机体和纤维的界面有较大的吸收振动能量的能力,致使材料得振动阻尼很高,一旦振起来,也可在较短时间内停下来。4)具有多种功能性:a.瞬时耐高温性、耐烧蚀性好;b.优异的电绝缘性能和高频介电性能;c.良好的摩擦性能;d.优良的腐蚀性,维护成本低;e.特殊的光学、电学、磁学的特性。5)良好的加工工艺性;6)各向异性和性能的可设计性。 主要问题:工艺方法的自动化、机械化程度低,材料性能的一致性和产品质量的稳定性差,质量的检测方法不完善,破坏模式不确定和长期性能不确定,长期耐高温和环境老化性能不好等。

3.简述复合材料的组成。界面为什么也是一个重要组成部分? 答:复合材料是由基体材料和增强体材料构成的多项体系。基体材料为连续相,按所用基体材料的不同,可分为金属基复合材料、无机非金属基复合材料和聚合物基复合材料。增强材料为分散相,通常为纤维状材料,如玻璃纤维、有机纤维等。 原因:界面也是重要组成部分的原因是因为增强相和基体相的界面区域因为其特殊的结构组成,这种结构对材料的宏观性能产生影响,因此也是不可缺少的重要组成部分。 4.什么是先进复合材料(ACM)? 答:具有质轻、高比模量、高比强度等优良性能的的纤维复合材料称为先进复合材料(ACM)。 第二章增强材料 1.为什么玻璃纤维和块状玻璃性能不同?纤维的粗细对其强度有什么影响?为 什么? 答:块状玻璃比玻璃纤维本身尺寸大,其内部和表面存在较大缺陷的概率增大,而材料破坏就是由最危险或尺寸最大的裂纹导致的,所以块状玻璃壁纤维的强度低得多。而且玻璃纤维具有以下特点:1)玻璃纤维的体积效应或尺寸效应,即:体积或尺寸越大,测试的强度越低。2)玻璃纤维强度的分散性较大;3)玻璃纤维强度受湿度影响。吸水后,湿态强度下降。4)玻璃纤维的拉伸模量较低。 2.制备玻璃纤维时,为什么要使用浸润剂?主要有哪三类浸润剂?各有什么不 同? 答:浸润剂的作用在于:使单丝集束,便和后续的并股、纺织等工序;防止原纱缠绕成卷时,纤维相互粘结;保护纤维,防止纺织时,纤维的表面磨损而降低强度。 浸润剂的类型有如下三类:1)纺织型浸润剂。纺织型浸润剂具有良好的集束性、润滑性、成膜性和抗静电性。主要用于玻璃纤维纺织加工制品。2)增强型

2020年工程塑料在汽车上的应用参照模板

工程塑料在汽车上的应用 汽车工业是发达国家工程塑料应用最为广泛、使用量最大的工业门类,也是中国工程塑料最有发展潜力的领域之一。 每辆汽车塑料的用量是衡量汽车生产技术水平的标志之一。日本、美国和德国等发达国家的每辆轿车平均使用塑料已超过100千克,平均占汽车总重量的8%。目前,中国每辆汽车平均塑料用量为70千克,平均占汽车总重量的6%左右。工程塑料在全部汽车用塑料中只占10%左右的比例。 尼龙是最重要的汽车工业用工程塑料。汽车零部件也是PA6工程塑料最大的消费市场,超过总消费量的三分之一。随着人们对汽车性能要求的不断提高和PA6工程塑料自身的发展,汽车用PA6正呈逐年上升的趋势。汽车上可使用PA6(包括改性产品)制作的部件有空气滤清器、外壳、风扇、车轮罩、导流板、车内装饰、储水器材盖、线卡、各种车内电气接插件等。PA6/AB S具有密度低,流动性好的特点,并有良好的噪声阻尼性和良好的耐热性、耐化学性和机械性能,可用於汽车内饰件;玻纤增强PA/ABS可替代ABS做汽车排风格栅,并有可能成为汽车排空气和除霜器护栅及车门组件,以及用於摩托车档板的制作。 现在PA9T也已在日本汽车工业上应用,如动力换向装置(齿轮结构)、滚动轴承架。PA9T耐燃油性强,适用於做汽车燃油系统部件。此外还可用於制造中间冷却器罐、发动机支架和要求低摩擦系数的滑动部件。 改性PPO主要用於制作一些薄壁的复杂硬质结构件,如仪表盘骨架等。GE公司推出的热固性PPO,具有高强、高韧性和良好的电性能,吸湿小,可用做汽车阀罩、燃油箱导电板、变压器和风力发动机叶片等。而PPO/PS合金加工性良好,可用做流体加工部件、汽车机罩下部件和电子接插件。 PC在汽车上也有广泛应用。PC的高透明性使之成为车灯罩的主要生产材料。硅橡胶/PC也可以用做汽车保险槓。而PC的另外一大用途是以合金的形式充当汽车内饰材料。PC/ABS外观好,容易着色,广泛用於汽车内饰件如仪表板等。 PBT加工性能和绝缘性能较好。PBT玻璃化温度低,加工周期短。PC/PBT、PBT/ABS等主要用於汽车内饰件。此外,由於PBT对汽油、发动机油的耐受性好,PBT也用於汽车发动机系统配件材料的生产。 聚甲醛树脂是高度结晶的聚合物,具有类似金属的硬度、强度和刚性,很宽的温度和湿度条件下都具有很好的自润滑性、良好的耐疲劳性、低磨擦系数,因此,聚甲醛主要用於定性要求比较严格的滑动和滚动机械部件上,包括齿轮、凸轮、轴承、槓杆、滑轮、扣链轮和轴衬等,与金属和尼龙相比,聚甲醛具有很低的磨擦系数,是很好的轴承材料。 特种工程塑料在汽车工业中也有应用,如聚醚亚胺(PEI),由於其玻璃化温度可达249℃,可满足汽车反光灯的反光板和软电路板、恒温箱板等产品的要求。 德国BASF公司开发的由聚醚石风Ultrason E制备的发泡塑料Ultratoct也已开始用於BMW公

相关文档
最新文档