羧甲基淀粉的取代度对其在反浮选中抑制一水硬铝石的影响

合集下载

一水硬铝石热分解动力学研究

一水硬铝石热分解动力学研究

第30卷第3期硅酸盐学报Vol.30,No.3 2002年6月JOURNAL OF THE CHINESE CERAMIC SOCIETY J u ne,2002一水硬铝石热分解动力学研究李浩群,邵天敏,陈大融(清华大学摩擦学国家重点实验室,北京 100084)摘 要:分别采用等温过程、非等温过程热重-差热联合法测定一水硬铝石(β-AlOOH)的TGA曲线.利用X射线衍射仪对分解前后试样进行了物相分析.经数据处理,得到了不同时段、不同方法下热分解反应的动力学参数E,A和相应的反应机制.结果表2明,一水硬铝石在400℃时开始缓慢反应,反应峰温在510℃附近.其热分解机制比较复杂,并且在转变分数0.85<α<0.90这一区段呈现一个目前无法解释的机制,这可能是两种反应机制同时控制的结果,或者需要建立新的模型.关键词:一水硬铝石;热分解;动力学分析;热重分析;差热分析;X射线衍射中图分类号:TQ170.1 文献标识码:A 文章编号:0454-5648(2002)03-0335-05KINETIC ANALYSIS OF DIASPORE THERMAL DECOMPOSITIONL I Haoqun,S HA O Tianmin,CHEN Darong(The State K ey Laboratory of Tribology,Tsinghua University,Beijing 100084)Abstract:The TG A curves of both isothermal and non-isothermal process of diaspore(β-AlOOH)are obtained by unite of thermo2 gravimetry(TG)and differential thermal analysis(DTA).The phase identification is carried out by X-ray diffraction(XRD)before and after the thermal treatments.The kinetic analysis is established by means of linear regression and twenty common reaction mech2 anism functions are examined.Reaction mechanisms and Arrhenius parameters corresponding to different sections of fraction reacted (α)are presented.It shows that the decomposition of diaspore takes place at temperature of400℃,the peak temperature is about 510℃.The mechanism of this reaction is complicated and within the section of0.85<α<0.90,the reaction mechanism can not be interpreted by any existing kinetic model.It is presumed that two reaction models controlled the reaction simultaneously in this section or a new model should be found.K ey w ords:diaspore;thermal decomposition;kinetic analysis;thermogravimetry;differential thermal analysis;X-ray diffraction α-Al2O3是一种性能优良的陶瓷材料,其工业生产主要是通过煅烧氧化铝水合物来制备.氧化铝水合物Al2O3・x H2O在加热过程中经过各种中间相变最终转化为α-Al2O3,其中,一水软铝石(boehmite,α-AlOOH)、拜尔石[bayerite,β-Al(OH)3]、三水铝石[gibbsite,α-Al(OH)3]的转化过程已经得到了广泛深入的研究[1,2],相比之下,收稿日期:2001-08-17.修改稿收到日期:2001-12-03.基金项目:国家自然科学基金资助项目(59775033).作者简介:李浩群(1973~),男,博士研究生.通信联系人:邵天敏(1963~),男,博士,副教授.人们对一水硬铝石(diaspore,β-AlOOH)的转化过程了解不多.一般认为,由于一水硬铝石和刚玉中的氧原子子晶格都为六方密排列结构,因而一水硬铝石不经任何中间相变直接转变为刚玉.在实际相变过程中,有1/4的氧原子发生迁移、重排形成六方子晶格[3].Carim等人[4]发现在真空条件下,人工合成的一水硬铝石向刚玉的转变过程中形成了过R eceived d ate:2001-08-17.Approved d ate:2001-12-03. Biography:L I Haoqun(1973—),male,postgraduate for doctor degree. Correspondent:SHAO Tianmin(1963—),male,doctor,associate professor.E-m ail:lihq@渡相,并将其命名为α’-Al 2O 3.在中国,绝大部分铝土矿为一水硬铝石型铝土矿[5],其中的一水硬铝石都是和脉石矿共生在一起的,鉴定一水硬铝石及其杂相的结构特征并分析其热分解机理,不仅对控制氧化铝的工业生产过程,而且对直接将一水硬铝石型矿石应用于表面工程领域,如制备氧化铝基复合陶瓷涂层,具有积极的理论指导作用.1 模型判别理论基础50年代以来,人们采用各种的热分析方法来研究固态反应动力学,如热重法(TG )、微分扫描量热法(DSC )、差热法(D TA )、质谱法(MS )、气相色谱法(GC )和X 射线衍射法(XRD )等.经典的固态反应动力学的基本理论是建立在等温过程和均相反应基础上的.对于均相反应,若假设物质的转变分数为α,则从反应开始到结束的整个期间内,α的数值就在0~1的范围之内作单调的变化,反应物的相对浓度应为(1-α),则反应速率方程通常遵循以下速率公式:d αd t=kf (α)(1)引入Arrhenius 方程k =A e -E R T和控温速率β=d T/d t ,方程变为d αd t =A βe -E R T f(α)(2)式中:t 为时间;k 为速率常数;T 为绝对温度;A 为频率因子;E 为反应活化能;R 为气体常数;f (α)为反应机制函数.在此基础上,通过对实验数据的处理,研究人员提出了多种分解机理,推导出一系列动力学方程式.对式(1)、式(2)进行移项积分或微分处理,总可以找到反应模式(机制函数)与时间或温度之间的线性关系,因此,将实验数据以不同反应模式对时间或温度作图,相应的线性关系最好的反应模式即为反应机制.研究中采用计算机处理,将实验数据与20种常用的反应模式(机制函数)进行拟合,由线性回归判断出与之符合最好的反应机制函数[6],在此基础上求出有关的动力学参数,提高了所求动力学参数的精度和机制函数的准确性.2 实 验免检一水硬铝石矿石经粉碎、研磨、酸洗处理、充分洗涤后于120℃烘干.经-200~+500目筛制成试样.其分析组成见表1.热分析实验在TG A92型高温综合热分析仪上进行,仪器热重分析灵敏度为0.001mg.差热分析灵敏度为1mV ,工作温度表1 试样元素组成 T able 1 E lement composition of sample%ElementO Al Si Ti Fe w 49.6942.67 1.13 4.93 1.59x63.9232.550.832.120.59区间为室温至2400℃.以光谱纯Al 2O 3粉作为参比物,气氛为空气,试样1:从室温升至400℃,保温1h ,升温速率β=10℃/min ;试样2:从室温升至500℃,保温0.5h ,升温速率β=10℃/min ;试样3:从室温升至1200℃,升温速率β=5℃/min.所得TG A 曲线分别如图1、图2、图3所示.热重数据漂移0.25~0.50mg ,在数据取值中均加以扣除.试样反应前后利用XRD 技术进行物相鉴定,其分析结果见图4.图1 β-AlOOH 在400℃下等温过程中分解的TG A 曲线Fig.1 TG A plot for β-AlOOH under isothermal processat 400℃图2 β-AlOOH 在500℃等温过程中分解的TG A 曲线Fig.2 TG A plot for β-AlOOH under isothermal processat 500℃・633・ 硅 酸 盐 学 报 2002年  图3 β-AlOOH 在1200℃非等温过程中分解的TG A 曲线Fig.3 TG A plot for β-AlOOH under non-isothermal pro 2cess at 1200℃图4 一水硬铝石试样XRD 分析Fig.4 XRD patterns of the diaspore samples 1———Before heat treatment ;2———Treated at 500℃; 3———Treated at 1200℃3 实验数据处理在反应中的某一时刻,转变分数可由下式求得:α=w 0-w tw 0-w ∞(3)式中:w 0为试样在反应前的初始质量;w t 为反应进行到t 时刻试样的质量;w ∞为反应结束后试样的质量,所得出的转变分数与时间的关系曲线见图5.从α数据中判断出反应起始温度(时间),并计算出质量损失率,与理论值相对照,如表2所示.图5 不同加热条件下转变分数α随时间变化曲线Fig.5 Plots of fraction reacted αagainst time under differ 2ent heating conditions 表2 一水硬铝石在不同条件下的反应起始温度和质量损失T able 2 DTA temperatures and m ass loss of diaspore samplesunder different conditionsConditions ofheat treatment DTA temperature /℃Start temperature Peak temperatureMass loss/%Experimental value Theoretic valueSample 1Mass loss is tiny and the re 2action proceed very slowlySample 242250411.5Sample 3First stage Second stage419915512117712.51.515.0对于等温过程实验数据,由公式(1)移项、积分可得F (α)=kt +c (4)式中:c 为积分常数.将实验数据分别代入各F (α)方程,以计算的F (α)数据对相应的t 数据作图,得出等温过程一水硬铝石的各种反应动力学曲线,如图6所示.对图6进行线性回归,将转变分数α图6 β-AlOOH 在等温过程中(500℃)反应的动力学曲线Fig.6 Reaction kinetic curves of β-AlOOH by isothermalprocess at 500℃・733・ 第30卷第3期 李浩群等:一水硬铝石热分解动力学研究 表3 一水硬铝石等温过程分解(500℃)热分析动力学线性回归结果T able 3 Linear regression results of therm al kinetic analysisby isotherm al process(500℃)αCode name of mechanismF (α)kCorrelation coefficient r[0.0,0.05]D 5[(1+α)1/3-1]20.013310.9968A 4[-ln (1-α)]1/40.001350.9943P 4α1/40.001330.9940[0.05,0.50]R 21-(1-α)1/20.000880.9992A 1.5[-ln (1-α)]1/1.50.002090.9991P 1α0.001490.9991[0.50,0.85]A 1-ln (1-α)0.002430.9998D 4(1-2α/3)-(1-α)2/30.000230.9996D 2α+(1-α)ln (1-α)0.000850.9992[0.85,1.0]A 3[-ln (1-α)]1/30.000480.9998A 2[-ln (1-α)]1/20.000800.9996D 4(1-2α/3)-(1-α)2/30.000180.9996分为不同的区段,分别找出相关性最好的3个动力学方程,如表3所示.对于非等温过程实验数据,由公式(2)移项、两边取对数可得ln{[f (α)]-1d α/d T }=ln (A /β)-ER(1/T )(5)将实验数据分别代入各f (α)方程,以计算的ln{[f (α)]-1d α/d T }数据对相应的1/T 数据作图,得出非等温过程一水硬铝石的各种反应动力学曲线,如图7所示.对图7进行线性回归,将转变分数分为不同的区段,找出相关性最好的3个动力学方程,如表4所示.对其中相关系数为正的区段,结合各种f (α)函数,假设反应模型如下:f (α)=αm(1-α)n [-ln (1-α)]p (6)将公式(4)代入(3)中,进行线性回归计算,搜寻负相关性最好的m ,n 和p 值,以此作为该区段的机制函数.搜索结果为:m =10.90,n =13.00,p =3.81,r =-0.9828.但该函数暂无明确的物理意义,有待于进一步研究.表4 一水硬铝石非等温过程分解(1200℃)热分析动力学线性回归结果T able 4 Linear regression results of therm al kinetic analysis by non-isotherm al process at 1200℃αCode name of mechanism f (α)E /(kJ ・mol -1)ACorrelation coefficient r [0.0,0.05]D 5 1.5(1+α)2/3[(1+α)1/3-1]-1626.900.490e +38-0.9971R 22(1-α)1/2286.920.837e +16-0.9907A 11-α287.830.196e +17-0.9905[0.05,0.50]L 6 1.5(1-α)4/3[(1-α)-1/3-1]-1746.27—-0.9943A 11-α305.400.728e +18-0.9786R 22(1-α)1/2257.080.197e +15-0.9611[0.50,0.85]L 6 1.5(1-α)4/3[(1-α)-1/3-1]-1469.500.948e +29-0.9911D 3 1.5(1-α)2/3[(1-α)1/3]-1208.170.230e +11-0.9362A 11-α115.340.137e +06-0.8787[0.85,0.90]All of the correlation coefficients are plus ,so none of the reaction models is suitable.[0.90,1.0]L 6 1.5(1-α)4/3[(1-α)-1/3-1]-1172.430.431e +08-0.9756A 11-α79.2230.346e +02-0.9741C 1.52(1-α)2/3139.280.310e +06-0.9741・833・ 硅 酸 盐 学 报 2002年 图7 β-AlOOH在1200℃非等温过程中反应的动力学曲线Fig.7 Reaction kinetic curves ofβ-AlOOH by non-isothermal process at1200℃4 结果与讨论从表2中可以看出,试样的分解反应起始温度在420℃左右,峰顶温度在510℃左右,在热重曲线上相应地出现较大的质量损失台阶,从质量损失分数可以计算出试样中一水硬铝石的含量约为83%.反应温度范围低于文献[7]中的一水硬(软)铝石的脱水吸热峰温(530~572℃),这可能是由于矿石中所含赤铁矿在过渡相晶格中提供异类晶核点[8]所致,也可能起因于矿物本身的特殊性质,如分散程度及结构完整程度.单纯依据峰温值,很难把一水铝石的两种晶型区分开来,尤其是软水型峰温明显受粒子大小和结晶好坏的影响,需要辅以其它分析手段进行鉴别,从图4曲线1的XRD分析结果中可以看出,试样的主相为一水硬铝石,杂相主要为金红石,锐钛矿等杂质,未标识峰可能对应于表1中元素Si,Fe的矿物杂质.500℃反应后试样的主相变为α-Al2O3,但杂质相没有发生变化(图4曲线2).相比之下,1200℃反应后α-Al2O3的峰比较锐,并且金红石、锐钛矿、Si和Fe等杂质已经发生了变化(图4曲线3).表3、表4分别为500℃等温过程和1200℃非等温过程试样热分析的动力学线性回归结果.由于机理模型的数学表达式之间存在的差异不是很大,因此在区分两个甚至更多个曲线拟合情况时,要在其中进行取舍有一定困难.表中所列为线性相关最好的前3个机制函数.综合两表,并结合实际反应过程,可以认为,在等温过程下,一水硬铝石分解反应初期由扩散过程控制,反应中期由相界面反应或形核长大控制,反应后期由形核长大控制;在非等温过程下,反应初期也由扩散过程控制,其它阶段由扩散过程或形核长大控制,而区段0.85<α< 0.90为过渡控制区.图1、图2、图3分别为试样在400℃等温过程,500℃等温过程,1200℃非等温过程中的TG A曲线.其中,图2、图3是非常典型的TG A曲线,差热峰和质量损失都非常明显,表明分解反应已经发生.在500℃等温过程中,分解反应后期出现了一个吸热峰,并且TG曲线没有相应的质量损失台阶,而在非等温过程中的这一区段,该吸热峰消失,且对应的线性相关系数为正(见表4),而公式(5)的线性相关为负相关,也就是说,反应机理没有合适的机制函数来解释.这可能是由于在这一区间段,反应由一种不均一的机理控制(两种机理共同控制).另外,从图3中可以看出,在930~1120℃之间,出现了一系列峰,对应TG曲线上出现质量损失台阶,质量损失约为1.5%左右.从上面的XRD分析可知,在这一区段,杂质相发生了相变或反应.其中980℃左右的峰可能对应于高岭石,高岭石在此温度下热分解形成莫来石或尖晶石,在更高温度下形成莫来石[9].从图1可以看出,试样虽然基本没有发生变化,但在开始时有少量的质量损失,与图2、图3中的反应起始温度接近.这说明反应此时可能已经发生,但由于反应初期由扩散过程控制,当保持温度不变,则扩散过程非常缓慢,反应速率很小.图6、图7分别为500℃等温过程和1200℃非等温过程下试样的各种反应动力学曲线.在图6中,除自催化过程和化学反应过程外,其它控制过程曲线比较接近,并且线性关系较好.在图7中,在不同的区段,各控制过程斜率(活化能)变化较大,线性关系相差较大,并且存在一个阶段,所有的曲线斜率为正,这与表4的结果相一致.5 结 论(1)采用计算机处理,将实验数据与各种选定的反应模式(机制函数)进行拟合,由线性回归判断出与之符合最好的反应机制函数,在此基础上求出有关的动力学参数,提高了所求动力学参数的精度和机制函数的准确性.(2)采用的一水硬铝石型铝土矿,品位高,一水硬铝石含量约为83.3%,分解反应起始温度为(continued on p.346)・933・ 第30卷第3期 李浩群等:一水硬铝石热分解动力学研究 3 结 论(1)B 2O 3-TiO 2-Mg -C 体系可利用SHS 技术合成出TiB 2-TiC 陶瓷复合粉.(2)热力学分析其化学反应机理为:Mg 先还原B 2O 3和TiO 2,新生的Ti 与B 和C 反应生成TiB 2和TiC ;TiO 2的还原经历了TiO 2Ti 3O 5TiOTi 2O Ti 的逐步还原过程.(3)B 2O 3-TiO 2-Mg -C 体系SHS 反应过程的产物结构形成机理分析表明:当燃烧区的能量传到预反应区时,B 2O 3首先熔化并均匀地包裹在Mg ,TiO 2和C 周围,Mg 熔化后加速了与B 2O 3和TiO 2反应,放出大量的热,随着预反应区温度的升高,B 2O 3与Mg 作用还原出B ,TiO 2与Mg 作用还原出Ti ,Ti 与B 或C 反应而形成TiB 2或TiC 晶核,最后TiB 2与TiC 及MgO 在持续高温下长大.参考文献:[1] LASZ LO J K ,THOMAS K ,ANDRUS N.Microstructural prop 2erties of combustion-synthesized and dynamically consolidated tita 2nium diboride and titanium carbide [J ].J Am Ceram Soc ,1990,73(5):1274—1282.[2] DAVIES T J ,O GWU A A.TiC plus TiB 2composite shows wearpromise [J ].Metal Powder Report ,1997,52(6):31—34.[3] YURIY A L ,EV GEN G A ,SHEV EIKO A.Electrochemicalcorrosion behavior of SHS -synthesized magnetron composite TiC -based targets and sputtered thin films [J ].Surf Coat Technol ,1997,90(1-2):42—52.[4] ZHAO H C ,YI B.Formation of TiB 2-TiC composites by reac 2tive sintering [J ].Ceram Int ,1999,25(4):353—358.[5] SU GIYAMA ,SHIGEA KI K ,MITSU HIKO A ,et al .Synthe 2sis of a TiB 2-TiC composite by reactive spark plasma sintering of B 4C and Ti [J ].J Jpn Soc Powder Powder Metall ,1998,45(11):1065-1070.[6] 梁英教,车荫昌主编(L IAN G Y ingjiao ,et al ).无机物热力学数据手册(Handbook of Thermodynamic Data of Inorganic Mat 2ters )[M ].沈阳:东北大学出版社(Shengyang :North East Uni 2versity Press ),1995.7—68.※※※※※※※※※※※※※※※(continued from p.339)420℃左右,峰顶温度为510℃左右.在等温过程和非等温过程中的反应机制不完全相同,在转变分数0.85<α<0.90区段,反应由两个机制共同控制.(3)对我国铝土矿主要矿型一水硬铝石,鉴定矿石中氧化铝及其杂相的结构特征并分析其热行为,对此矿石的开发应用,具有积极的理论指导作用.参考文献:[1] NOVA K C ,PO KOL G ,IZV EKOV V.Studies on the reactionsof aluminium oxides and hydroxides [J ].J Therm Anal ,1990,36:1895—1909.[2] PYZALSKI M ,WOJ CIK M.The dehydroxylation of aluminiumhydroxides and the kinetics of α-Al 2O 3formation [J ].J Therm Anal ,1990,36:2147—2151.[3] COLL IS D N.Thermal chemically formed ceramic coatings :theprocess and applications [J ].Trans Inst Met Finish ,1987,65:83—88.[4] CARIM A H ,ROHRER G S ,DANDO N R.Conversion of dias 2pore to corundum :A new α-alumina transformation sequence [J ].J Am Ceram Soc ,1997,80(10):2677—2680.[5] 毕诗文,杨毅宏,李殿锋,等(BI Shiwen ,et al ).铝土矿的拜耳法溶出(Bayer Process Stripping of Alumyte )[M ].北京:冶金工业出版社(Beijing :The Metallurgical Industry Press ),1997.17页.[6] 罗世永,张家芸,周 坪,等(LUO Shiyong ,et al ).固相反应合成Sr TiO 3的反应动力学[J ].硅酸盐学报(J Chin CeramSoc ),2000,28(5):458—461.[7] 黄佰龄(HUAN G Bailing ).矿物差热分析鉴定手册(MineralIdentification Manual via Differential Thermal Analysis )[M ].北京,科学出版社(Beijing :Science Press ),1987.50页.[8] MCARDL E J L ,MESSIN G G L.Solid-phase epitaxy ofboehmite -derived α-alumina on hematite seed crystals [J ].J Am Ceram Soc ,1989,72(5):864—867.[9] 刘长龄,刘钦甫,陈济舟,等(L IU Changling ,et al ).变高岭石的结构研究[J ].硅酸盐学报(J Chin Ceram Soc ),2001,29(1):63—67.・643・ 硅 酸 盐 学 报 2002年 。

影响萤石浮选的因素

影响萤石浮选的因素

立志当早,存高远
影响萤石浮选的因素
1)矿浆的pH 值矿浆的pH 值对萤石的浮选有很大的影响,当用油酸做捕收剂时,pH 值为8~11 时,可浮性较好,可达到80~90%的回收率; pH 值为6 时,可浮性也较好。

对于不同类型的萤石矿,其脉石矿物的可浮性受到pH 值影响也较大,进而
影响选别效果,例如当用油酸做捕收剂时,pH 值为8~9.5 时,萤石和方解石的可浮性均较好。

2)矿浆的温度
萤石通常用羧酸类捕收剂浮选。

由于羧酸凝固点高,因此矿浆温度对浮选过
程有显著影响。

在一定温度范围内,温度升高,羧酸在矿浆中溶解度增加,易
于分散,从而有利于充分发挥捕收性能。

生产中使用油酸一般加热到30 ℃。

3)浮选粒度
粗粒级萤石,浮选选择性高,品位高而回收率低;
中等粒级萤石,浮选则品位和回收率都高;
细粒级萤石,浮选精矿品位和回收率都低。

4)水的质量
萤石用油酸捕收时,由于水中有Ca2+和Mg2+离子存在,有研究表明,
Mg2+存在会严重的干扰萤石的浮选,显著降低浮选效果,故浮选萤石用水需
要预先软化。

加碳酸钠软化水。

5)浮选药剂
①捕收剂
捕收剂除油酸外,作为萤石的捕收剂可用烃基硫酸脂,烷基磺化琥珀胺、油。

无机非金属工艺学考试题简答题

无机非金属工艺学考试题简答题

水泥、影响水泥水化速率的因素:①水泥熟料矿物组成:含量、晶体结构;②水灰比:水灰比大,水泥颗粒高度分散、与水的接触面积大,水化速率快。

但是水灰比大,使水泥凝结慢,强度下降。

③细度:水泥细度细,与水接触面积多,水化快;细度细,水泥晶格扭曲,缺陷多,也有利于水化;④养护温度:养护温度提高,水泥水化加快。

但是温度对不同矿物的水化速率的影响程度不尽相同。

对水化慢的β-C2S影响最大。

C3A在常温下水化就很快,放热多,故温度对C3A水化速率影响不大。

温度越高,对水泥早期水化速率影响越大,到后期影响逐渐变小。

⑤外加剂:通常绝大多数无机电解质都有促进水泥水化的作用。

如:CaCl2;大多数有机外加剂对水化有延缓作用,常使用的各种木质磺酸盐类。

12、生料易烧性的意义:指生料在规定的温度范围内,通过复杂的物理化学变化,形成熟料的难易程度。

影响生料易烧性的主要因素:①生料的潜在矿物组成:KH、SM高,生料难烧;反之易烧,但有可能结圈;SM、IM高,难烧,要求较高的烧成温度;②原料的性质和颗粒组成:原料中石英和方解石含量多,难烧,易烧性差;结晶质粗粒多,易烧性差。

③生料中次要氧化物和微量元素:适量存在,有利于烧成,易烧性好,但含量过多,不利于煅烧.④生料的均匀性和生料粉磨细度:生料均匀性好,粉磨细度细,易烧性好。

⑤矿化剂:掺加各种矿化剂,均可改善生料的易烧性。

⑥生料的热处理:生料的易烧性差,要求烧成温度高,煅烧时间长。

生料煅烧过程中升温速度快,有利于提高新生态产物的活性,易烧性好。

⑦液相:生料煅烧时,液相出现温度低,数量多,液相粘度小,表面张力小,离子迁移速度大,易烧性好,有利于熟料的烧成.⑧燃煤的性质:燃煤热值高、煤灰分少、细度细,煅烧速度快,燃烧温度高,有利于熟料的烧成。

⑨窑内气氛:窑内氧化气氛煅烧,有利于熟料的烧成.13、(水泥孰料的形成过程)生料煅烧过程中的物理、化学变化:干燥与脱水、碳酸盐分解、固相反应(固相反应一般包括界面上的反应和物质迁移两个过程)、液相和熟料的烧结、熟料的冷却19、熟料冷却的目的:①回收熟料带走的热量,预热二次空气,提高窑的热效率;②迅速冷却熟料以提高熟料质量③改善孰料的易磨性④降低熟料温度,便于熟料的运输、贮存与粉磨。

阴离子淀粉的性质、应用及市场前景

阴离子淀粉的性质、应用及市场前景

阴离子淀粉的性质、应用及市场前景倪海明;钟浪声;郭佳文;陈羽希【摘要】阴离子淀粉具有高乳度、可溶性、较好的流动性和抱水性、无毒、易得、制备成本低、容易生物降解且不污染环境等特性,因此广泛应用于工业造纸、食品、医药领域.文章主要论述了阴离子淀粉的性质、应用及其市场前景.【期刊名称】《大众科技》【年(卷),期】2017(000)002【总页数】3页(P32-34)【关键词】阴离子淀粉;性质;应用;市场前景【作者】倪海明;钟浪声;郭佳文;陈羽希【作者单位】中国科技开发院广西分院,广西南宁530022;广西容县科学技术局,广西容县537500;中国科技开发院广西分院,广西南宁530022;中国科技开发院广西分院,广西南宁530022【正文语种】中文【中图分类】TQ43淀粉是一种分布十分广泛的天然高分子化合物,由支链淀粉和直链淀粉两种高分子有序组合而成,是高等植物中常见的组成部分,也是存储碳水化合物的主要形式之一[1],主要从谷物、玉米、豌豆、马铃薯、豆类和部分蔬菜中提取。

由于天然淀粉存在水溶性差、乳化和胶化能力低、稳定性低等缺点,因此限制了天然淀粉在各行业领域的应用范围。

通过物理、化学和酶处理法,将新的官能团引入到天然淀粉分子上得到的改性淀粉,不仅具有糊化温度高、热黏度好等优点,还具备稳定性、成膜性、凝胶力、透明性、冻融稳定性等特性,使其更适应于一定领域的要求[2]。

现如今变性淀粉的种类已达到两千多种,根据对变性淀粉的处理方法不同,变性淀粉可分为物理变性淀粉、复合变性淀粉、化学变性淀粉和酶法变性淀粉四大类[3]。

经物理方法(湿热处理)而生成的变性淀粉包括γ射线、烟熏变性淀粉、挤压变性淀粉、机械研磨处理淀粉、预糊化(α-化)淀粉、湿热处理淀粉、金属离子变性淀粉、预糊化淀粉、超高频辐射处理淀粉、油脂变性淀粉、超高压辐射变性淀粉等[4];用酶处理淀粉通常得到α、β、γ-环状糊精、麦芽糊精、直链淀粉等变性淀粉;复合变性就是用两种以上的方法对淀粉进行变性,复合变性得到的交联酯化淀粉和氧化交联淀粉,拥有两种变性淀粉各自的优点。

cmc取代度

cmc取代度

羧甲基纤维素钠(简称CMC)是天然纤维素通过化学改性而制得的一种高聚合纤维醚,其结构主要是D-葡萄糖单元通过β(1→4)糖苷键相连接组成。

其主要反应为:天然纤维素首先与NaOH发生碱化反应,随着氯乙酸的加入,其葡萄糖单元上羟基上的氢与氯乙酸中的羧甲基基团发生取代反应。

从结构式中可以看出每个葡萄糖单元上共有3个羟基,即C2、C3、C6羟基,葡萄糖单元羟基上的氢被羧甲基取代的多少用取代度来表示,若每个单元上的3个羟基上的氢均被羧甲基取代,定义为取代度是3,CMC取代度的大小直接影响到CMC的溶解性、乳化性、增稠性、稳定性、耐酸性和耐盐性等性能。

一般认为取代度在0.6~0.7左右时乳化性能较好,而随着取代度的提高,其他性能相应得到改善,当取代度大于0.8时,其耐酸、耐盐性能明显增强。

另外,上面也提到每个单元上共有3个羟基,即C2、C3的仲羟基和C6伯羟基,理论上伯羟基的活性大于仲羟基,但根据C的同位效应,C2上的-OH基更显酸性,特别是在强碱的环境下其活力比C3、C6更强,所以更易发生取代反应,C6次之,C3最弱。

其实CMC的性能不仅同取代度的大小有关,也同羧甲基基团在整个纤维素分子中分布的均匀性和每个分子中羟甲基在每个单元中与C2、C3、C6取代的均匀性有关。

由于CMC是高聚合线性化合物,且其羧甲基在分子中存在取代的不均匀性,故当溶液静置时分子存在不同的取向,当溶液中有剪切力存在时,其线性分子的长轴有转向流动方向的趋势,且随着剪切速率的增大这种趋势越强,直到最终完全定向排列为止,CMC的这种特性称为假塑性。

CMC 的假塑性有利于降低液态奶生产的能耗、利于均质和管道化输送,在液态奶中不至于口感过腻,利于奶液香气的释放。

CMC取代度对负极浆料流变性及分散稳定性的影响

CMC取代度对负极浆料流变性及分散稳定性的影响
742-749. Citation: XI Xiaomin, JING Xiwei, XU Jian, et al. Effect of CMC on Rheological Properties and Dispersion Stability of Anode Slurry[J]. Journal of East
CMC 是含有两个脱水葡萄糖单元(β-连接的吡 喃葡萄糖残基)的纤维素的线性聚合衍生物,每个葡 萄糖单元有 3 个羟基,羟基中的氢被羧甲基取代,并 且每个脱水葡萄糖单元被取代的羟基的平均数被定 义为取代度(DS)[3]。作为增稠剂,CMC 在石墨颗粒 的分散及防止颗粒沉降方面起到了关键作用,是锂 离子电池负极的重要组成部分。Drofenik 等[4] 分别 用 CMC、羟乙基纤维素(HEC)等 4 种纤维素作为锂 离子电池石墨负极黏结剂,通过电化学性能测试发 现 CMC 的综合电化学性能最佳。Sun 等[5] 对比研究 了 CMC 与羧甲基壳聚糖的电化学性能,发现两者的 循环性能相当,而 CMC 的倍率性能较差。Zheng 等[6] 研究了 CMC/SBR(丁苯乳液)在石墨负极浆料中的
最优配比及最佳用量,发现当 CMC、SBR 的添加量 (质量分数,下同)分别为 4% 和 2% 时,负极的首次 库仑效率及可逆容量最大。Lee 等[2] 研究了 CMC 的 溶胀行为对天然石墨负极浆料稳定性的影响,发现 当浆料 pH 为 7 时,CMC 的溶胀性最好,制备的负极 浆料最稳定。
目前有关 CMC 取代度对负极浆料流变及分散 稳定性影响的研究鲜见报道,而负极浆料的性质对 电池性能有重要影响,因此本文重点研究了不同取 代度 CMC 对负极浆料流变性能和分散稳定性的影 响。通过流变曲线、黏度、Zeta 电位及极片电阻率的 测试,探究了不同取代度 CMC 对负极浆料性能的影 响规律,为 CMC 在锂离子电池中的应用打下基础。

溶出车间运行题库

溶出车间题库一、填空题1、(溶出效果好坏)直接影响到拜耳法生产氧化铝的技术经济指标。

2、按照铝电公司《生产安全事故分类及考核标准》,我公司事故分级为(特别重大事故)、(重大事故)、(较大事故)、(一般事故)。

3、保温罐只有(满罐)才能保证料浆保温(一小时),才能保证铝土矿的(脱硅时间),使溶出液(铝硅比或A/S)增高。

4、泵的泵壳漏料,应将(进口)阀门和(出口)阀门关闭。

,5、操作人员对设备要达到三懂()()()。

懂设备结构、懂设备性能、懂设备在生产中的作用。

6、拆卸蒸汽、溶液、料浆管道时要将()()()放尽。

气、料、风7、车间停电后,应行关闭()系统,将()中的料浆扫回()。

新蒸汽加热,管道化套管,矿浆槽8、调节温度通常作法是固定()调节()满足温度要求。

进料量,蒸汽量9、工业铝酸钠溶液苛性比值不变时,溶液的稳定性随温度的降低而()。

降低10、工作服穿戴要求三紧:()()()。

领口紧、袖口紧、下摆紧11、在管道化停车扫线中各级管道出现震动异响,称为()现象,因此在停车时要谨慎操作,缓慢打开()阀门。

水锤,蒸汽扫线12、搅拌跳停时,应先将()打到()状态,然后盘车送电后要先停止盘车,将人员撤到安全地带,再将()打到()状态启动搅拌。

控制开关,停止,控制开关,就地13、绝对禁止自蒸发器()带料,发现带料,迅速(),查明原因解决,并及时汇报。

乏气,压低产量14、开车预热前应先将()()()中的冷凝水放净。

冷凝水罐,新蒸汽总管路,各级管道化管路15、开启泵之前必须先开启(),是为了防止()烧毁机封循环水,机封16、矿浆槽除贮存矿浆作用外,还有一定()作用。

脱硅17、冷凝水罐液位的调节是调整新蒸汽流量的重要手段,冷凝水罐的液位过低会使蒸汽来不及进行()就直接进入(),造成()现象。

而冷凝水罐的液位过高会造成()里的()出不来,影响()效果。

换热,冷凝水系统,串汽,管束,冷凝水,换热18、理论溶出率的计算公式为()。

简论高硫铝土矿中硫的赋存状态及除硫

简论高硫铝土矿中硫的赋存状态及除硫摘要:利用X射线衍射分析和化学分析对高硫铝土矿中硫相的定量分析进行了研究。

讨论了不同形态硫的脱除方法。

含硫铝土矿在不同地区主要以硫化硫(黄铁矿)或硫酸盐硫的形式存在。

通过X射线衍射分析和化学定量分析,他的硫相工作可以准确地研究含硫铝土矿。

铝的主要硫形态含硫铝土矿的测定,可以为铝土矿脱硫方法的选择提供理论指导。

氧化焙烧工艺是脱除高硫铝土矿中硫化物硫的有效方法。

焙烧矿消化液中被侵蚀的矿量高于1.7 g/L,而焙烧矿消化液中被侵蚀的矿量低于0.18 g/L,用碳酸盐溶液洗涤铝土矿可有效脱除硫酸盐硫,矿石中总硫含量降至0.2%以下,可满足生产对硫含量的要求。

关键词:硫铝土矿;赋存状态;脱硫一、概述中国铝土矿资源丰富,储量已达2.3×109t。

高含硫一水硬铝石型铝土矿含量达1.5×108t,矿石主要由铝组成,具有中高比例、中低比例的硅、高比例的硫和中高铝硅比。

大部分矿石是高品位氧化铝,但脱硫后只能用含硫量高的铝土矿。

因此,开发一种经济实用的脱硫方法对工业界来说是非常重要的。

此外,在氧化铝生产过程中,矿石中的硫不仅会造成Na2O的损失,还会导致钢中腐蚀性物质和铁浓度的增加。

增加S2浓度后的解决方案。

例如,当铝矾土的硫含量超过0.8%时,氧化铝的质量会因为Fe的存在而受到损害,蒸发过程中的设备和钢铁分解过程中的设备都会受到腐蚀。

它甚至可以减少氧化铝的消化。

近年来,铝土矿脱硫吸引了氧化铝工业的快速发展。

从铝土矿中提取氧化铝有两种基本方法,即烧结法和拜尔法。

这种烧结工艺的缺点是效率低(低至33%或更低)。

由于成本低,拜耳法是从铝土矿中提取氧化铝最常用的方法。

在拜耳法和脱硫的研究领域,铝土矿主要是脱除钠中的硫铝酸盐溶液或拜耳溶液。

研究发现,脱硫主要是通过添加脱硫剂,即氧化锌或氧化钡来实现的,但这两种方法的基本原理是不同的。

但为了提高脱硫剂的针对性选择,首先要了解硫的相态。

FTIR研究CMC、MCC对小麦淀粉抗回生规律及机理

FT-IR 研究CMC、MCC 对小麦淀粉的抗回生规律石振兴1,熊犍1,2,叶君3(1.华南理工大学轻工与食品学院,广东广州 510640)(2.四川大学高分子材料工程国家重点实验室,四川成都610065)(3.华南理工大学制浆造纸工程国家重点实验室,广东广州 510640)摘要:利用DSC 和傅里叶变换红外光谱(FT-IR )研究羧甲基纤维素(CMC )和微晶纤维素(MCC )对小麦淀粉(WS )回生的影响。

结果表明:当CMC 和MCC 添加到WS 中后,FT-IR 中3423 cm -1峰向低波数方向位移,表明分子间氢键增强;WS/CMC 体系中的1647 cm -1移动至1641 cm -1;WS/MCC 中1647 cm -1未发生位移,MCC 的特征峰1433 cm -1消失;表明CMC 和MCC 与WS 不是简单混合,其分子间发生相互作用,使体系具有抗回生作用;并用红外回生度(IRAD 1047 = H1047/H1020,IRAD 995 =H 995/H1020)峰强度比定量表征了回生程度变化,表明添加4.0% CMC 对WS 抗回生比6.0%高,而添加6.0% MCC 比4.0%的抗回生高;CMC 对WS 回生的抑制作用优于MCC ;讨论了WS/CMC 及WS/MCC 混合体系糊化后冷藏14 d 后抗回生的机理;红外回生度(IRAD 1047、IRAD 995)和经典的DSC 回生度(DSCAD=∆Hr/∆H )比较:FT-IR 所得到的红外回生度与DSC 回生度变化规律一致;FT-IR 对化学键周围的环境更加敏感;能够快速、容易得到更多和详细的相关结构与性能信息。

关键词:傅里叶变换红外光谱法;羧甲基纤维素;微晶纤维素;小麦淀粉;回生 文章篇号:1673-9078(2014)3-33-37Effects of CMC and MCC on Resisting Retrogradation Regularity andMechanism of Wheat Starch by FT-IRSHI Zhen-xing 1, XIONG Jian 1,2, YE Jun 3(1.College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China) (2.State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China) (3.State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China)Abstract: Effects of carboxymethylcellulose (CMC) and microcrystalline cellulose (MCC) on the retrogradation of wheat starch (WS) were investigated by DSC and fourier transform infrared spectroscopy (FT-IR). The result showed that the band of FT-IR at 3423 cm -1 shifted to low wavenumber, indicating that the intermolecular hydrogen bond was enhanced. The band shifted from 1647 cm -1 to 1641 cm -1 for WS/CMC and the band at 1647 cm -1 were not changed for WS/MCC. However, the characteristic peak of MCC at 1433 cm -1 disappeared. These results suggested that CMC or MCC was not simply mixed with WS, and the mixture systems resisted retrogradation by the intermolecular interaction. IR retrogradation degree (IRAD 1047 = H1047/H1020, IRAD 995 =H 995/H1020) of the peak intensity ratios were used to quantitative characterize the retrogradation degree changes, which was showed that 4.0% CMC resisted WS retrogradation better than 6.0%, and 6.0% MCC better than 4.0%. CMC was superior to MCC on retrogradation inhibition. Anti-retrogradation mechanism of WS/CMC and WS/MCC mixture pastes after cold storing for 14 d was also discussed. IR retrogradation degree (IRAD 1047 and IRAD 995) determined by FT-IR was consistent with the DSC results (DSCAD=∆Hr/∆H). FT-IR method has been found to be sensitive to chemical bond environments, which can get more and detailed information related to structures or properties quickly and easily.Key words: Fourier transform infrared spectroscopy; carboxymethylcellulose (CMC); microcrystalline cellulose (MCC); wheat starch; retrogradation收稿日期:2013-10-30基金项目:国家自然科学基金资助(51043011;31270617);高分子材料工程国家重点实验室开放课题基金资助(KF201301)作者简介:石振兴(1984-),女,在读博士,研究方向:农产品深加工及天然高分子结构与性能通讯作者:叶君(1963-),女,博士,教授,研究方向:植物资源化学淀粉回生严重影响其终产品的品质和货架期。

聚丙烯酰胺类抑制剂对一水硬铝石和高岭石可浮性差异调控的影响

聚丙烯酰胺类抑制剂对一水硬铝石和高岭石可浮性差异调控的影响邵秀峰;张素红;马悦【期刊名称】《金属矿山》【年(卷),期】2024()4【摘要】针对捕收剂在一水硬铝石与高岭石表面的吸附选择性较差的问题,添加3种不同类型的聚丙烯酰胺抑制剂调变捕收剂在矿物表面的选择性吸附差异,研究抑制剂类型对捕收剂丙撑基双十二酰胺丙基二甲基氯化铵(DAPDPAC)在矿物表面的吸附量差异和相互作用变化,以及抑制剂对两种矿物的浮选影响。

浮选试验结果表明:与非离子聚丙烯酰胺(NPAM)和阴离子聚丙烯酰胺(APAM)相比,阳离子聚丙烯酰胺(CPAM)显示了捕收剂对两种矿物显著的浮选调变差异,且CPAM在浓度80 mg/L时,一水硬铝石的回收率受到明显抑制,而高岭石的回收率几乎不变,且在酸性至弱碱性环境下,可以较好地实现一水硬铝石和高岭石的浮选分离。

红外光谱测试结果表明:添加的抑制剂CPAM有效地阻碍了DAPDPAC在一水硬铝石表面的吸附,而在高岭石表面的吸附无明显变化。

吸附量、Zeta电位及XPS测试结果表明:CPAM用量大于80 mg/L时,DAPDPAC在一水硬铝石和高岭石表面的吸附量差值保持在9.76×10^(-7)mol/g以上。

因此,CPAM可有效调控DAPDPAC在一水硬铝石和高岭石表面的选择性吸附,有利于强化DAPDPAC对一水硬铝石和高岭石的浮选分离。

【总页数】9页(P102-110)【作者】邵秀峰;张素红;马悦【作者单位】太原理工大学矿业工程学院【正文语种】中文【中图分类】TD923;TD952【相关文献】1.阳离子聚丙烯酰胺反浮选分离一水硬铝石和高岭石2.一水硬铝石和高岭石可浮性的晶体化学分析*3.阳离子捕收剂对一水硬铝石和高岭石的浮选行为影响研究4.金属离子对一水硬铝石和高岭石浮选行为的影响5.捕收剂CTAB对一水硬铝石与高岭石的浮选差异及其分子动力学模拟因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Press Available online at www.sciencedirect.com .一,o ・::,ScienceDi rect 

Trans.Nonferrous Met.Soc.China 21(201 l1 1868—1873 Transactions of 

Nonferrous Metals Society of China 

www.tnmsc.en Effect of degree of substitution of carboxymethyl starch on diaspore depression in reverse flotation 

LI Hai—pu】,ZttANG Sha—sha1,JIANG Hap2,LI BinI,LI Xing1 

1.School of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China; 2.School of Minerals Processing and Bioengineering,Central South University,Changsha 41 0083,China 

Received 16 December 2010;accepted 26April 2011 

Abstract:Carboxymethyl starchs(CMS)with low and high degrees of substitution(CMSL and CMSH in short,respectively)were employed as depressants of diaspore in cationic reverse flotation using dodecylamine(DDA)as collector.The effect of degree of substitution of CMS on its depression performance was examined and the interaction mode and behavior were investigated in a comparative manner.Micro.flotation test showed that CMSI exhibited better performance in depressing diaspore than CMSH in a broad pH range.The adsorption of CMS on diaspore was studied by adsorption test,zeta potential measurement,and atomic force microscopy.It was found that CMSH corresponds to lower adsorption amount,thinner adsorption layer,and more negative charge than CMST,resulting from the more chelating sites brought by the high degree of substitution.The Sur ̄ce tension measurement and DDA adsorption test further revealed that CMSL/DDA trapping effect by enveloping some DDA molecules inside quasi・surfactant. 

system gives a better depressing performance benefiting from the the loop chains,while CMSH/DDA system is likely considered a 

Key words:carboxymethyl starch;diaspore;reverse flotation;depressant 

1 Introduction The bauxite reserves in China are roughly 2 500 million tons.rmxking the fiflh in the world.However, these aluminum resources are overwhelmingly of diaspofie ore with low aluminum/silicon ratio(A/S). which fails to meet the necessary requirement of direct Bayer process[卜2].Reverse flotation was proposed to practically and efficiently utilize the low A/S diasporic bauxite by upgrading the mineral through floating and removing the gangue parts,such as illite,pyrophyllite, and kaolinite,while 1eaving the desirable component, diaspore,in the tailing[3—4].In this process,both collector and depressant,which play different roles and facilitate diferent functionalities.are essential for the realization of selective separation.As for the cationic reverse flotatipn desilication treatment.a number of depressants,natural or synthesized,were employed to work with the cationic collector for the purpose of depressing and accumulating diaspore. Starch is a low cost abundantly available biopolymer[5-7】.The high number of hydroxyl groups on starch backbone provides excellent convenience in modifying the crude polymer into characteristic derivatives for the use of this renewable recourse in the context of sustainable development f6,8—9】.In the authors’laboratory,some ofthem,including hydroxamic acid starch[1 0—1 1】,multi—group starch[12],amphoteric starch,cationic starch,and as well as carboxymethyl starch f131,have been developed as effective depressants of diaspore in reverse flotation.Therein,carboxymethyl starch fCMS1 is of special interest because of its chemisorbed character of—CH,COO—group on the surface aluminum atoms of minerals by forming a chelate complex.It is well known that one of the most important goals of carboxymethylation of starch is to obtain water-soluble derivatives for the smooth operation of froth tiptation in aqueous media.The t0tal degree of substitution(DS、as a carboxymethylation ratio,which represents the average number of functional groups in仃oduced in the polymer,mainly determines the properties of modified product,i.e.hydrophilicity, solubility.affinity to diaspore and interaction with 

Foundation item:Projects(50804055,50974134)supposed by the National Natural Science Foundation of China;Projeet(09JJ3 100)supposed by the Natural Science Foundation ofHunan Province,China Corresp0Ⅱdjng author:LI Hai—pu;Tel:+86-73】一88830603;E—mail:lihaipu@mail.CSU edu.cn DOI:10.1016/S1003—6326(11)60943-6

相关文档
最新文档